
==
 LINUX ASSEMBLER TUTORIAL

 by

 Robin Miyagi

 @

 http://www.geocities.com/SiliconValley/Ridge/2544/
==

start@: Thu Feb 03 02:14:37 UTC 2000

update: Fri Jul 30 23:52:23 UTC 2000

update: Fri Sep 15 22:39:17 UTC 2000 :

 - This tutorial now explains Linux assembler in terms of the GNU
 assembler `as'.

 - Information about Binutils programs such as Objdump, and ld.
 Discussion on Debugging and `gdb' is added.

update: Thu Jan 11 20:13:06 UTC 2001 :

==

* Introduction
--

 When programming in assembler for Linux (or any other Unix variant
 for that matter), it is important to remember that Linux is a
 protected mode operating system (on i386 machines, Linux operates
 the CPU in protected mode). This means that ordinary user mode
 processes are not allowed to do certain things, such as access DMA,
 or access IO ports. Writing Linux kernel modules on the other hand
 (which operate in kernel mode), are allowed to access hardware
 directly (Read the Assembler-HOWTO on my assembler page for more
 information on this issue). User mode processes may access hardware
 using device files. Device files actually access kernel modules
 which access hardware directly. This file will be restricted to
 user mode operation. See my pages on kernel module programming.

 Please email me comments and suggestions regarding this tutorial at
 penguin@dccnet.com .

* System Calls
--

 In programming in assembler for DOS you probably made use of

1 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 software interrupts, especially the int 0x21 functions which were
 the DOS system calls. In Linux, system calls are made via int 0x80.
 The sytem call number is passed via register EAX, and the parameters
 to the system call are passed via the remaining registers. This
 discussion only applies if there are no more than five parameters
 passed to the system call. If there are more than 5 parameters.
 The parameters must be located in memory (e.g. on the stack), and
 EBX must contain the address of the beginning of the parameters.

 If you would like a list of the system call numbers, look at the
 contents of /usr/include/asm/unistd.h. If you would like
 information about a specific system call (e.g. write ()), type `man
 2 write' at the prompt. Section 2 of the linux man pages covers
 sytem calls.

 If you look at the contents of /usr/include/asm/unistd.h, you will
 see the following line near the top of the file;

 #define __NR_write 4

 This indicates that register EAX must be set to 4 in order to call
 the write () system call. Now, if you execute the following
 command;

 $ man 2 write

 you get the following function description (under the SYNOPSIS
 heading).

 ssize_t write(int fd, const void *buf, size_t count);

 This indicates that ebx is equal to the file descriptor of the file
 you want to write to, ecx is a pointer of the string you want to
 write, and edx contains the length of the string. If there were 2
 more parameters to this system call, they would be placed in esi,
 and edi respectively.

 How do I know the file discriptor for stdout is 1. If you look at
 your /dev directory, you will notice that /dev/stdout is a symbolic
 link that points to /proc/self/fd/1. Therefore stdout is file
 descriptor 1.

 I leave looking up the _exit system call as an exercise.

 In linux, system calls are processed by the kernel.

* GNU Assembler
--

 On most Linux systems, you will usually find the GNU C compiler
 (gcc). This compiler uses an assembler called `as' as a back-end.

2 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 This means that the C compiler translates the C code into assembler,
 which in turn is assembled by `as' to an object file (*.o).

 `As' uses the AT&T syntax. Experienced intel syntax assembler
 programmers find AT&T `really weird'. It is really no more or no
 less difficult than intel syntax. I switched over to `as' because
 there is less ambiguity, works better with the standard GNU/Linux
 programs such as gdb (supports the gstabs format), objdump (objdump
 dissassembles code in `as' syntax). In short, it is a standard
 component of a GNU Linux system with programming tools installed. I
 will explain debugging and objdump later in this tutorial.

 If you would like more information about `as' look in the info
 documentation under as (e.g. type `info as' at the shell prompt).
 Also look in the info documentation on the Binutils package (this
 package contains such programming tools as objdump, ld, etc.).

** GNU assembler v.s. Intel Syntax
--

 Since most assembler documentation for the i386 platform is written
 using intel syntax, some comparison between the 2 formats is in
 order. Here is a summarized list of the differences;

 - In `as' the source comes before the the destination, opposite to
 the intel syntax.

 - The opcodes are suffixed with a letter indicating the size of
 the opperands (e.g. `l' for dword, `w' for word, `b' for byte).

 - Immediate values must be prefixed with a `$', and registers must
 be prefixed with a `%'.

 - Effective addresses use the General syntax
 DISP(BASE,INDEX,SCALE). A concrete example would be;

 movl mem_location(%ebx,%ecx,4), %eax

 Which is equivelent to the following in intel syntax;

 mov eax, [eax + ecx*4 + mem_location]

 Now for an example illustrating the difference (intel version in
 comments);

 movl %eax, %ebx # mov %ebx, %eax
 movw $0x3c4a, %ax

 Now for our little program;
--

3 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 ## hello-world.s

 ## by Robin Miyagi
 ## http://www.geocities.com/SiliconValley/Ridge/2544/

 ## Compile Instructions:
 ## ---
 ## as -o hello-world.o hello-world.s
 ## ld -o hello-world -O0 hello-world.o

 ## This file is a basic demonstration of the GNU assembler,
 ## `as'.

 ## This program displays a friendly string on the screen using
 ## the write () system call
##
 .section .data
hello:
 .ascii "Hello, world!\n"
hello_len:
 .long . - hello
##
 .section .text
 .globl _start

_start:
 ## display string using write () system call
 xorl %ebx, %ebx # %ebx = 0
 movl $4, %eax # write () system call
 xorl %ebx, %ebx # %ebx = 0
 incl %ebx # %ebx = 1, fd = stdout
 leal hello, %ecx # %ecx ---> hello
 movl hello_len, %edx # %edx = count
 int $0x80 # execute write () system call

 ## terminate program via _exit () system call
 xorl %eax, %eax # %eax = 0
 incl %eax # %eax = 1 system call _exit ()
 xorl %ebx, %ebx # %ebx = 0 normal program return code
 int $0x80 # execute system call _exit ()

--

 In the above program, notice the use of `#' to start comments. `As'
 also supports the `/* C comment *' syntax. If you use the C comment
 syntax, it works exactly the same as for C (multiple lines, as well
 as inline commenting). I always use the `#' comment syntax, as this
 works better with emacs' asm-mode. The double `##' is allowed but
 not neccessary (this is only because of a quirk of emacs asm-mode).

 Notice the names of the sections .text, and .data. these are used

4 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 in ELF files to tell the linker where the code and data segments
 are. There is also the .bss section to store uninitialized data.
 It is only these sections that occupy memory durring program
 execution.

* Accessing Command Line Arguments and Environment Variables

 When an ELF executable starts running, the command line arguments
 and environment variables are available on the stack. In assembler
 this means that you may access these via the pointer stored in ESP
 when the program starts execution. See the documentation on my
 assembler programming page relating to the ELF binary format.

 So how is this data arranged on the stack? Quite simple really.
 The number of command line arguments (including the name of the
 program) are stored as an integer at [esp]. Then, at [esp+4] a
 pointer to the first command line argument (which is the name of the
 program) is stored. If there were any additional command line
 parameters, their pointers would be stored in [esp+8], [esp+12],
 etc. After all the command line argument pointers, comes a NULL
 pointer. After the NULL pointer are all the pointers to the
 environment variables, and then finally a NULL pointer to indicate
 the end of the environment variables have been reached.

 A summary of the initial ELF stack is shown below;

 (%esp) argc, count of arguments (integer)
 4(%esp) char *argv (pointer to first command line argument)
 ... pointers to the rest of the command line arguments
 ?(%esp) NULL pointer
 ... pointers to environment variables
 ??(%esp) NULL pointer

 Now for our little program;
--
 ## stack-param.s ###

 ## Robin Miyagi ##
 ## http://www.geocities.com/SiliconValley/Ridge/2544/ ##########

 ## This file shows how one can access command line parameters
 ## via the stack at process start up. This behavior is defined
 ## in the ELF specification.

 ## Compile Instructions:
 ## ---
 ## as -o stack-param.o stack-param.s
 ## ld -O0 -o stack-param stack-param.o
##
 .section .data

5 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

new_line_char:
 .byte 0x0a
##
 .section .text

 .globl _start

 .align 4
_start:
 movl %esp, %ebp # store %esp in %ebp
again:
 addl $4, %esp # %esp ---> next parameter on stack
 movl (%esp), %eax # move next parameter into %eax
 testl %eax, %eax # %eax (parameter) == NULL pointer?
 jz end_again # get out of loop if yes
 call putstring # output parameter to stdout.
 jmp again # repeat loop
end_again:
 xorl %eax, %eax # %eax = 0
 incl %eax # %eax = 1, system call _exit ()
 xorl %ebx, %ebx # %ebx = 0, normal program exit.
 int $0x80 # execute _exit () system call

 ## prints string to stdout
putstring: .type @function
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %ecx
 xorl %edx, %edx
count_chars:
 movb (%ecx,%edx,$1), %al
 testb %al, %al
 jz done_count_chars
 incl %edx
 jmp count_chars
done_count_chars:
 movl $4, %eax
 xorl %ebx, %ebx
 incl %ebx
 int $0x80
 movl $4, %eax
 leal new_line_char, %ecx
 xorl %edx, %edx
 incl %edx
 int $0x80
 movl %ebp, %esp
 popl %ebp
 ret

--

6 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

* The Binutils Package
--

 Binutils stands for binary utilities, and includes a lot of tools
 useful to programmers, especially durring debugging.

 I will now address some of these utilities.

** Objdump
--

 Objdump diplays information about 1 or more object files. For
 example, to see information about param-stack, type the following
 command at shell prompt (be sure working directory contains
 param-stack);

 objdump -x param-stack | less

 Since the information is likely to span more than one screen, the
 output of objdump is piped to the standard input of the paging
 command `less'. the option `-x' tells objdump to display the
 numeric information in hexadecimal. Here is the output of the above
 command;

 --
 stack-param: file format elf32-i386
 stack-param
 architecture: i386, flags 0x00000112:
 EXEC_P, HAS_SYMS, D_PAGED
 start address 0x08048074

 Program Header:
 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12
 filesz 0x000000be memsz 0x000000be flags r-x
 LOAD off 0x000000c0 vaddr 0x080490c0 paddr 0x080490c0 align 2**12
 filesz 0x00000001 memsz 0x00000004 flags rw-

 Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 0000004a 08048074 08048074 00000074 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .data 00000001 080490c0 080490c0 000000c0 2**2
 CONTENTS, ALLOC, LOAD, DATA
 2 .bss 00000000 080490c4 080490c4 000000c4 2**2
 ALLOC
 SYMBOL TABLE:
 08048074 l d .text 00000000
 080490c0 l d .data 00000000
 080490c4 l d .bss 00000000
 00000000 l d *ABS* 00000000

7 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 00000000 l d *ABS* 00000000
 00000000 l d *ABS* 00000000
 080490c0 l .data 00000000 new_line_char
 08048076 l .text 00000000 again
 08048087 l .text 00000000 end_again
 0804808e l .text 00000000 putstring
 08048096 l .text 00000000 count_chars
 080480a0 l .text 00000000 done_count_chars
 00000000 F *UND* 00000000
 080480be g O *ABS* 00000000 _etext
 08048074 g .text 00000000 _start
 080490c1 g O *ABS* 00000000 __bss_start
 080490c1 g O *ABS* 00000000 _edata
 080490c4 g O *ABS* 00000000 _end

 --

 Notice the Information provided from the program header (ELF files
 have header information at the beginning of the file giving
 information to the kernel on how to load the file into memory etc.).

 ELF files also contain information about the sections (contained in
 section tables). Notice that the .text section contains 0x4a bytes
 of information, is located 0x74 bytes into the file, and is aligned
 at a 4 byte boundary (4 == 2 ** 2), has memory allocated to it
 (ALLOC), is readoly, and contains code (the segment selector cs for
 this process points to this section (handled by the operating
 system)).

 Information about the symbols is also provided. All this
 information is used by debuggers and other programming tools to
 examine binary files.

 Objdump can also be used to dissasemble binary executables. Typeing
 the following command will dissassemble the file to standard output
 (this does nothing to the actual file, as objdump only reads from
 the file);

 objdump -d stack-param | less

 Here is the output of the above command;

 --
 stack-param: file format elf32-i386

 Disassembly of section .text:

 08048074 <_start>:
 8048074: 89 e5 movl %esp,%ebp

 08048076 <again>:

8 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 8048076: 83 c4 04 addl $0x4,%esp
 8048079: 8b 04 24 movl (%esp,1),%eax
 804807c: 85 c0 testl %eax,%eax
 804807e: 74 07 je 8048087 <end_again>
 8048080: e8 09 00 00 00 call 804808e <putstring>
 8048085: eb ef jmp 8048076 <again>

 08048087 <end_again>:
 8048087: 31 c0 xorl %eax,%eax
 8048089: 40 incl %eax
 804808a: 31 db xorl %ebx,%ebx
 804808c: cd 80 int $0x80

 0804808e <putstring>:
 804808e: 55 pushl %ebp
 804808f: 89 e5 movl %esp,%ebp
 8048091: 8b 4d 08 movl 0x8(%ebp),%ecx
 8048094: 31 d2 xorl %edx,%edx

 08048096 <count_chars>:
 8048096: 8a 04 11 movb (%ecx,%edx,1),%al
 8048099: 84 c0 testb %al,%al
 804809b: 74 03 je 80480a0 <done_count_chars>
 804809d: 42 incl %edx
 804809e: eb f6 jmp 8048096 <count_chars>

 080480a0 <done_count_chars>:
 80480a0: b8 04 00 00 00 movl $0x4,%eax
 80480a5: 31 db xorl %ebx,%ebx
 80480a7: 43 incl %ebx
 80480a8: cd 80 int $0x80
 80480aa: b8 04 00 00 00 movl $0x4,%eax
 80480af: 8d 0d c0 90 04 08 leal 0x80490c0,%ecx
 80480b5: 31 d2 xorl %edx,%edx
 80480b7: 42 incl %edx
 80480b8: cd 80 int $0x80
 80480ba: 89 ec movl %ebp,%esp
 80480bc: 5d popl %ebp
 80480bd: c3 ret
 --

 The `-d' tells objdump to disassemble sections that are expected to
 contain code (usually the .text section). Using the `-D' option
 will disassemble all sections. Objdump was able to give the names
 of labels in the code because of the information contained in the
 symbols table.

 The first column displays the virtual memory address for each line
 of code. The second column displays the machine code corresponding
 to its respective assembler line of code, and finally the code in
 assembler is contained in the 3rd column.

9 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 For more information look in the info documentation system.

** Getting the amount of memory used with size
--

 If you do an `ls -l stack-param' you get the following

 -rwxrwxr-x 1 robin robin 932 Sep 15 18:21 stack-param

 This tells you that the file is 932 bytes long. However this file
 also contains header tables, section tables, symbol tables etc. The
 amount of memory that this program will use durring run time will be
 less than this. To find out actual memory use, type the following;

 size stack-param

 The above will result in the following output;

 text data bss dec hex filename
 74 1 0 75 4b stack-param

 This tells you that .text occupies 74 bytes, and .data occupies one
 byte, for a total of 75 bytes memory use.

** Getting rid of symbol information with strip
--

 The strip command can be used to get rid of the symbol information.
 With no options, this command only strips symbols that are not used
 for debugging. With the `--stip-all' option provided, it will strip
 all symbol information, including those used for debugging. I
 recommend not doing this, as this makes the files harder to analyse
 with the standard programming tools. This command is used only if
 file size is of paramount importance.

* debugging and gdb
--

 Perhaps the most difficult aspect of programming is debugging.
 Quite often the error that caused the program to terminate
 abnormally is not at the line where the program terminated (the
 example later on will show this).

 Program that exits with SIG_SEGV
--
 ## stack-param-error.s ###

 ## Robin Miyagi ##
 ## http://www.geocities.com/SiliconValley/Ridge/2544/ ##########

10 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 ## This file shows how one can access command line parameters
 ## via the stack at process start up. This behavior is defined
 ## in the ELF specification.

 ## Compile Instructions:
 ## ---
 ## as --gstabs -o stack-param-error.o stack-param-error.s
 ## ld -O0 -o stack-param-error stack-param-error.o
##
 .section .data

new_line_char:
 .byte 0x0a
##
 .section .text

 .globl _start

 .align 4
_start:
 movl %esp, %ebp # store %esp in %ebp
again:
 addl $4, %esp # %esp ---> next parameter on stack
 leal (%esp), %eax # move next parameter into %eax
 testl %eax, %eax # %eax (parameter) == NULL pointer?
 jz end_again # get out of loop if yes
 call putstring # output parameter to stdout.
 jmp again # repeat loop
end_again:
 xorl %eax, %eax # %eax = 0
 incl %eax # %eax = 1, system call _exit ()
 xorl %ebx, %ebx # %ebx = 0, normal program exit.
 int $0x80 # execute _exit () system call

 ## prints string to stdout
putstring: .type @function
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %ecx
 xorl %edx, %edx
count_chars:
 movb (%ecx,%edx,$1), %al
 testb %al, %al
 jz done_count_chars
 incl %edx
 jmp count_chars
done_count_chars:
 movl $4, %eax
 xorl %ebx, %ebx
 incl %ebx
 int $0x80

11 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 movl $4, %eax
 leal new_line_char, %ecx
 xorl %edx, %edx
 incl %edx
 int $0x80
 movl %ebp, %esp
 popl %ebp
 ret
--

 Notice that the above program is assembled with the `--gstabs'
 option of `as'. This make as put debugging information in output
 file, such as the original source file, debugging symbols etc.
 Using `objdump -x stack-param-error | less' will show you the
 inclusion of debugging symbols.

 Now to find out where our error occurred type the following command;

 gdb stack-param-error

 this will get you to the gdb prompt `(gdb)';

 (gdb) run eat my shorts
 /home/robin/programming/asm-tut/stack-param-error
 eat
 my
 shorts
 Program recieved SIGSEGV, segmentation fault
 count_chars () at stack-param-error.s:47

 47 movb (%ecx,%edx,$1), %al
 Current language: auto; currently asm
 (gdb) q
 [~]$ _

 (gdb will output more than this, I just wanted to highlight what
 is important).

 This tells us that the segmentation fault occured at line 47 of
 param-stack-error.s. However the problem was caused in line 29. If
 you look at line 29 of stack-param.s, you will see that this line
 reads `movl (%esp), %eax'. This is due to the way intel i386 opcode
 lea handles NULL pointers. EAX was never loaded with 0 on a null
 pointer (just some invalid pointer), which caused line 47 to access
 an area of memory not available to this process (hence the
 segmentation fault). The loop in _start () never stopped normally,
 as the condition for breaking out of the loop is eax being 0, which
 never happened.

 Debugging is an art that comes with practice. For more information
 about gdb, look in the info pages (e.g. `info gdb'). You can also

12 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

 type `help' at the (gdb) prompt.

 The only reason gdb was able to tell you what line number in the
 source code the error occured is that the debugging symbols and
 source code was included in the output file (recall that we used the
 `--gstabs' option).

 --
 Comments and suggestions <penguin@dccnet.com>

==

You are free to make verbatim copies of this file, providing that this
notice is preserved.

13 of 13 4/10/2001 4:00 PM

http://www.geocities.com/SiliconValley/Ridge/2544/asm/linux-asm.txt

