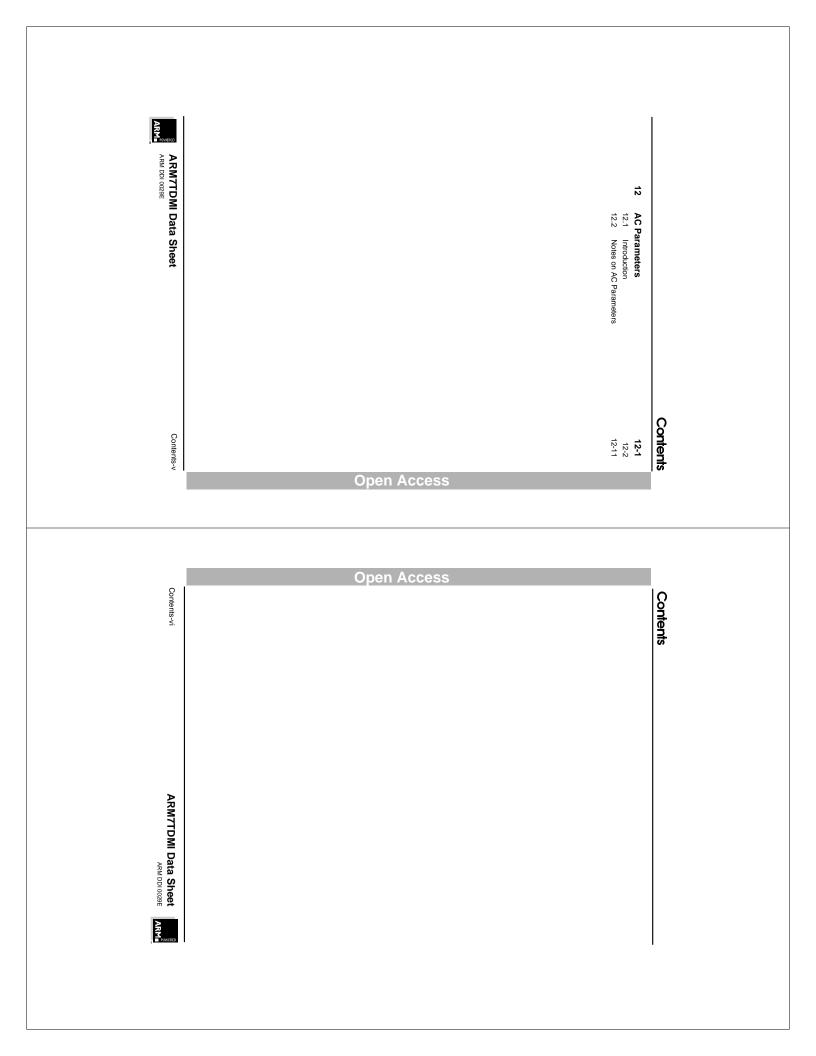
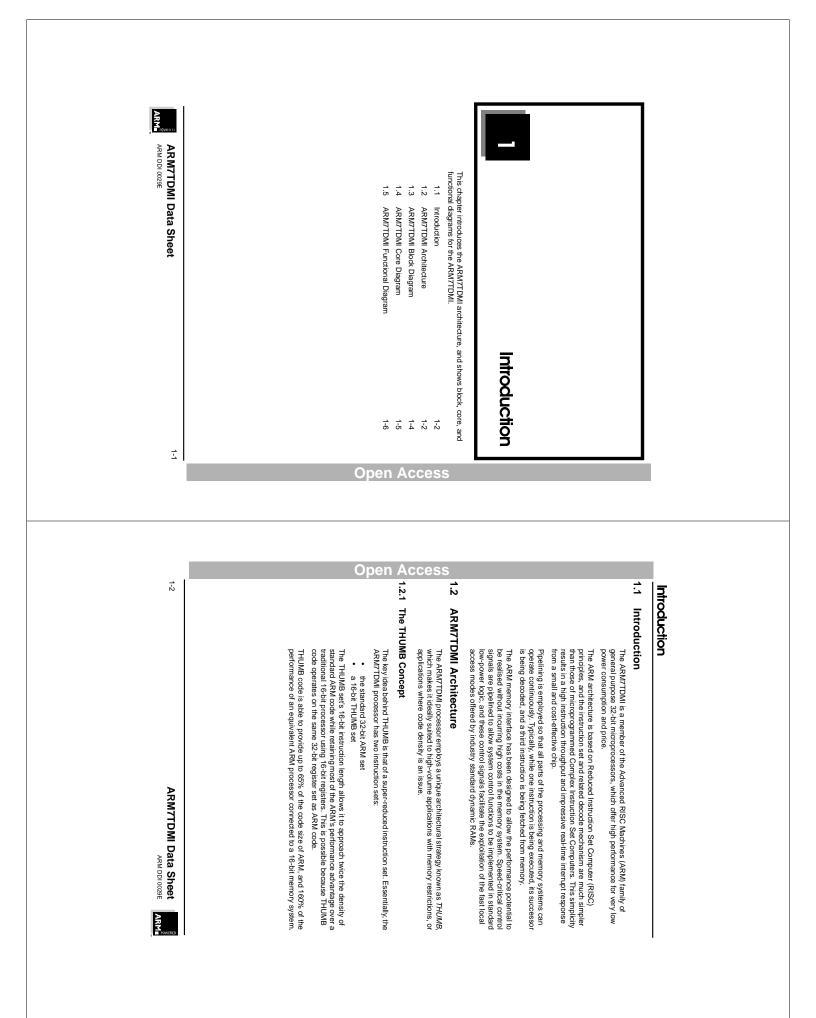
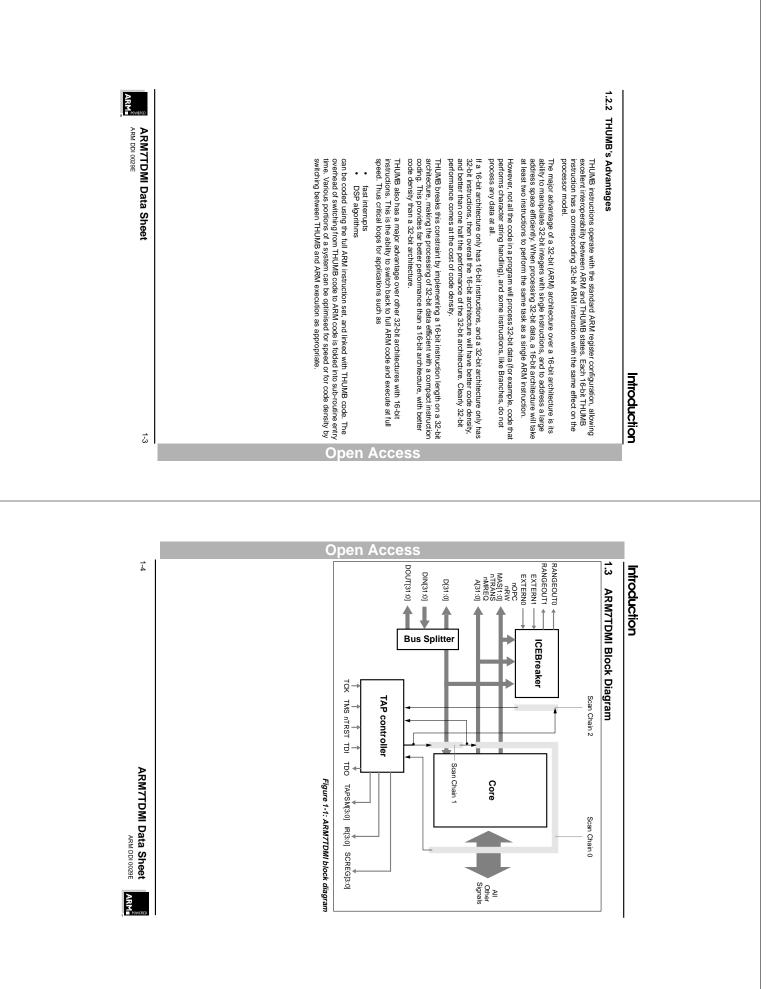


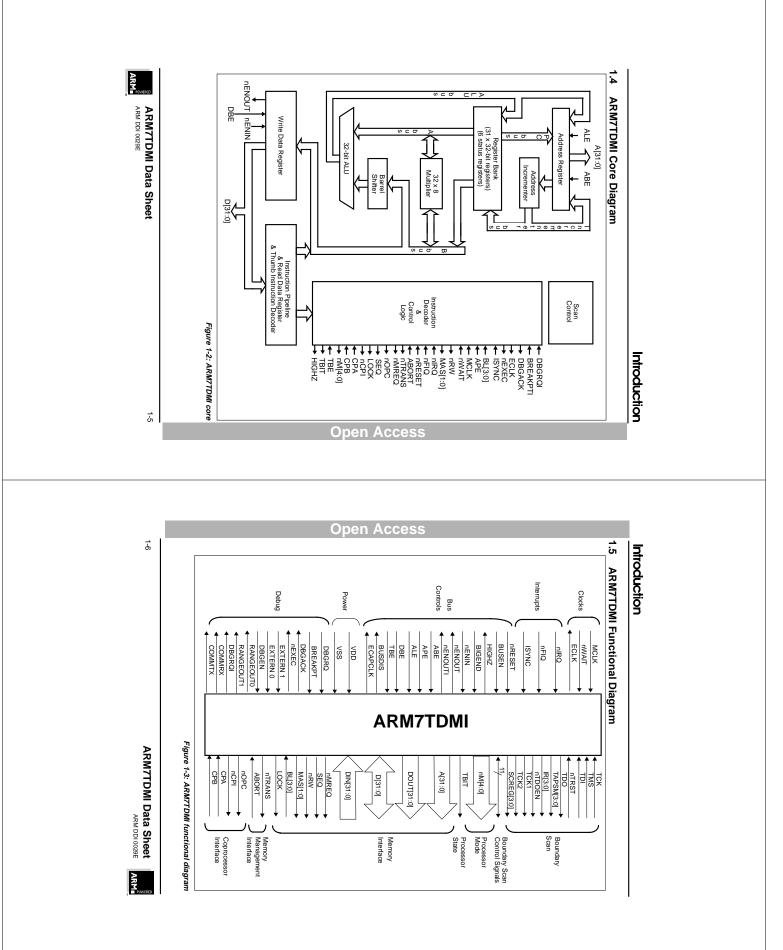

| ARM DDI 0029E       | ω Ν ¬                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARM7TDMI Data Sheet | Introduction<br>1.1 Introduction<br>1.2 Introduction<br>1.2 ARM7TDMI Architecture<br>1.3 ARM7TDMI Block Diagram<br>1.4 ARM7TDMI Block Diagram<br>1.4 ARM7TDMI Core Diagram<br>1.5 ARM7TDMI Functional Diagram<br>2.1 Signal Description<br>2.1 Signal Description<br>2.1 Signal Description<br>2.1 Signal Description<br>2.1 Signal Description<br>3.2 Switching States<br>3.3 Memory Formats<br>3.4 Instruction Length<br>3.5 Data Types<br>3.6 Operating Modes<br>3.7 Registers<br>3.8 The Program Status Registers<br>3.9 Exceptions<br>3.10 Interrupt Latencies<br>3.11 Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Contents-i          | <b>Contents</b><br><sup>3</sup> / <sub>5</sub> <sup>3</sup> / <sub>4</sub> <sup>3</sup> / <sub>2</sub> <sup>3</sup> / <sub>2</sub> <sup>3</sup> / <sub>2</sub> <sup>3</sup> / <sub>2</sub> <sup>2</sup> / <sub>2</sub> <sup>1</sup> / <sub>5</sub> <sup>1</sup> / <sub>5</sub> <sup>1</sup> / <sub>4</sub> <sup>1</sup> / <sub>2</sub> <sup>1</sup> |
|                     | Open Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Contents-ii         | 4 r0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                     | ARM Instruction Set           4.1         Instruction Set Summ           4.2         The Condition Field           4.3         Branch and Exchang           4.4         Branch and Exchang           4.5         Data Processing           4.6         PRR Transfer (Multiply and Multiply and Multiply Long and Multiply and Fransfer           4.7         Multiple Data Swap (S           4.11         Block Data Transfer           4.12         Single Data Transfer           4.13         Software Interrupt (S           4.14         Coprocessor Data T           4.15         Coprocessor Registe           4.16         Coprocessor Registe           4.17         Undefined Instruction Set           5.1         Format 2: add/subtre           5.2         Format 2: add/subtre           5.3         Format 3: Invove/com           5.4         Format 4: ALU opera           5.51         Format 3: Invove/com           5.51         Format 3: Invove/store           5.51         Format 1: Sold/store           5.51         Format 1: Sold/store           5.51         Format 1: Sinutifiely           5.51         Format 1: Solo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

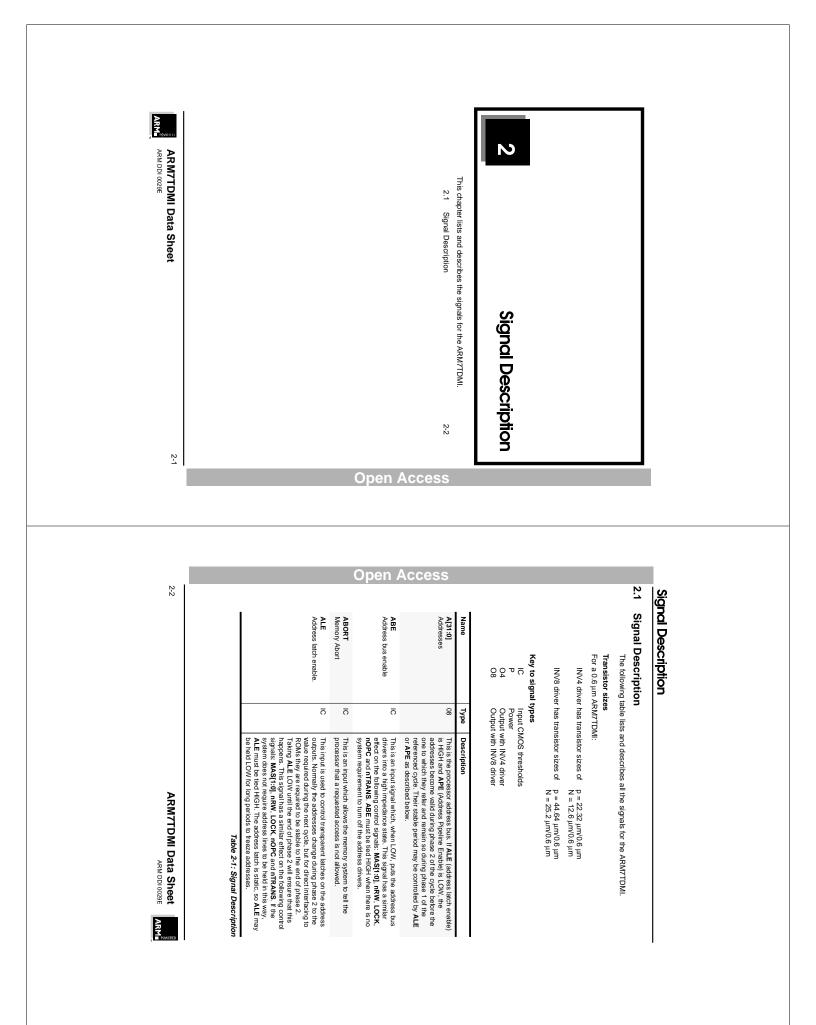
|                               |                               |                                |                               |                                        |                         |                                   |                                |                                            |                                                  |                                           |                            |                                                  |                          |                                               |                        |                                 | ъ                     |                          |                       |                                           |                                       |                                   |                          |                        |                                |                                   |                                 |                                                         |                                             |                         |                 |                                     |                          |                     |                         |
|-------------------------------|-------------------------------|--------------------------------|-------------------------------|----------------------------------------|-------------------------|-----------------------------------|--------------------------------|--------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------|--------------------------------------------------|--------------------------|-----------------------------------------------|------------------------|---------------------------------|-----------------------|--------------------------|-----------------------|-------------------------------------------|---------------------------------------|-----------------------------------|--------------------------|------------------------|--------------------------------|-----------------------------------|---------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------|-----------------|-------------------------------------|--------------------------|---------------------|-------------------------|
| 5.17                          | 5.16                          | 5.15                           | 5.14                          | 5.13                                   | 5.12                    | 5.11                              | 5.10                           | 5.9                                        | 5.8                                              | 5.7                                       | 5.6                        | 5.5                                              | 5.4                      | 5.3                                           | 5.2                    | 5.1                             | THU                   | 4.18                     | 4.17                  | 4.16                                      | 4.15                                  | 4.14                              | 4.13                     | 4.12                   | 4.11                           | 4.10                              | 4.9                             | 4.8                                                     | 4.7                                         | 4.6                     | 4.5             | 4.4                                 | 4.3                      | 4.2                 | 4.1                     |
| Format 17: software interrupt | Format 16: conditional branch | Format 15: multiple load/store | Format 14: push/pop registers | Format 13: add offset to Stack Pointer | Format 12: load address | Format 11: SP-relative load/store | Format 10: load/store halfword | Format 9: load/store with immediate offset | Format 8: load/store sign-extended byte/halfword | Format 7: load/store with register offset | Format 6: PC-relative load | Format 5: Hi register operations/branch exchange | Format 4: ALU operations | Format 3: move/compare/add/subtract immediate | Format 2: add/subtract | Format 1: move shifted register | THUMB Instruction Set | Instruction Set Examples | Undefined Instruction | Coprocessor Register Transfers (MRC, MCR) | Coprocessor Data Transfers (LDC, STC) | Coprocessor Data Operations (CDP) | Software Interrupt (SWI) | Single Data Swap (SWP) | Block Data Transfer (LDM, STM) | Halfword and Signed Data Transfer | Single Data Transfer (LDR, STR) | Multiply Long and Multiply-Accumulate Long (MULL, MLAL) | Multiply and Multiply-Accumulate (MUL, MLA) | PSR Transfer (MRS, MSR) | Data Processing | Branch and Branch with Link (B, BL) | Branch and Exchange (BX) | The Condition Field | Instruction Set Summary |
| 5-38                          | 5-36                          | 5-34                           | 5-32                          | 5-30                                   | 5-28                    | 5-26                              | 5-24                           | 5-22                                       | 5-20                                             | 5-18                                      | 5-16                       | 5-13                                             | 5-11                     | 5-9                                           | 5-7                    | ი<br>ი                          | 5                     | 4-61                     | 4-60                  | 4-57                                      | 4-53                                  | 4-51                              | 4-49                     | 4-47                   | 4-40                           | 4-34                              | 4-28                            | 4-25                                                    | 4-23                                        | 4-18                    | 4-10            | 4-8                                 | 4-6                      | 4-5                 | 4-2                     |


<u>4</u>


ARM7TDMI Data Sheet ARM


| ARM7TDMI Data Sheet |              |                       |                         |       |                                 |                                       |                      |                     |                     |                      |                  |       |                                |                         |               |          | 8               |                        |             |                         |                         |                   |          | 7                     |                       |                  |                         |                   |                   |                   |                    |                |             |          | 6                |                          |                                  |                                 |          |
|---------------------|--------------|-----------------------|-------------------------|-------|---------------------------------|---------------------------------------|----------------------|---------------------|---------------------|----------------------|------------------|-------|--------------------------------|-------------------------|---------------|----------|-----------------|------------------------|-------------|-------------------------|-------------------------|-------------------|----------|-----------------------|-----------------------|------------------|-------------------------|-------------------|-------------------|-------------------|--------------------|----------------|-------------|----------|------------------|--------------------------|----------------------------------|---------------------------------|----------|
| Data                | 8.15         | 8.14                  | 8.13                    | 0.14  | 8 13                            | 8.11                                  | 8.10                 | 8.9                 | 8.8                 | 8.7                  | 8.6              | 8.5   | 8.4                            | 8.3                     | 8.2           | 8.1      | Debu            | 7.6                    | 7.5         | 7.4                     | 7.3                     | 7.2               | 7.1      | Cop                   | 6.10                  | 6.9              | 6.8                     | 6.7               | 6.6               | 6.5               | 6.4                | 6.3            | 6.2         | 6.1      | Mem              | 5.20                     | 5.19                             | 5.18                            |          |
| a Sheet             | Debug Timing | Scan Interface Timing | Priorities / Exceptions |       | The PC's Behaviour During Debug | Determining the Core and System State | ARM7TDMI Core Clocks | Test Data Registers | Public Instructions | Instruction Register | Pullup Resistors | Reset | Scan Chains and JTAG Interface | Debug Interface Signals | Debug Systems | Overview | Debug Interface | Undefined Instructions | Idempotency | Privileged Instructions | Register Transfer Cycle | Interface Signals | Overview | Coprocessor Interface | The External Data Bus | The ARM Data Bus | Stretching Access Times | Locked Operations | Memory Management | Instruction Fetch | Data Transfer Size | Address Timing | Cycle Types | Overview | Memory Interface | Instruction Set Examples | Format 19: long branch with link | Format 18: unconditional branch |          |
| Contents-iii        | 8-30         | 8-26                  | 8-25                    | 0.420 | 2.23                            | 8-19                                  | 8-18                 | 8-12                | 6-8                 | - 8-9                | 6-8              | 8-8   | 8-6                            | 8-3                     | 8-2           | 8-2      | <u>چ</u>        | 7-4<br>N               | 7-4<br>A    |                         |                         |                   |          | 7-1                   | 6-15                  | 6-13             | 6-12                    | 6-12              | 6-12              | 6-10              | 6-9                | 6-4            | 6-2         | 6-2      | 6-1              | 5-42                     | 5-40                             | 5-39                            | Contents |
|                     |              |                       |                         |       |                                 |                                       |                      |                     |                     |                      |                  |       |                                |                         |               | 0        | ре              | 'n                     | A           | co                      | ce                      | s                 | S        |                       |                       |                  |                         |                   |                   |                   |                    |                |             |          |                  |                          |                                  |                                 |          |
| Contents-iv         |              |                       |                         |       |                                 |                                       |                      |                     |                     |                      |                  |       |                                |                         |               |          |                 |                        |             |                         |                         |                   |          |                       |                       |                  |                         |                   |                   |                   |                    |                |             |          |                  |                          |                                  |                                 |          |


| 4                                                                              | و<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>DC P:</b><br>11.1<br>11.2                                                   | ICEB<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5<br>9.4<br>9.4<br>9.5<br>9.4<br>9.5<br>9.5<br>9.6<br>9.7<br>9.8<br>9.9<br>9.1<br>10.1<br>10.2<br>10.5<br>10.5<br>10.5<br>10.5<br>10.1<br>10.1<br>10.1<br>10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DC Parameters<br>11.1 Absolute Maximum Ratings<br>11.2 DC Operating Conditions | ICEBreaker Module         9.1       Overview         9.2       The Watchpoint Register         9.3       Programming Breakpoints         9.4       Programming Breakpoints         9.5       The Debug Control Register         9.6       Debug Status Register         9.7       Coupling Breakpoints and Watchpoints         9.8       Disabling ICEBreaker Timing         9.1       Debug Communications Channel         9.1       Debug Communications Channel         9.1       Debug Communications Channel         9.11       Debug Communications Channel         9.11       Debug Communications Channel         9.11       Debug Communications Channel         10.1       Introduction         10.1       Introduction         10.2       Branch and Branch with Link         10.3       THUMB Branch with Link         10.4       Branch and Exchange (BX)         10.5       Data Operations         10.6       Multiple Register         10.7       Load Register         10.8       Store Multiple Registers         10.10       Store Multiple Register Transfer (trom coprocessor to memory)         10.13       Coprocessor Data Transfer (trom coproc |
| <b>11-1</b><br>11-2<br>11-2                                                    | 92<br>92<br>92<br>92<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |


ARM7TDMI Data Sheet 











| Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ō    | When HIGH, this signal enables the address timing pipeline. In this state, the address bus plus MA3[1:0], nFW, nTRANS, LOCK and nOPC change in the phase 2 prior to the memory cycle to which they refer. When APE is LOW, these signals change in the phase 1 of the actual cycle. Please refer to 2 <i>Chapter 6, Memory Interface</i> for details of this timing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ō    | When this signal is HIGH the processor treats bytes in memory<br>as being in Big Endian format. When it is LOW, memory is<br>treated as Little Endian.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ō    | These signals control when data and instructions are latched from the external data bus. When BL[3] is HIGH, the data on D[31:24] is latched on the failing edge of MCLK. When BL[2] is HIGH, the data on D[23:16] is latched and so on. Please refer to C Chapter 6. <i>Memory Interface</i> for details on the use of these signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ō    | This signal allows external hardware to halt the execution of the<br>processor for debug purposes. When HGH causes the current<br>memory access to be breakpointed. If the memory access is an<br>instruction facth, ARN/TDM will enter debug state if the<br>instruction reaches the execute stage of the ARM/TDM pipeline.<br>If the memory access is for data, ARM/TDM will enter debug<br>state after the current instruction completes execution. This<br>allows extension of the internal breakpoints provided by the<br>ICEBreaker module. See D Chapter 9, <i>ICEBreaker Module</i> .                                                                                                                                                                                                                                                                                |
| 0    | This signal is HIGH when INTEST is selected on scan chain 0 or<br>4 and may be used to disable external logic driving onto the<br>bidrectional data bus during scan testing. This signal changes on<br>the falling edge of <b>TCK</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ō    | This is a static configuration signal which determines whether the<br>bidirectional data bus. <b>D[31:0]</b> , or the undiffered on all data busses,<br><b>DIN(31:0]</b> and <b>DOUT[31:0]</b> , are be used for transfer of data<br>between the processor and memory. Refer also to $2$ <i>Chapter 6</i> ,<br><i>Memory Interface</i> . <b>UOV</b> , the bidirectional data bus, <b>D[31:0]</b> is<br>when <b>BUSEN</b> is LOW, the bidirectional data bus, <b>D[31:0]</b> is<br>used. In this case, <b>DOUT[31:0]</b> is driven to value doc0000000,<br>and any data presented on <b>DIN[31:0]</b> is grared.<br>When <b>BUSEN</b> is HIGH, the bidirectional data bus, <b>D[31:0]</b> is<br>ignored and must be left unconnected. Input data and<br>instructions are presented on <b>binut</b> data bus, <b>DIN[31:0]</b> ,<br>output data appears on <b>DOUT[31:0]</b> . |
| 0    | When HIGH, this signal denotes that the comms channel receive<br>buffer is empty. This signal changes on the rising edge of MCLK.<br>See 3.9.11 Debug Communications Channel on page 9-14<br>for more information on the debug comms channel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Table 2-1: Signal Description (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ame     Type       gress pipeline enable.     IC       GEND     IC       gendian configuration.     IC       gendian configuration.     IC       gendian configuration.     IC       us Disable     IC       serve     IC       us Disable     IC       serve     IC       us Disable     IC       serve     IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 2-4                 |                                           |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                            | 0                                                                                                                                                                                         | ben Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |             |
|---------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                     |                                           | DBGRQ<br>Debug request                                                                                                                                                                                                                                                                                                                    | <b>DBGEN</b><br>Debug Enable.                                                                                                                  | DBGACK<br>Debug acknowledge.               | <b>DBE</b><br>Data Bus Enable.                                                                                                                                                            | D[31:0]<br>Data Bus,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CPB<br>Coprocessor busy.                                                                                                                                                                                                                                                                                                                                          | <b>GPA</b><br>Coprocessor absent.                                                                                                                                                                                                                                                                                                                                                     | <b>COMMTX</b><br>Communications Channel<br>Transmit                                                                                                                                                                                           | Name        |
|                     |                                           | ō                                                                                                                                                                                                                                                                                                                                         | ō                                                                                                                                              | 94                                         | ō                                                                                                                                                                                         | 5 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ō                                                                                                                                                                                                                                                                                                                                                                 | ō                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                             | Туре        |
| ARM7TDMI Data Sheet | Table 2-1: Signal Description (Continued) | This is a level-sensitive input, which when HIGH causes<br>ARM/TIDM to enter debug state after executing the current<br>instruction. This allow sectran hardware to force ARM/TIDM<br>into the debug state, in addition to the debugging features<br>provided by the ICEBreaker block. See 3 Chapter 9,<br>ICEBreaker Module for details. | This input signal allows the debug features of ARM7TDMI to be<br>disabled. This signal should be driven LOW when debugging is<br>not required. | When HIGH indicates ARM is in debug state. | This is an input signal which, when driven LOW, puts the data bus <b>D[31:0]</b> into the high impedance state. This is included for test purposes, and should be tied HIGH at all times. | These are bidirectional signal paths which are used for data<br>transfers between the processor and external memory. During<br>read cycles (when <b>nRW</b> is LOW), the input data must be valid<br>before the end of phase 2 of the transfer cycle. During write<br>cycles (when <b>nRW</b> is HGH), he output data will become valid<br>during phase 1 and remain valid throughout phase 2 of the<br>transfer cycle. Used throughout phase 2 of the<br>transfer cycle. But divers and times, irrespective of whether<br><b>BUSEN</b> is HIGH or LOW. When <b>D</b> [31:0] is not being used to<br>connect to the memory system in thrust be left unconnected. See<br>2 <i>Chapter 6, Memory Interface</i> . | A coprocessor which is capable of performing the operation<br>which ARM7TDMI is requesting (by asserting nCPI), but cannot<br>commit to starting it immediately, should inclate this by driving<br>CPB HIGH. When the coprocessor is ready to start it should take<br>CPB LOW, ARMITTDMI samples CPB at the end of phase 1 of<br>each cycle in which nCPI is LOW. | A coprocessor which is capable of performing the operation that<br>ARM/TDM is requesting (by asserting nCPI) should take CPA<br>LOW immediately it CPA is Holf at the end of phase 1 of the<br>cycle in which nCPI vent LOW, ARM/TDM will abort the<br>coprocessor handshake and take the undefined instruction trap.<br>If CPA is LOW and them complete the coprocessor instruction. | When HIGH, this signal denotes that the comms channel<br>transmit buffer is empty. This signal changes on the rising edge<br>of MCLK Sec 29, 11 Debug Communications Channel on<br>page 9-14 for more information on the debug comms channel. | Description |

<u>0</u> 7 

Signal Description

ARM DDI 0029E

| Name                                                   | Type | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DBGRQI<br>Internal debug request                       | 4    | This signal represents the debug request signal which is<br>presented to the processor. This is the combination of external<br>DBGRQ, as presented to the ARMTDM macrocell, and bit of<br>the debug control register. Thus there are two conditions where<br>this signal can change. Firstly, when DBGRQ changes, DBGRQI<br>will change after a propagation debay. When bit 1 of the debug<br>control register has been written, this signal will change on the<br>failing edge of TCK when the TAP controller state machine is in<br>the RLN+TES/TIOLE state. See 2 <i>Chapter 9, ICEBreaker</i><br><i>Module</i> for details. |
| DIN[31:0]<br>Data input bus                            | ō    | This is the input data bus which may be used to transfer<br>instructions and data between the processor and memory. This<br>data input bus is only used when <b>BUSEN</b> is HIGH. The data on<br>this bus is sampled by the processor at the end of phase 2 during<br>read cycles (i.e. when <b>nRW</b> is LOW).                                                                                                                                                                                                                                                                                                               |
| <b>DOUT[31:0]</b><br>Data output bus                   | 80   | This is the data out bus, used to transfer data from the processor<br>to the memory system. Output data only appears on hits bus<br>when <b>BUSEN</b> is HIGH. At all dreft rimes, this bus is driven to<br>value 0x0000000. When in use, data on this bus changes<br>during phase 1 of store orders (i.e. when <b>nRW</b> is HIGH) and<br>remains valid throughout phase 2.                                                                                                                                                                                                                                                    |
| DRIVEBS<br>Boundary scan<br>cell enable                | 04   | This signal is used to control the multiplexers in the scan cells of<br>an external boundary scan chain. This signal changes in the<br>UPDATE-IR state when scan chain 3 is selected and effere the<br>INTEST, EXTEST, CLAMP or CLAMP2 instruction is loaded.<br>When an external boundary scan chain is not connected, this<br>output should be left unconnected.                                                                                                                                                                                                                                                              |
| ECAPCLK<br>Extest capture clock                        | 0    | This signal removes the need for the external logic in the test<br>chip which was required to enable the internal tritate bus during<br>scan testing. This need not be brought out as an external pin on<br>the test chip.                                                                                                                                                                                                                                                                                                                                                                                                      |
| ECAPCLKBS<br>Extest capture clock for<br>Boundary Scan | 04   | This is a <b>TCK2</b> wide pulse generated when the TAP controller state machine is in the CAPTURE-DR state, the current instruction is EXTEST and scane drain 3 is selected. This is used to capture the macrocell outputs during EXTEST. When an external boundary scan chain is not connected, this output should be left unconnected.                                                                                                                                                                                                                                                                                       |
| <b>ECLK</b><br>External clock output.                  | 94   | In normal operation, this is simply MCLK (optionally stretched with nWAT) exported from the core. When the core is being debugget, this is DCLK. This always external hardware to track when the ARM7DM core is clocked.                                                                                                                                                                                                                                                                                                                                                                                                        |
| EXTERNO<br>External input 0.                           | IC   | This is an input to the ICEBreaker logic in the ARM7TDMI which<br>allows breakpoints and/or watchpoints to be dependent on an<br>external condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                        |      | Table 2-1: Signal Description (Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Signal Description

|                                           | MaS[1:0]<br>Memory Access Size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Locked operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ISYNC<br>Synchronous interrupts.                                                                                                                                                              | IR[3:0]<br>TAP controller Instruction<br>register                                                                                                                                                                                                                                                              | ICAPCLKBS<br>Intest capture clock                                                                                                                                                                                                                                                                                                                         | HIGHZ                                                                                                                                      | EXTERN1<br>External input 1.                                                                                                                         |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ō                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                                                                          | ō                                                                                                                                                    |
| Table 2-1: Signal Description (Continued) | These are output signals used by the processor to indicate to the<br>external memory system when a word transfer or a half-word or<br>byte length is required. The signals take the value 10 (binary) for<br>words, 01 for half-words and 00 for bytes. 11 is reserved. These<br>values are valid for both read and write cycles. The signals will<br>normally become valid during phase 2 of the cycle before the ore<br>in which the transfer will take place. They will remain stable<br>throughout phase 1 of the transfer cycle. The siming of the<br>signals may be modified by the use of <b>ALE</b> and <b>APE</b> in a similar<br>way to the address, please refer to the <b>ALE</b> and <b>APE</b><br>descriptions. The signals may also be driven to high impedance<br>state by driving <b>ABE</b> LOW. | When LOCK is HIGH, the processor is performing a "locked"<br>memory access, and the memory controller must wait until LOCK<br>goes LOW before allowing another device to access the memory.<br>LOCK changes while MCLK is HIGH, and remains HIGH for the<br>duration of the locked memory accesses. It is active only during<br>the data swap (SWP) instruction. The limiting of this signal may be<br>modified by the use of ALE and APE in a similar way to the<br>address, please refer to the ALE and APE descriptions. This<br>signal may also be driven to a high impedance state by driving<br>ABE LOW. | When LOW indicates that the <b>nIRQ</b> and <b>nFIQ</b> inputs are to be<br>synchronised by the ARM core. When HIGH disables this<br>synchronisation for inputs that are already synchronous. | These 4 bits reflect the current instruction loaded into the TAP<br>controller instruction register. The instruction encoding is as<br>described in 52 <i>B a Public Instructions</i> on page 8-9. These bits<br>change on the failing edge of <b>TCK</b> when the state machine is in<br>the UPDATE-IR state. | This is a <b>TCK2</b> wide pulse generated when the TAP controller<br>state machine is in the CAPTURE-DR state, the current<br>instruction is INITEST and scan chain 3 is selected. This is used<br>to capture the macrocell outputs during INITEST. When an<br>external boundary scan chain is not connected, this output<br>should be left unconnected. | This signal denotes that the HIGHZ instruction has been loaded into the TAP controller. See <i>Chapter 8, Debug Interface</i> for details. | This is an input to the ICEBreaker logic in the ARM7TDMI which<br>allows breakpoints and/or watchpoints to be dependent on an<br>external condition. |

2-5

ARM DDI 0029E

| S          |
|------------|
| 1.3        |
| CO)        |
| =          |
| <b>_</b>   |
| 0          |
| -          |
| _          |
|            |
| Ā          |
| W.         |
| S I        |
| 0          |
| 1 <u>1</u> |
|            |
| π          |
| ¥ .        |
| 2          |
| 0          |
| - <b>-</b> |

| Name                                            | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MCLK<br>Memory clock input.                     | ō    | This clock times all ARM/TDMI memory accesses and internal operations. The clock has two distinct phases - <i>phase</i> 1 in which <b>MCLK</b> (Is LOW and <i>phase</i> 2 in which <b>MCLK</b> (and <b>mVAI</b> ) is HIGH. The clock may be stretched indefinitely in either phase to allow access to slow peripherals or memory. Alternatively, the <b>mVAI</b> input may be used with a free running <b>MCLK</b> to achieve the same effect. |
| n <b>CPI</b><br>Not Coprocessor<br>instruction. | 04   | When ARM/TDMI executes a coprocessor instruction, it will take this output LOW and wait for a response from the coprocessor. The action taken will depend on this response, which the coprocessor signals on the CPA and CPB inputs.                                                                                                                                                                                                           |
| n <b>ENIN</b><br>NOT enable input.              | īC   | This signal may be used in conjunction with <b>nENOUT</b> to control the data bus during write cycles. See C Chapter 6, Memory Interface.                                                                                                                                                                                                                                                                                                      |
| n <b>ENOUT</b><br>Not enable output.            | 04   | During a data write cycle, this signal is driven LOW during phase<br>1. and remains LOW for the entire cycle. This may be used to aid<br>arbitration in shared bus applications. See <i>C Chapter 6</i> ,<br><i>Memory Interface</i> .                                                                                                                                                                                                         |
| n <b>ENOUTI</b><br>Not enable output.           | 0    | During a coprocessor register transfer C-cycle from the<br>IGEbreaker comms channel coprocessor to the ARM core, this<br>signal goes LOW during phase 1 and stays LOW for the entire<br>cycle. This may be used to aid arbitration in shared bus systems.                                                                                                                                                                                      |
| nEXEC<br>Not executed.                          | 04   | When HIGH indicates that the instruction in the execution unit is not being executed, because for example it has failed its condition code check.                                                                                                                                                                                                                                                                                              |
| n <b>FIQ</b><br>Not fast interrupt request.     | ō    | This is an interrupt request to the processor which causes it to be<br>interrupted if taken LOW when the appropriate enable in the<br>processor is active. The signal is level-sensitive and must be<br>held LOW until a suitable response is received from the<br>processor. <b>nFG</b> may be synchronous or asynchronous,<br>depending on the sate of <b>ISYNC</b> .                                                                        |
| Not <b>HIGHZ</b><br>Not <b>HIGHZ</b>            | 04   | This signal is generated by the TAP controller when the current<br>instruction is HIGHZ. This is used to place the scan cells of that<br>scan chain in the high impedance state. When a external<br>boundary scan chain is not connected, this output should be left<br>unconnected.                                                                                                                                                           |
| nIRQ<br>Not interrupt request.                  | ō    | As <b>nFIQ</b> , but with lower priority. May be taken LOW to interrupt the processor when the appropriate enable is active. <b>nRQ</b> may be synchronous or asynchronous, depending on the state of <b>ISYNC</b> .                                                                                                                                                                                                                           |
| nM[4:0]                                         | 04   | These are output signals which are the inverses of the internal<br>status bits indicating the processor operation mode.                                                                                                                                                                                                                                                                                                                        |

|                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | Open Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          |             |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                        | nTRST<br>Not Test Reset.                                                                                                          | nTRANS<br>Not memory translate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nTDOEN<br>Not TDO Enable.                                                                                                                                                                      | nRW<br>Not read/write.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nRESET<br>Not reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nOPC<br>Not op-code fetch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nMREQ<br>Not memory request.                                                                                                                                                                                                             | Name        |
|                                                                                                                        | ō                                                                                                                                 | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 04                                                                                                                                                                                                                                       | Туре        |
| addition to the normal device reset ( <b>nRESET</b> ). For more information, see C <i>Chapter 8, Debug Interface</i> . | Active-low reset signal for the boundary scan logic. This pin must be pulsed or driven LOW to achieve normal device operation, in | When this signal is LOW it indicates that the processor is in user<br>mode. It may be used to tell memory management hardware<br>when translation of the addresses should be turned on, or as an<br>indicator of non-user mode activity. The timing of this signal may<br>be modified by the use of <b>ALE</b> and <b>APE</b> in a similar way to the<br>address, please refer to the <b>ALE</b> and <b>APE</b> description. This<br>signal may also be driven to a high impedance state by driving<br><b>ABE</b> LOW. | When LOW, this signal denotes that serial data is being driven out on the <b>TDO</b> output. <b>nTDOEN</b> would normally be used as an output enable for a <b>TDO</b> pin in a packaged part. | When HIGH this signal indicates a processor write cycle; when LOW, a read cycle. It becomes valid during phase 2 of the cycle before that to which it refers, and remains valid to the end of phase 1 of the referenced cycle. The timing of this signal may be modified by the use of <b>ALE</b> and <b>APE</b> in a similar way to the address, please refer to the <b>ALE</b> and <b>APE</b> descriptions. This signal may also be driven to a high impedance state by driving <b>ABE</b> LOW. | This is a level sensitive input signal which is used to start the<br>processor from a known address. A LOVV level will cause the<br>instruction being executed to terminate abnormally. When<br><b>nRESET</b> becomes HIGH for at least one clock cycle, the<br>processor will re-start from address 0. <b>nRESET</b> must remain<br>LOW (and <b>nNAT</b> must remain HIGH) for at least two clock<br>cycles. During the LOW period the processor will perform dummy<br>instruction fetches with the address will coreflow to zero if<br><b>nRESET</b> is held beyond the maximum address limit. | When LOW this signal indicates that the processor is fetching an<br>instruction from memory, when HIGH, data (if present) is being<br>transferred. The signal becomes wild during phase 2 of the<br>previous cycle, remaining valid through phase 1 of the<br>referenced cycle. The timing of this signal may be modified by<br>the use of <b>ALE</b> and <b>APE</b> in a similar way to the address, please<br>refer to the <b>ALE</b> and <b>APE</b> directions. This signal may also be<br>driven to a high impedance state by driving <b>ABE</b> LOW. | This signal, when LOW, indicates that the processor requires<br>memory access during the tollowing cycle. The signal becomes<br>valid during phase 1, remaining valid through phase 2 of the<br>cycle preceding that to which it refers. | Description |

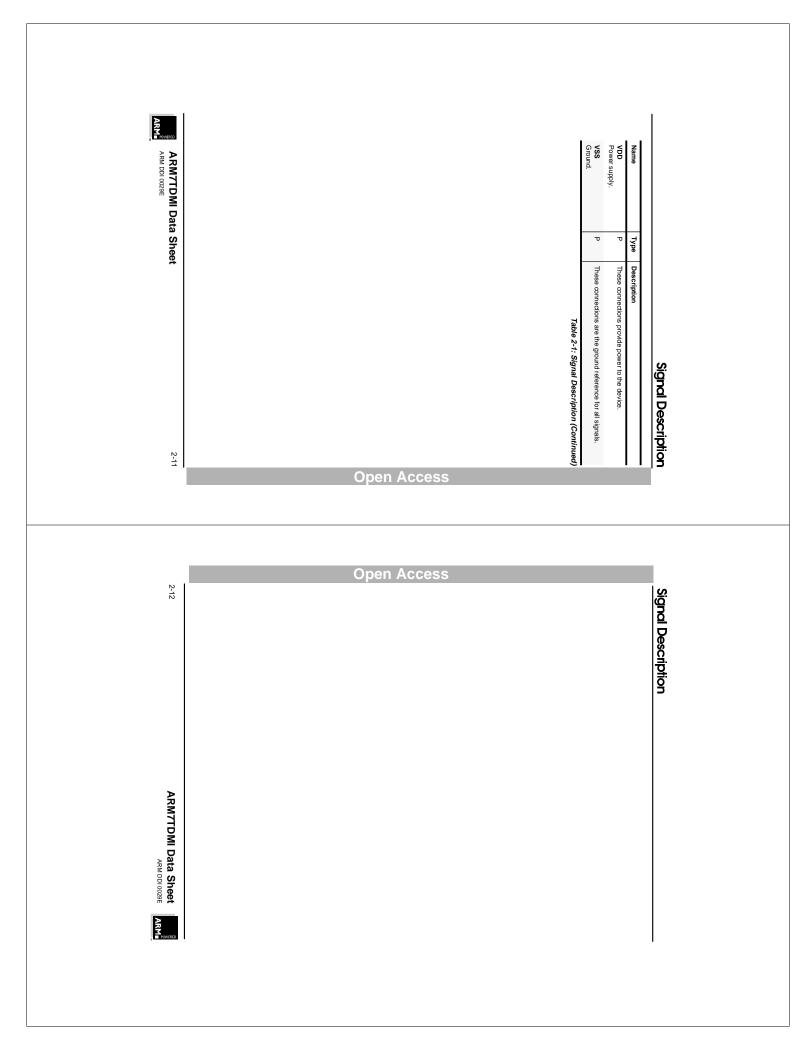
ARM7TDMI Data Sheet

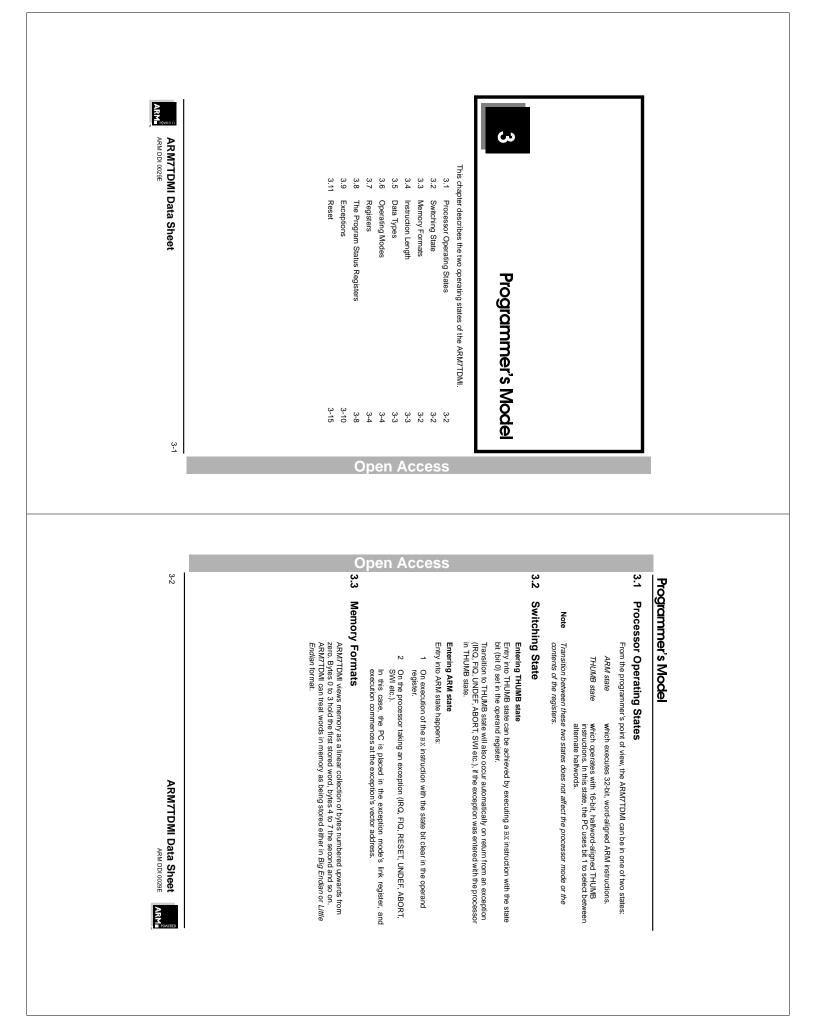
ARM

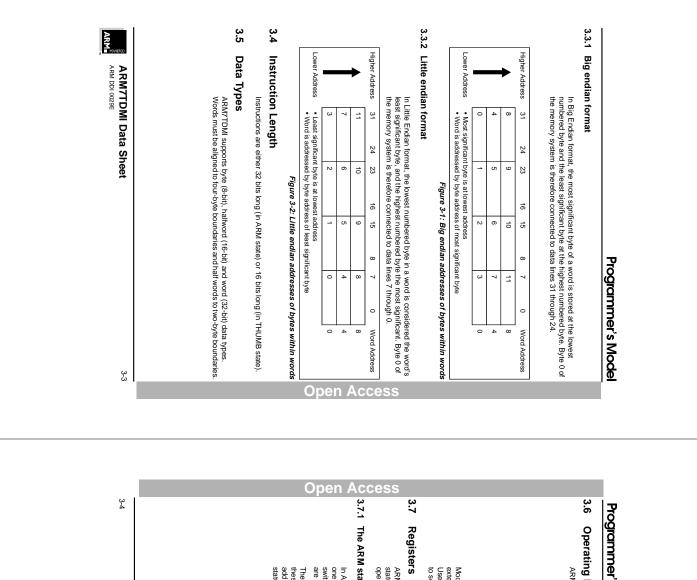
ARM7TDMI Data Sheet

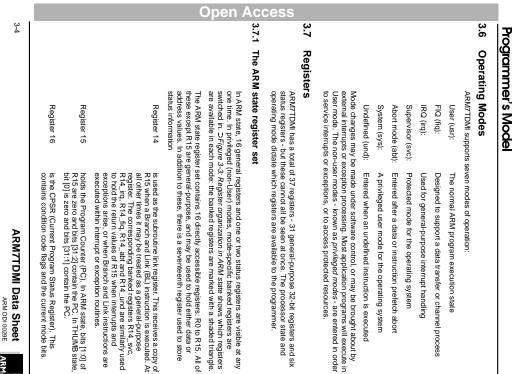
2-7

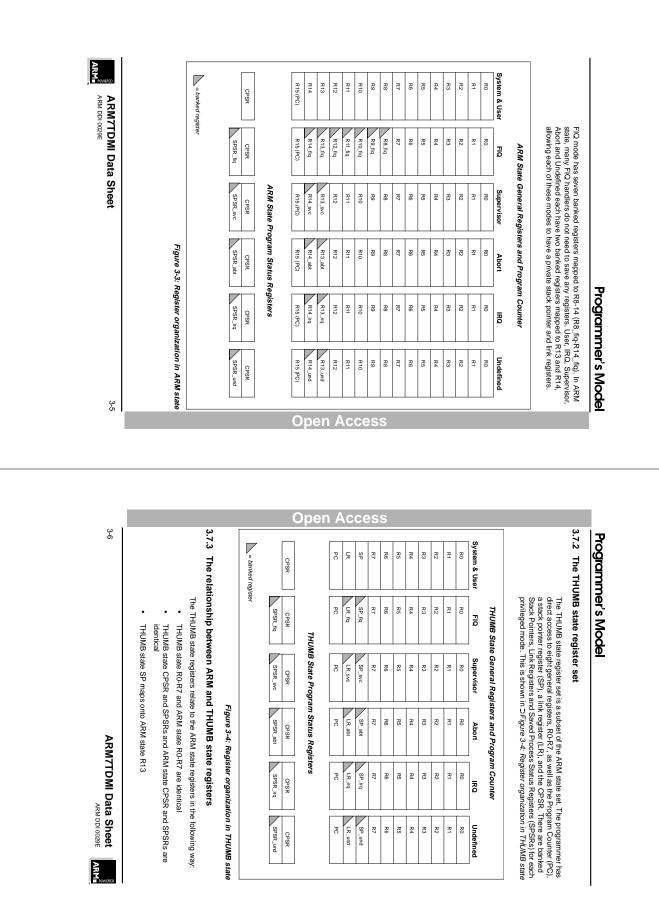
2-8

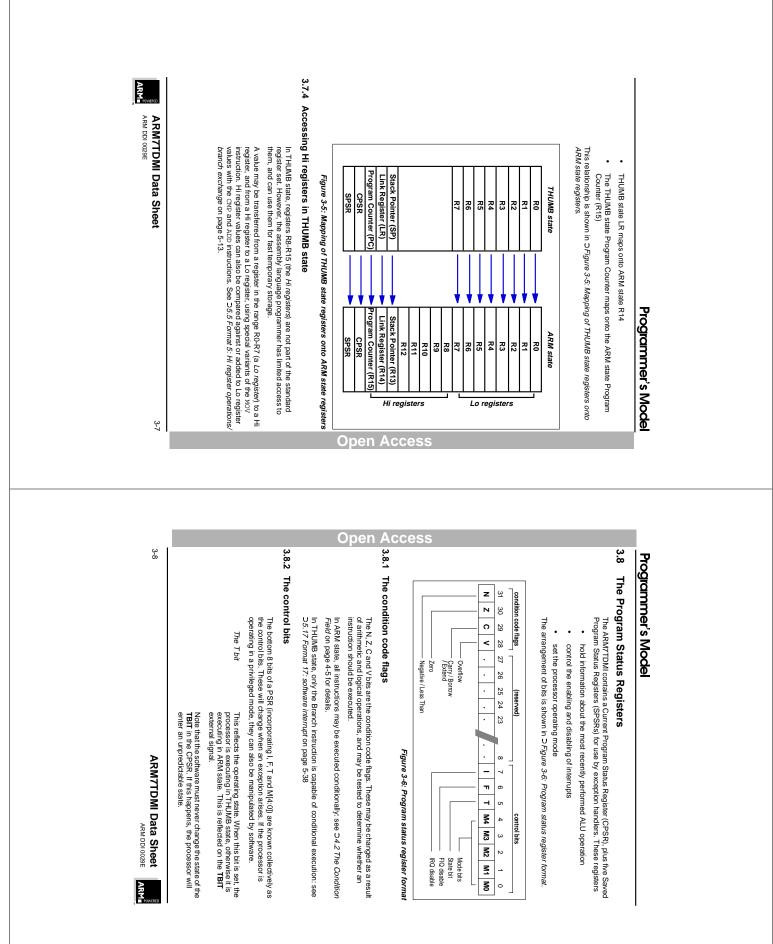

|                                                                                                                                                                                                                                                                                                                                                                                                          | <b>SEQ</b><br>Sequential address.                                                                                                                                                                                                                    | <b>SDOUTBS</b><br>Boundary scan serial<br>output data                                                                                                                                                                                                                                               | <b>SDINBS</b><br>Boundary Scan<br>Serial Input Data                                                                                  | SCREG[3:0]<br>Scan Chain Register                                                                                                                                                                 | RSTCLKBS<br>Boundary Scan<br>Reset Clock                                                                                                                                               | RANGEOUT1<br>ICEbreaker Rangeout1                                          | RANGEOUT0<br>ICEbreaker Rangeout0                                                                                                                                                                                                                                                               | PCLKBS<br>Boundary scan<br>update clock                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                 |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                    | ō                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                    | 0                                                                                                                                                                                                 | 0                                                                                                                                                                                      | 04                                                                         | 04                                                                                                                                                                                                                                                                                              | 04                                                                                                                                                                                                                                                                                                           | ō                                                                                                                                                                                                                                               | Туре        |
| The signal becomes valid during phase 1 and remains so<br>through phase 2 of the cycle before the cycle whose address it<br>anticipates. It may be used, in combination with the low-order<br>address lines, to indicate that the next cycle can use a fast<br>memory mode (for example DRAM page mode) and/or to bypass<br>the address translation system.<br>Table 2-1: Signal Description (Continued) | This output signal will become HIGH when the address of the next memory cycle will be related to that of the last memory access. The new address will either be the same as the previous one or 4 greater in ARM state, or 2 greater in THUMB state. | This control signal is provided to ease the connection of an<br>external boundary scan chain. This is the serial data our of the<br>boundary scan chain. It should be set up to the rising edge of<br>TCK. When an external boundary scan chain is not connected,<br>this input should be tied LOW. | This signal contains the serial data to be applied to an external<br>scan chain and is valid around the falling edge of <b>TCK</b> . | These 4 bits reflect the ID number of the scan chain currently selected by the TAP controller. These bits change on the failing edge of TCK when the TAP state machine is in the UPDATE-DR state. | This signal denotes that either the TAP controller state machine is in the RESET state or that <b>nTRST</b> has been asserted. This may be used to reset external boundary scan cells. | As <b>RANGEOUT0</b> but corresponds to ICEbreaker's watchpoint register 1. | This signal indicates that ICEbreaker watchpoint register 0 has<br>matched the conditions currently present on the address, data<br>and control busses. This signal is independent of the state of the<br>watchpoint's enable control bit. <b>RANGEOUT0</b> changes when<br><b>ECLK</b> is LOW. | This is a <b>TCK2</b> wide pulse generated when the TAP controller state machine is in the UPDATE-DR state and scan chain 3 is selected. This is used by an external boundary scan chain as the update clock. When an external boundary scan chain is not connected, this output should be left unconnected. | When accessing slow peripherals, ARM/TDMI can be made to wait for an integer number of MCLK cycles by driving nWAIT LOW. Internally, nWAIT is ANDed with MCLK and must only change when MCLK is LOW. If nWAIT is not used it must be tied HIGH. | Description |

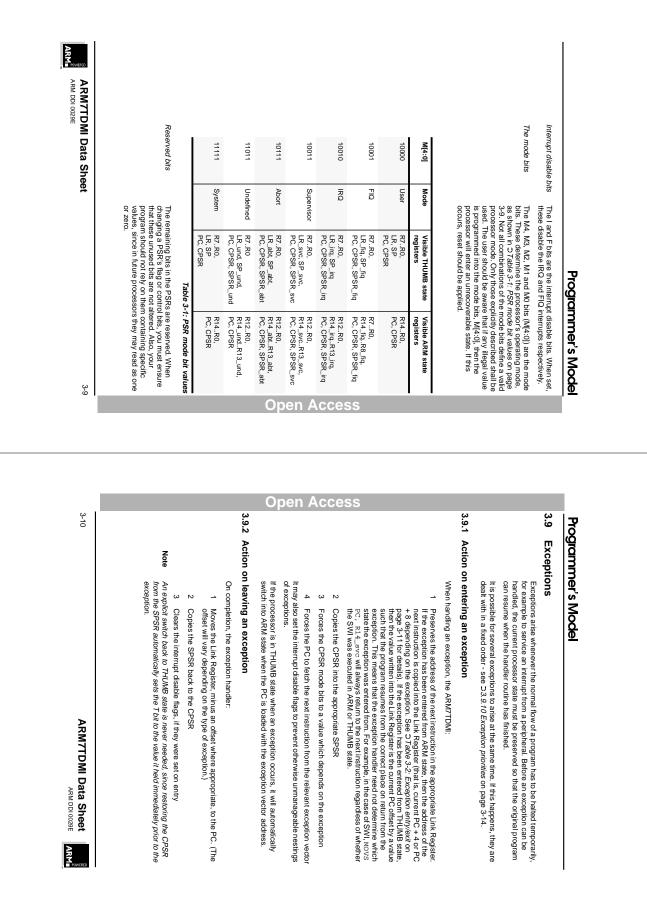

Signal Description


|                                                                                                                                                                                       | TAPSM[3:0]<br>TAP controller<br>state machine | TAPSM(3:0)     04       TAP controller     10       state machine     IC       TBE     IC       Test Bus Enable.     IC | ble -       | ē. vī                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|
| state of the state machine and scan chain 3 is selected.<br>SHCLK2BS follows TCK2. When not in the SHIFT-DR state or<br>when scan chain 3 is not selected, this clock is LOW. When an |                                               |                                                                                                                         |             |                            | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                         |                                                             |
|                                                                                                                                                                                       |                                               | Bus Enable.                                                                                                             | Bus Enable. | Eus Enable.<br>C<br>C<br>C | Bus Enable.<br>Drase 1 | Phase 1<br>phase 2<br>Phase | r Bus Enable:<br>r Bus Enable:<br>r C C C C C C C C C C C C C C C C C C C | r r iBus Enable:<br>r G G G G G G G G G G G G G G G G G G G |


2-10


ARM7TDMI Data Sheet

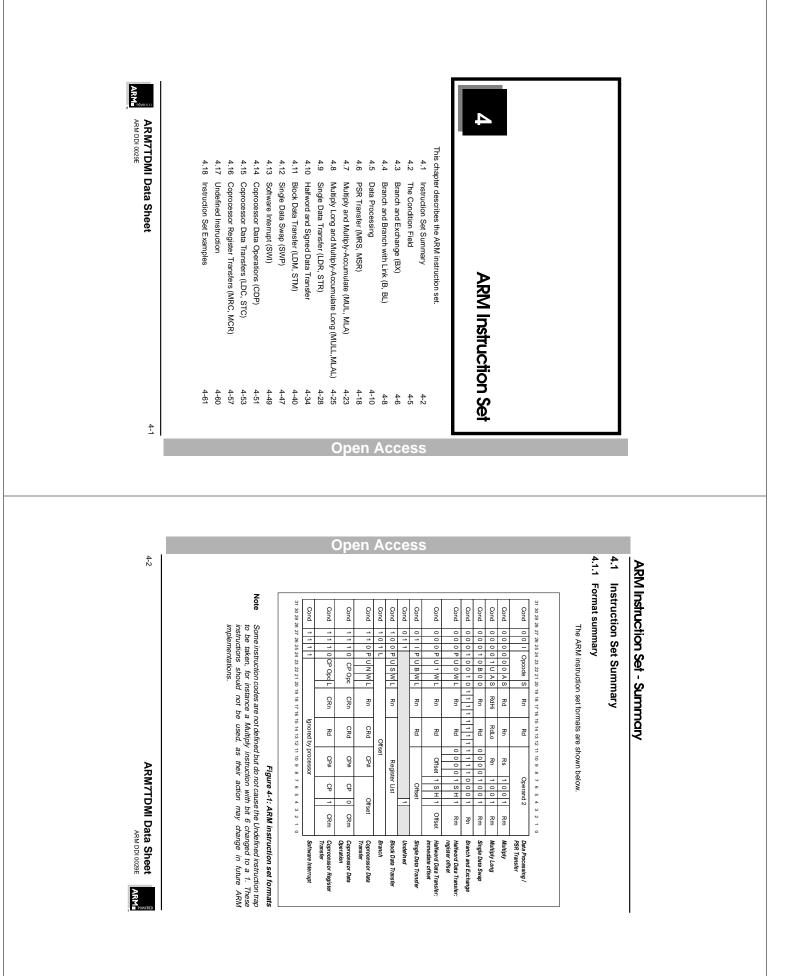






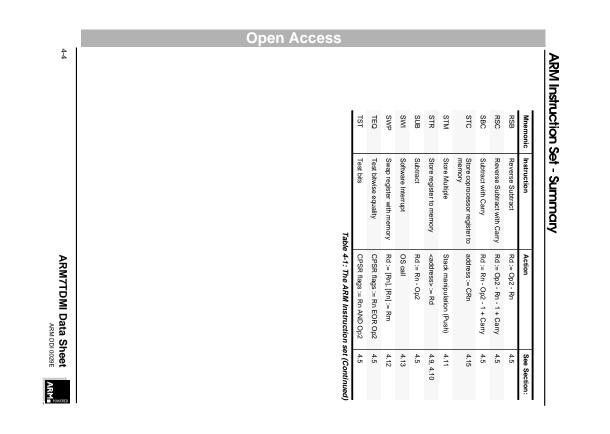


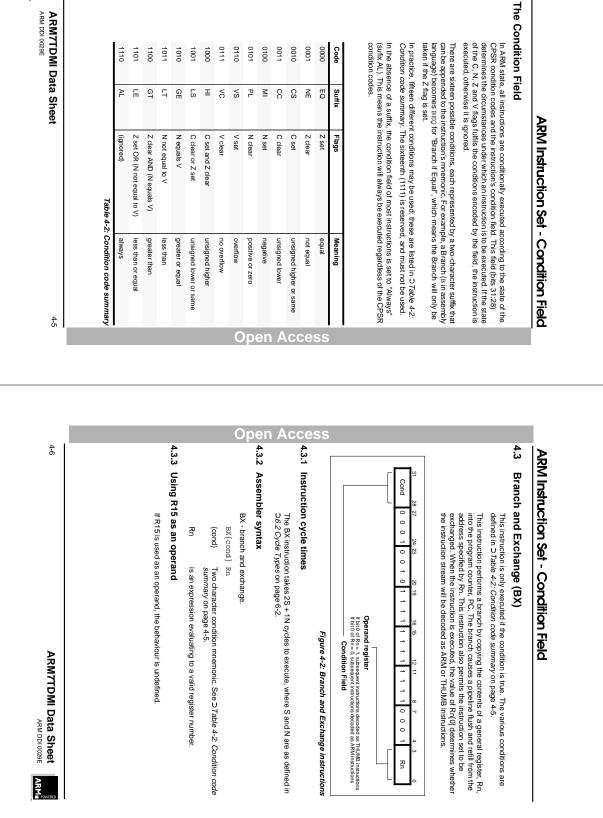



|                     |                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    | 3.9.4 FIQ                         |                                                          |                                                                                               |                               |                       |       |                                 | RESET | PABT                                         | IRQ                  | FIQ                  | UDEF             | SMI              | BL          |                                  |                                           |                                                                                    | 3.9.3 Excer                  |                    |
|---------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------|---------------------------------|-------|----------------------------------------------|----------------------|----------------------|------------------|------------------|-------------|----------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|------------------------------|--------------------|
| ARM7TDNI Data Sheet | SUBS PC,R14_fiq,#4 | Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the interrupt by executing | synchronous or asynchronous transitions, depending on the state of the <b>ISYNC</b> input<br>signal. When <b>ISYNC</b> is LOW, <b>nFIQ</b> and <b>nIRQ</b> are considered asynchronous, and a<br>cycle delay for synchronization is incurred before the interrupt can affect the processor<br>flow. | channel process, and in ARM state has sufficient private registers to remove the need<br>for register saving (thus minimising the overhead of context switching).<br>FIQ is externally generated by taking the <b>nFIQ</b> input LOW. This input can except either | The FIQ (Fast Interrupt Request). | 4 The value saved in R14_svc upon reset is unpredictable | 3 Where PC is the address of the Load or Store instruction which generated the<br>data abort. | the FIQ or IRQ took priority. |                       | Notes |                                 | NA    | SUBS PC, R14_abt, #4<br>SUBS PC. R14_abt. #8 | SUBS PC, R14_irq, #4 | SUBS PC, R14_fiq, #4 | MOVS PC, R14_und | MOVS PC, R14_svc | MOV PC, R14 | Return Instruction               | k 14 on exception entry, and the randler. | DTable 3-2: Exception entry exit summarises the PC value preserved in the relevant | Exception entry/exit summary |                    |
|                     |                    | tion was entered from by executing                                                                                               | nsitions, depending o<br>a and <b>nIRQ</b> are con<br>ncurred before the in                                                                                                                                                                                                                         | e has sufficient priva<br>g the overhead of cc<br>ng the <b>nFIQ</b> input LC                                                                                                                                                                                      | exception is designe              | svc upon reset is un                                     | of the Load or Store i                                                                        | ty.                           | of the BL/SWI/Undefi  |       | 7                               | ·     | PC + 4                                       | PC + 4               | PC + 4               | PC + 4           | PC + 4           |             | ARM<br>R14_x                     | ecommended instruc                        | ummarises the PC                                                                   |                              | Pro                |
|                     |                    | m ARM or Thumb s                                                                                                                 | on the state of the l<br>sidered asynchron<br>terrupt can affect th                                                                                                                                                                                                                                 | te registers to remo<br>ontext switching).<br>)W. This input can e                                                                                                                                                                                                 | od to support a dat               | predictable.                                             | instruction which g                                                                           | non and not got one           | ined Instruction feto |       | Table 3-2: Exception entry/exit |       | PC+4                                         | PC+4                 | PC + 4               | PC + 2           | PC + 2           | PC + 2      | Previous State<br>THUMB<br>R14_x | ction for exiting the                     | value preserved in                                                                 |                              | Programmer's Model |
| 3-11                |                    | state, a FIC                                                                                                                     | ISYNC inp<br>ous, and a<br>ne processi                                                                                                                                                                                                                                                              | ove the nee<br>except eith                                                                                                                                                                                                                                         | a transfer o                      |                                                          | enerated th                                                                                   |                               | ch which ha           |       | on entry/e                      | 4     | ω -                                          | 2                    | 2                    | -                | -                |             | Notes                            | exception                                 | the releva                                                                         |                              | 5 Mod              |
|                     |                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                   |                                                          | 0                                                                                             | pe                            | en A                  | CCe   | ess                             |       |                                              |                      |                      |                  |                  |             |                                  |                                           |                                                                                    |                              |                    |
| 3-12                |                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                   |                                                          | O                                                                                             | )pe                           | en A                  | cce   | ess                             |       |                                              |                      | 3.9.6                |                  |                  |             |                                  | 3.9.5                                     |                                                                                    |                              | Programmer's N     |

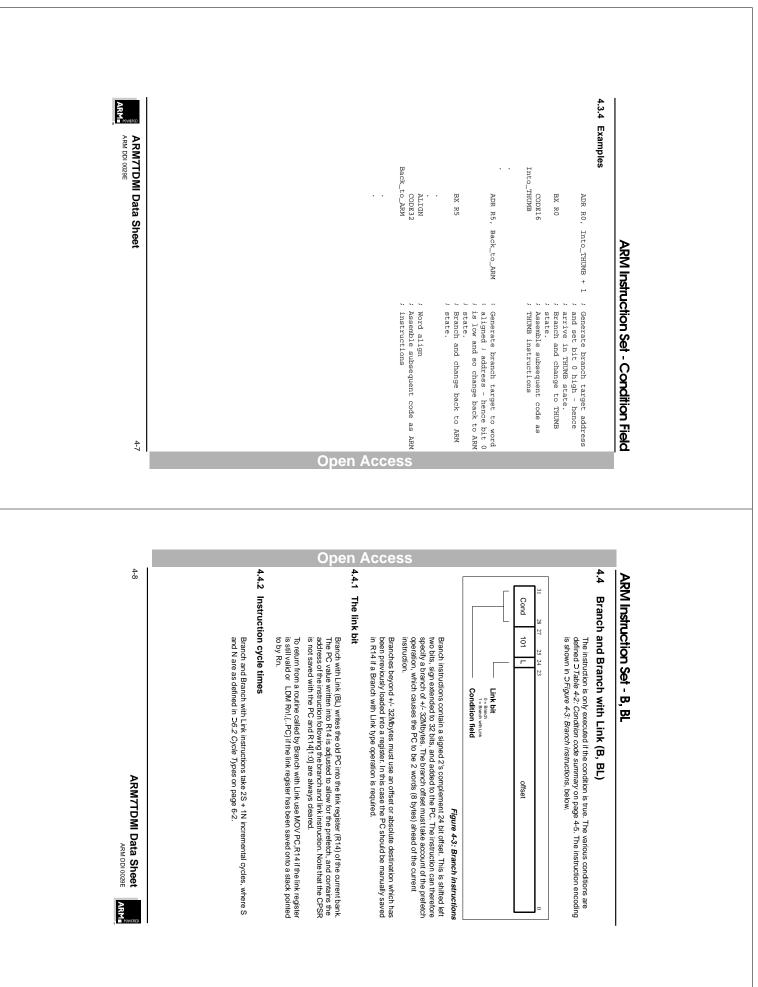
| 1                   |                                  |            |            |                  |                    |                       |            |               |                                                           | 3.9.9                     |                                                                                               |                 |                                                                                                                                    |                                                                                                                                                                                                                      | 3.9.8                 |                                                                                  |                 |                                                                                                                                                                                                                                          | 3.9.7              |                                                                              |                                     |                                                  |                                                                                                                              |                    |
|---------------------|----------------------------------|------------|------------|------------------|--------------------|-----------------------|------------|---------------|-----------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ARM7TDMI Data Sheet | 0×0000001C                       | 0x00000018 | 0x00000014 | 0x0000000C       | 0x00000008         | 0x00000004            | 0x00000000 | Address       | The following table shows                                 | Exception vectors         | Inis restores the CPSR an instruction.                                                        | MOVS PC,R14_und | After emulating the failed in irrespective of the state (Al                                                                        | When ARM7TDMI comes across an instructic<br>undefined instruction trap. This mechanism m<br>or ARM instruction set by software emulation.                                                                            | Undefined instruction | This restores the PC and C                                                       | MOV PC, R14_svc | I ne sortware interrupt instr<br>to request a particular supe<br>the following irrespective o                                                                                                                                            | Software interrupt | This restores both the PC a                                                  | SUBS PC,R14_abt,#8 for a data abort | SUBS PC,R14_abt,#                                | After fixing the reason for t<br>irrespective of the state (Al                                                               |                    |
|                     | FIQ Tabl                         | IRQ        | Reserved   | Abort (prefetch) | Software interrupt | Undefined instruction | Reset      | Exception     | The following table shows the exception vector addresses. |                           | This restores the CPSR and returns to the instruction following the undefined<br>instruction. |                 | After emulating the failed instruction, the trap handler should execute the following<br>irrespective of the state (ARM or Thumb): | When ARM7TDMI comes across an instruction which it cannot handle, it takes the<br>undefined instruction trap. This mechanism may be used to extend either the THUMB<br>or ARM instruction set by software emulation. |                       | This restores the PC and CPSR, and returns to the instruction following the SWI. |                 | The somware interrupt instruction (SWI) is used for emering supervisor mode, usually<br>to request a particular supervisor function. A SWI handler should return by executing<br>the following irrespective of the state (ARM or Thumb): |                    | This restores both the PC and the CPSR, and retries the aborted instruction. | 8 for a data abort                  | PC , $R14\_abt$ , $\#4$ for a prefetch abort, or | After fixing the reason for the abort, the handler should execute the following<br>irrespective of the state (ARM or Thumb): | Progra             |
| 3-13                | FIQ Table 3-3: Exception vectors | IRQ        | Reserved   | Abort            | Supervisor         | Undefined             | Supervisor | Mode on entry |                                                           |                           |                                                                                               |                 |                                                                                                                                    | not handle, it takes the<br>extend either the THUMB                                                                                                                                                                  |                       | ion following the SWI.                                                           |                 | Supervisor mode, usually hould return by executing                                                                                                                                                                                       |                    | ported instruction.                                                          |                                     |                                                  | cute the following                                                                                                           | Programmer's Model |
|                     |                                  |            |            |                  |                    |                       |            |               | Op                                                        | oen                       | A                                                                                             | CCe             | ess                                                                                                                                |                                                                                                                                                                                                                      |                       |                                                                                  |                 |                                                                                                                                                                                                                                          |                    |                                                                              |                                     |                                                  |                                                                                                                              |                    |
|                     |                                  |            |            |                  |                    |                       |            |               |                                                           |                           |                                                                                               |                 |                                                                                                                                    |                                                                                                                                                                                                                      |                       |                                                                                  |                 |                                                                                                                                                                                                                                          |                    |                                                                              |                                     |                                                  |                                                                                                                              |                    |
|                     |                                  |            |            |                  |                    |                       |            |               |                                                           |                           |                                                                                               |                 |                                                                                                                                    |                                                                                                                                                                                                                      |                       |                                                                                  |                 |                                                                                                                                                                                                                                          |                    |                                                                              |                                     |                                                  |                                                                                                                              |                    |
| 3-14                |                                  |            |            |                  |                    |                       |            |               | Op                                                        | De 3.10 Interrupt Latence |                                                                                               | CC              | ess                                                                                                                                |                                                                                                                                                                                                                      |                       |                                                                                  |                 |                                                                                                                                                                                                                                          |                    |                                                                              |                                     |                                                  | 3.9.10 Exception priorities                                                                                                  | Programmer's Model |

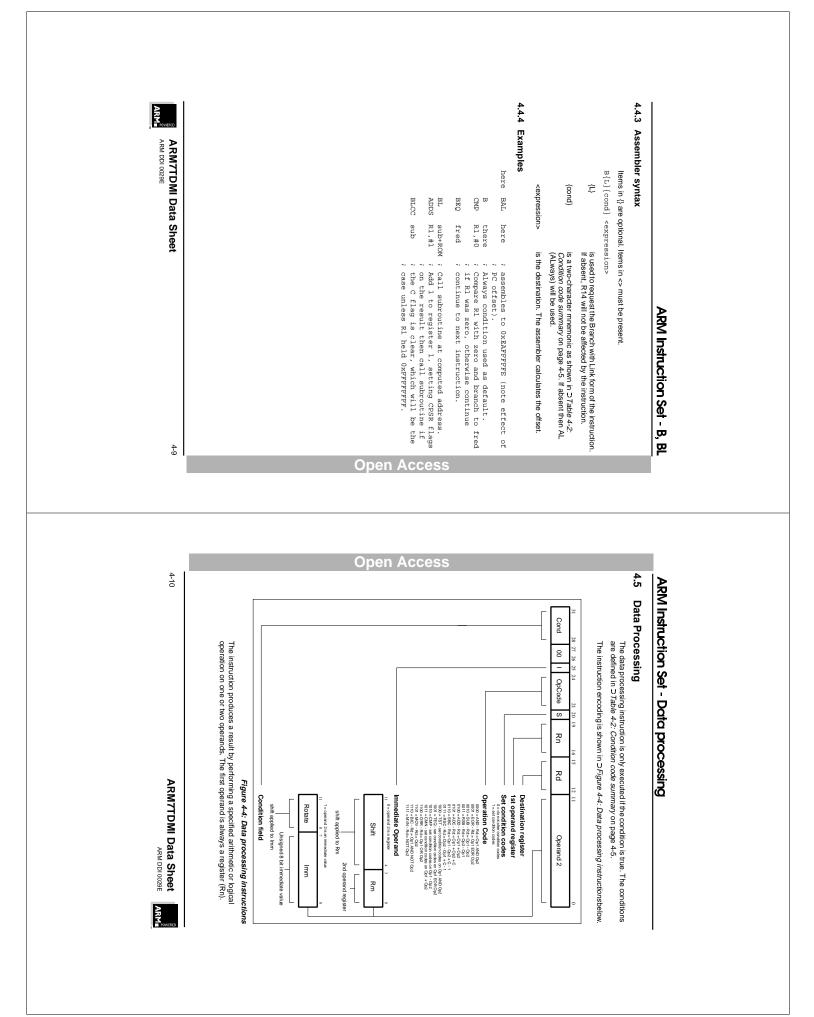


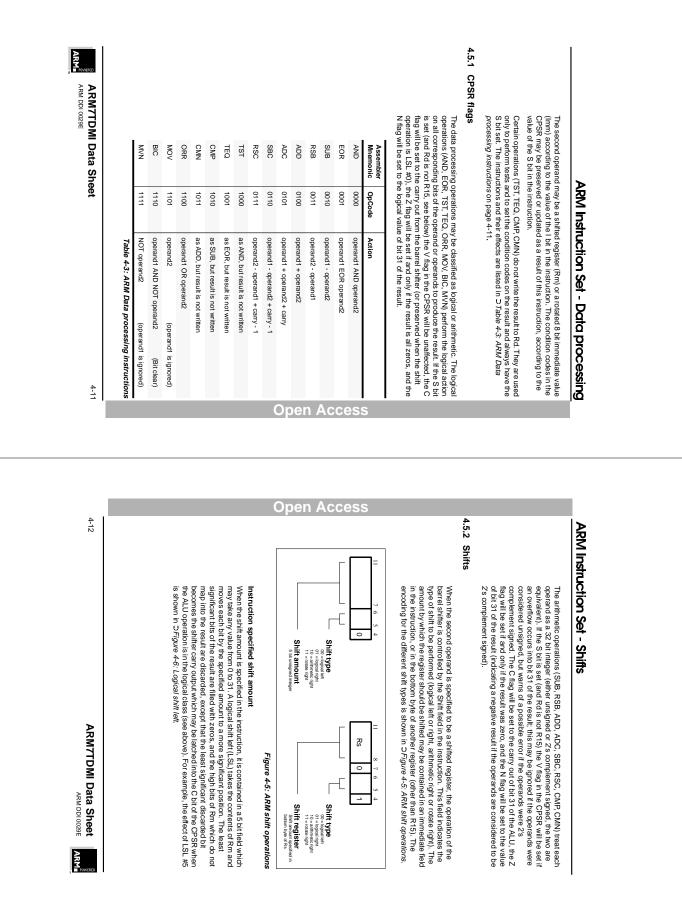


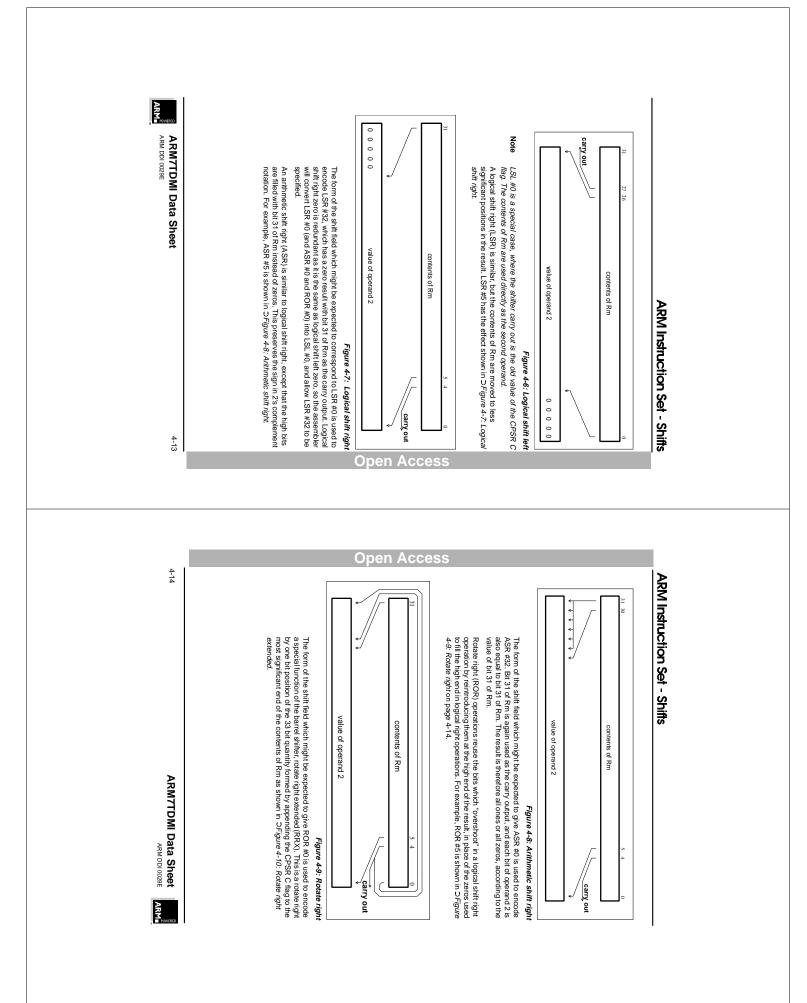


| ARM     |
|---------|
| Instruc |
| tion Se |
| t - Sum |
| Imary   |

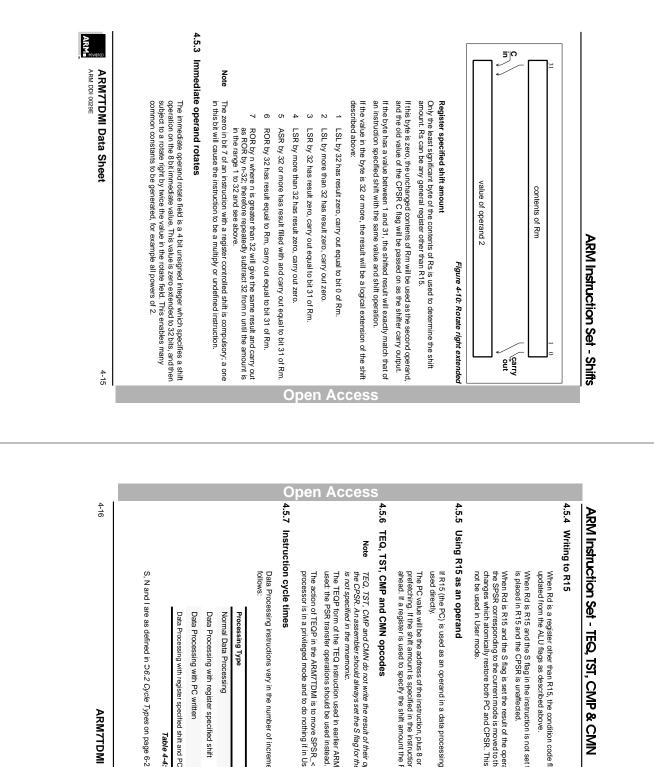
## 4.1.2 Instruction summary


|       | Instruction                                       | ACUOI                                         | See Section: |
|-------|---------------------------------------------------|-----------------------------------------------|--------------|
| ADC / | Add with carry                                    | Rd := Rn + Op2 + Carry                        | 4.5          |
| ADD / | Add                                               | Rd := Rn + Op2                                | 4.5          |
| AND   | AND                                               | Rd := Rn AND Op2                              | 4.5          |
| B     | Branch                                            | R15 := address                                | 4.4          |
| BIC   | Bit Clear                                         | Rd := Rn AND NOT Op2                          | 4.5          |
| BL    | Branch with Link                                  | R14 := R15, R15 := address                    | 4.4          |
| BX    | Branch and Exchange                               | R15 := Rn,<br>T bit := Rn[0]                  | 4.3          |
| CDP   | Coprocesor Data Processing                        | (Coprocessor-specific)                        | 4.14         |
| CMN   | Compare Negative                                  | CPSR flags := Rn + Op2                        | 4.5          |
| CMP   | Compare                                           | CPSR flags := Rn - Op2                        | 4.5          |
| EOR   | Exclusive OR                                      | Rd := (Rn AND NOT Op2)<br>OR (op2 AND NOT Rn) | 4.5          |
|       | Load coprocessor from<br>memory                   | Coprocessor load                              | 4.15         |
|       | Load multiple registers                           | Stack manipulation (Pop)                      | 4.11         |
|       | Load register from memory                         | Rd := (address)                               | 4.9, 4.10    |
| MCR   | Move CPU register to<br>coprocessor register      | cRn := rRn { <op>cRm}</op>                    | 4.16         |
| MLA   | Multiply Accumulate                               | Rd := (Rm * Rs) + Rn                          | 4.7, 4.8     |
| MOV   | Move register or constant                         | Rd : = 0p2                                    | 4.5          |
| MRC   | Move from coprocessor<br>register to CPU register | Rn := cRn { <op>cRm}</op>                     | 4.16         |
| MRS N | Move PSR status/flags to<br>register              | Rn := PSR                                     | 4.6          |
| MSR N | Move register to PSR<br>status/flags              | PSR := Rm                                     | 4.6          |
| MUL   | Multiply                                          | Rd := Rm * Rs                                 | 4.7, 4.8     |
| MVN N | Move negative register                            | Rd := 0xFFFFFFFF EOR Op2                      | 4.5          |
| ORR   | OR                                                | Rd := Rn OR Op2                               | 4.5          |





ARM7TDMI Data Sheet





4.2











ARM Instruction Set - TEQ, TST, CMP & CMN

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the CPSR is unaffected. updated from the ALU flags as described above. When Rd is a register other than R15, the condition code flags in the CPSR may be

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR. This form of instruction should

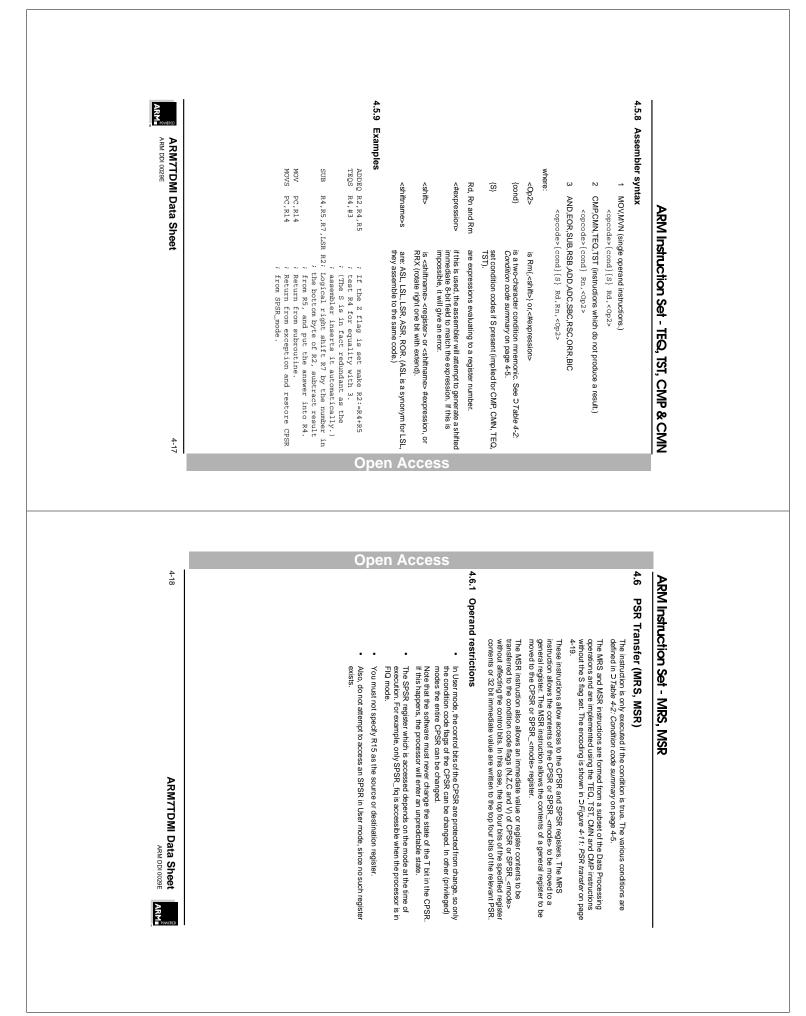
If R15 (the PC) is used as an operand in a data processing instruction the register is

prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead. The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction

## 4.5.6 TEQ, TST, CMP and CMN opcodes

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer operations should be used instead. is not specified in the mnemonic. TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An assembler should always set the S flag for these instructions even if this

The action of TEQP in the ARM7TDMI is to move SPSR\_<mode> to the CPSR if the processor is in a privileged mode and to do nothing if in User mode.


Data Processing instructions vary in the number of incremental cycles taken as

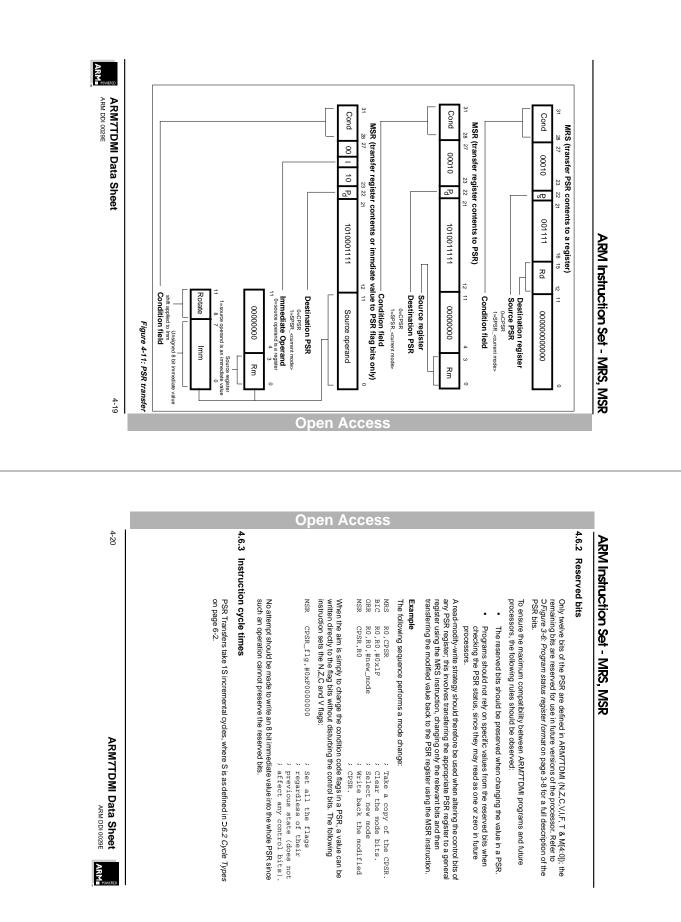
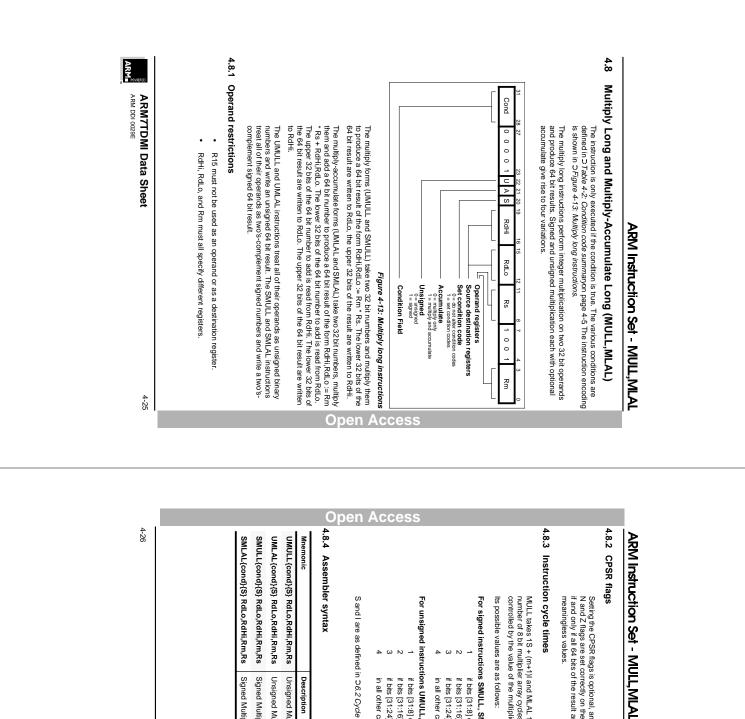

| Processing Type                                              | Cycles       |
|--------------------------------------------------------------|--------------|
| Normal Data Processing                                       | 1S           |
| Data Processing with register specified shift                | 1S + 1I      |
| Data Processing with PC written                              | 2S + 1N      |
| Data Processing with register specified shift and PC written | 2S + 1N + 1I |
|                                                              | 1 - l        |

Table 4-4: Incremental cycle times

ARM7TDMI Data Sheet


ARM DDI 0029E





| ARM Instruction Set - MRS, MSR         ax         MRS - transfer register contents to PSR<br>WER (cond) 'qser, Am         MSR - transfer register contents to PSR flag bits only<br>WER (cond) 'qser, Am         The most significant (our bits of the register contents are written to the N.Z.C<br>& V flags respectively.         MSR - transfer immediate value to PSR flag bits only<br>WER (cond) 'qserf, , dexpressions'<br>The expression should symbolise a 22 bit value of which the most significant<br>four bits are written to the N.Z.C and V flags respectively.         '0'       Ko-character condition mnemonic. See 27able 42:<br>Condition code summary on page 45.         and Rm       at expressions evaluating to a register number other than<br>at expressions evaluating to a register number other than<br>is CPSR, all are synonyms as are SPSR and SPSR, all.<br>CPSR, all are synonyms as are sembler will attempt to generate<br>where this is used, the assembler will attempt to generate<br>where this is used, the sempler to generate<br>impossible, it will give an error.       Total Sheet |  | Open Access | Open Access<br>4.6.5 Example | Open Access |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|------------------------------|-------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|------------------------------|-------------|

| ARM DDI 0029E            | <b>If the ope</b><br>Operand <i>A</i><br>85899345;<br>are 0xFFF                                                                                                                                                                          | <b>If the ope</b><br>Operand A<br>is correctly                                                                                                                               | Ox             | For examp<br>Op                                                                 | only in the<br>identical. A<br>used for bc                                                                                                                                                                                                                                                                                      | Both torms<br>(2's comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The multip<br>instruction                                                                                        | The multip<br>set to zero                                                                                                                                                                                                                                                        |                                                                     |                                                                                                                               |                                        | 31 28 27<br>Cond 0 0 0 0                                                                                                                                                                                                                                                                                                                        | perform int                     | the insuru<br>defined in<br>is shown ir                                                                                                                                                                                                                                                                                     | Multiply and Mu                             |                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|
| ata Sheet                | If the operands are interpreted as unsigned<br>Operand A has the value 4294967286, operand B has the value 20 and the result is<br>85899345720, which is represented as 0x13FFFFFF38, so the least significant 32 bits<br>are 0xFFFFF38. | If the operands are interpreted as signed<br>Operand A has the value -10, operand B has the value 20, and the result is -200 which<br>is correctly represented as 0xFFFFFF38 | 9-             | For example consider the multiplication of the operands:<br>Operand A Operand B | In the resource or a signed inturply and or an original multiply or 52 or optications origin<br>only in the upper 22 bits - the low 32 bits of the signed and unsigned results are<br>identical. As these instructions only produce the low 32 bits of a multiply, they can be<br>used for both signed and unsigned multiplies. | Both forms of the instruction work on operands which may be considered as signed (2's complement) or unsigned integers. The second se | The multipy-accumulate form gives Rd=Rm*Rs+Rn, which can save an explicit ADD instruction in some circumstances. | Figure 4-12: Multiply instruction<br>The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be<br>set to zero for compatibility with possible luture upgrades to the instruction set.                                                                   | Con                                                                 | Set c                                                                                                                         | Dest                                   | 22 21 20 19 16 15 12 11<br>0 0 A S Rd Rn                                                                                                                                                                                                                                                                                                        | perform integer multiplication. | the instruction is unit executed in the curuition is use. The various containing are<br>defined in D Fable 4-2: Condition code summaryon page 4-5. The instruction encoding<br>is shown in D Figure 4-12: Multiply instructions.<br>The multiply and multiply contained to instructions up on 9 bit Booth's alrowith the to | Multiply and Multiply-Accumulate (MUL, MLA) | ARM Instru                     |
| 4-23                     | has the value 20 and the result is<br>F38, so the least significant 32 bits                                                                                                                                                              | lue 20, and the result is -200 which                                                                                                                                         | 0xFFFFFF38     | rands:<br>Result                                                                | w 32 bits of a multiply, they can be                                                                                                                                                                                                                                                                                            | Ich may be considered as signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | th, which can save an explicit ADD                                                                               | Figure 4-12: Multiply instructions<br>*Rs. Rn is ignored, and should be<br>ogrades to the instruction set.                                                                                                                                                                       | 0 = multiply only<br>1 = multiply and accumulate<br>Condition Field | Set condition code<br>0 = do not alter condition codes<br>1 = set condition codes<br>Accumulate                               | Operand registers Destination register | Rs 7 4 3 0                                                                                                                                                                                                                                                                                                                                      |                                 | page 4-5 The instruction encoding                                                                                                                                                                                                                                                                                           | <b>1LA)</b>                                 | ARM Instruction Set - MUL, MLA |
| , i                      |                                                                                                                                                                                                                                          |                                                                                                                                                                              |                |                                                                                 |                                                                                                                                                                                                                                                                                                                                 | Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en A                                                                                                             | Acces                                                                                                                                                                                                                                                                            | S                                                                   |                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                                                                                                                                                                                                                                                                             |                                             |                                |
|                          |                                                                                                                                                                                                                                          |                                                                                                                                                                              |                |                                                                                 |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                                                                                                                                                                                                                                                                             |                                             |                                |
| 4-24                     | _                                                                                                                                                                                                                                        |                                                                                                                                                                              | 4.7.5 Ex       |                                                                                 |                                                                                                                                                                                                                                                                                                                                 | Оре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en /                                                                                                             | Acces                                                                                                                                                                                                                                                                            | S                                                                   |                                                                                                                               | 4.7.3 Ins                              |                                                                                                                                                                                                                                                                                                                                                 | 4.7.2 CF                        |                                                                                                                                                                                                                                                                                                                             | 4.7.1 Op                                    | ARMI                           |
| 4-24                     |                                                                                                                                                                                                                                          | MULAEQS                                                                                                                                                                      | 4.7.5 Examples | ,<br>Rm                                                                         |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en A                                                                                                             | Acces                                                                                                                                                                                                                                                                            | S                                                                   | MUL takes 1S<br>defined in 26                                                                                                 | 4.7.3 Instruction cycle tim            | Setting the Cl<br>N (Negative)<br>31 of the resu<br>to a meaning)                                                                                                                                                                                                                                                                               | CPSR flag                       | I ne destinati<br>must not be u<br>All other regis                                                                                                                                                                                                                                                                          | Operand restriction                         | ARM Instruction Sel            |
| 4-24 ARM7TDMI Data Sheet |                                                                                                                                                                                                                                          | MUL R1,R2,R3 ; R1:=R2*R3<br>MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4,<br>; setting condition codes.                                                                   | Examples       | , Rs and Rn                                                                     |                                                                                                                                                                                                                                                                                                                                 | OP MUL{cond}{S} Rd,Rm,Rs<br>MLA(cond){S} Rd,Rm,Ms,Rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en 4.7.4 Assembler syntax                                                                                        | 1       if bits [32:8] of the multiplier operand are all zero or all one.         2       if bits [32:4] of the multiplier operand are all zero or all one         3       if bits [32:24] of the multiplier operand are all zero or all one         4       in all other cases. |                                                                     | MUL takes 1S + ml and MLA 1S + (m+1)I cycles to execute, where S and I are as defined in <i>D6.2 Cycle Types</i> on page 6-2. | 4.7.3 Instruction cycle times          | Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected. | CPSR flag                       | Ine destination register Kd must not be the same as the operand register Km. Ktb<br>must not be used as an operand or as the destination register.<br>All other register combinations will give correct results, and Rd, Rn and Rs may use                                                                                  | Operand restriction                         | ARM Instruction Set - MUL, MLA |



S and I are as defined in D6.2 Cycle Types on page 6-2.

4 ω N

in all other cases.

if bits [31:16] of the multiplier operand are all zero.

if bits [31:24] of the multiplier operand are all zero. if bits [31:8] of the multiplier operand are all zero. For signed instructions SMULL, SMLAL: Its possible values are as follows:

For unsigned instructions UMULL, UMLAL:

4

in all other cases.

ω N

if bits [31:24] of the multiplier operand are all zero or all one. if bits [31:16] of the multiplier operand are all zero or all one. if bits [31:8] of the multiplier operand are all zero or all one.

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where *m* is the number of 8 bit multiplier array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified by Rs.

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero). Both the C and V flags are set to

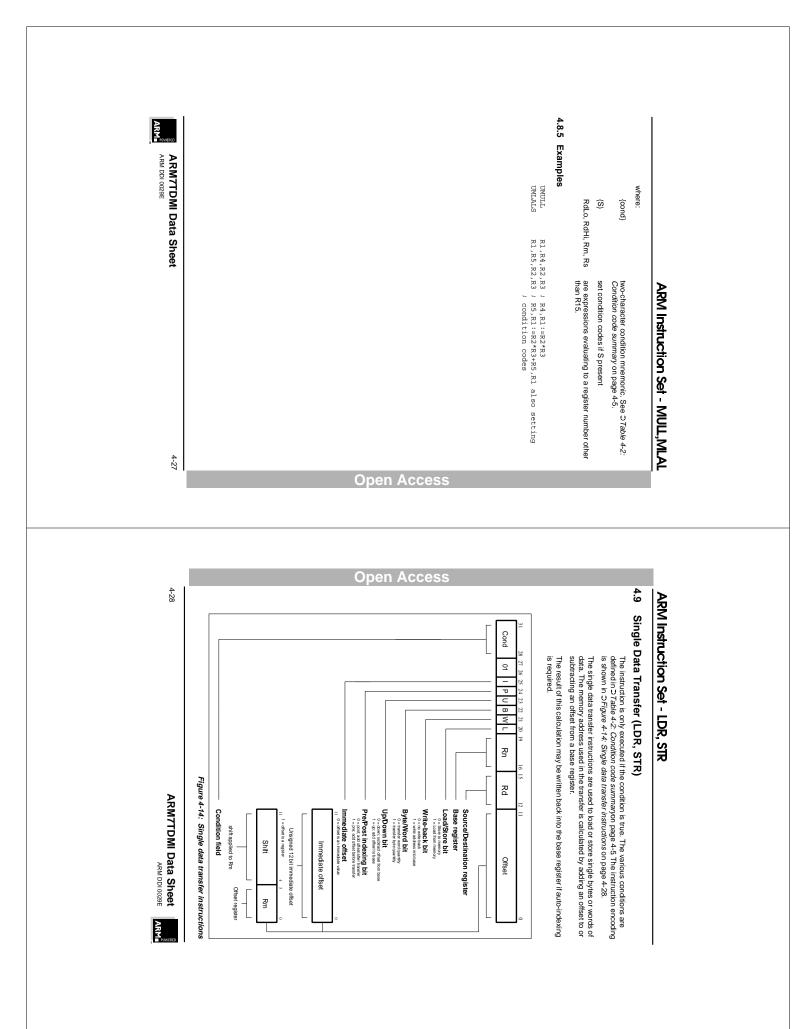
meaningless values.



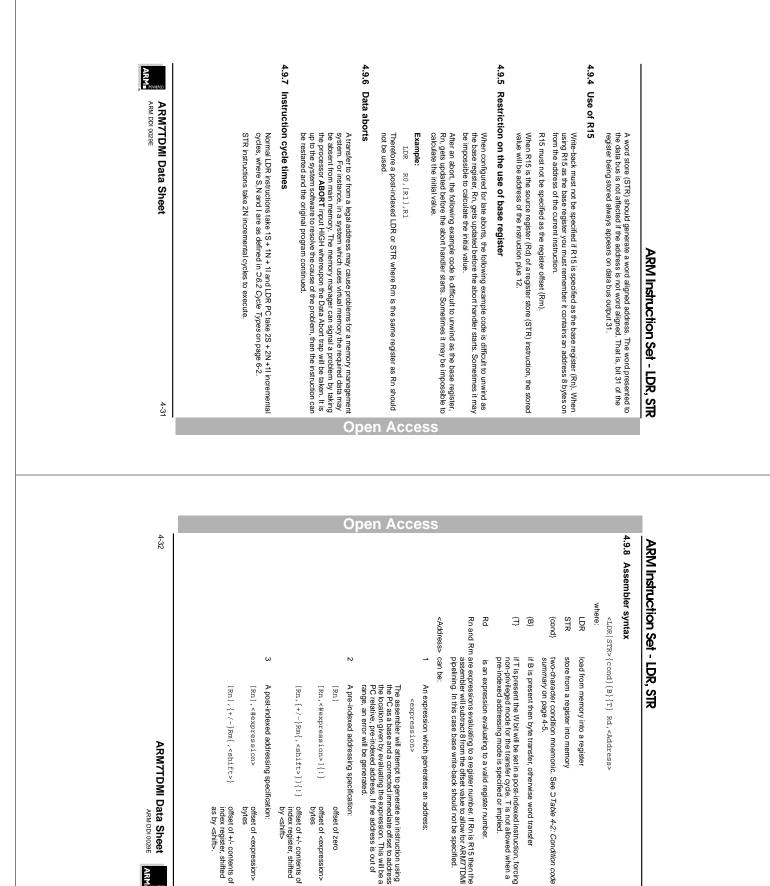
Table 4-5: Assembler syntax descriptions

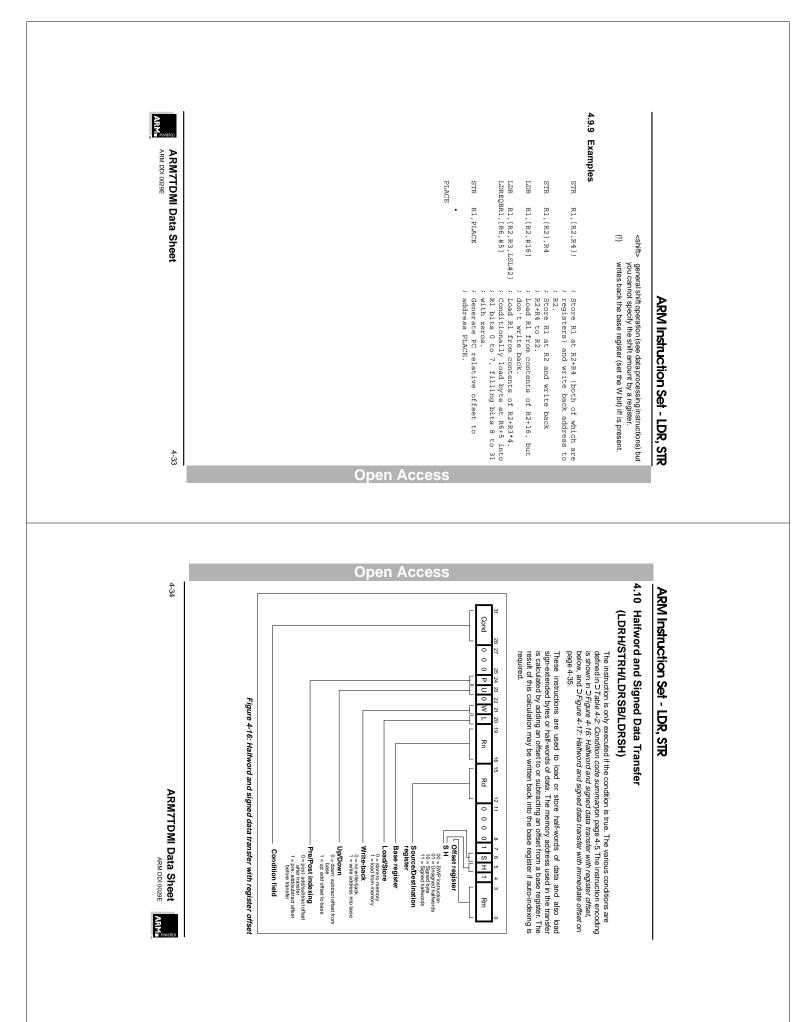
32 x 32 + 64 = 64

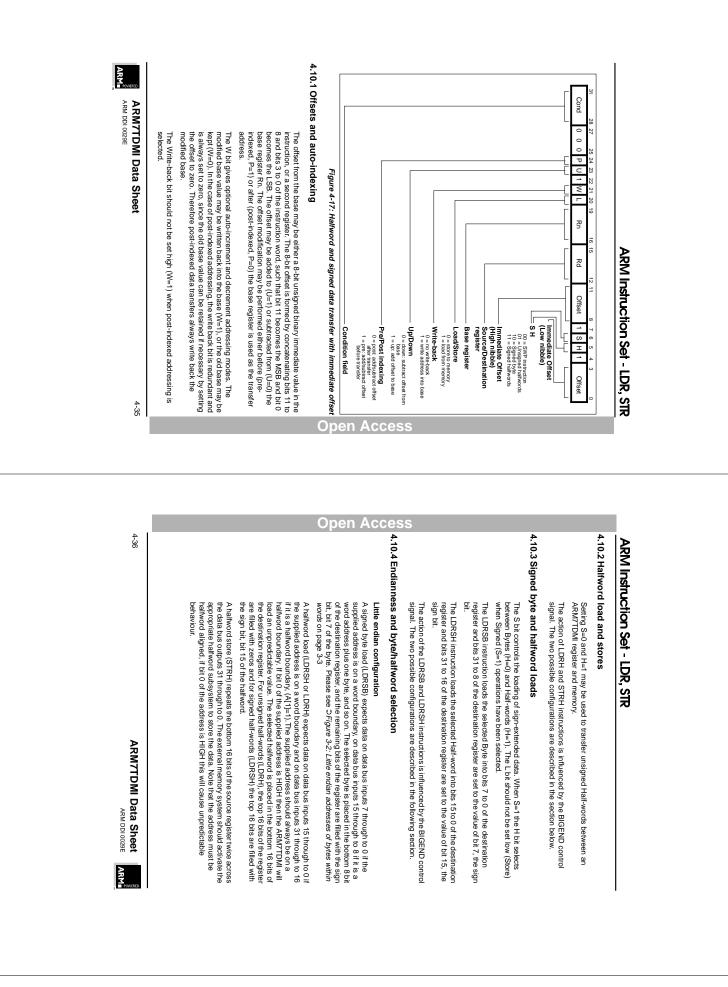
Signed Multiply & Accumulate Long


Signed Multiply Long

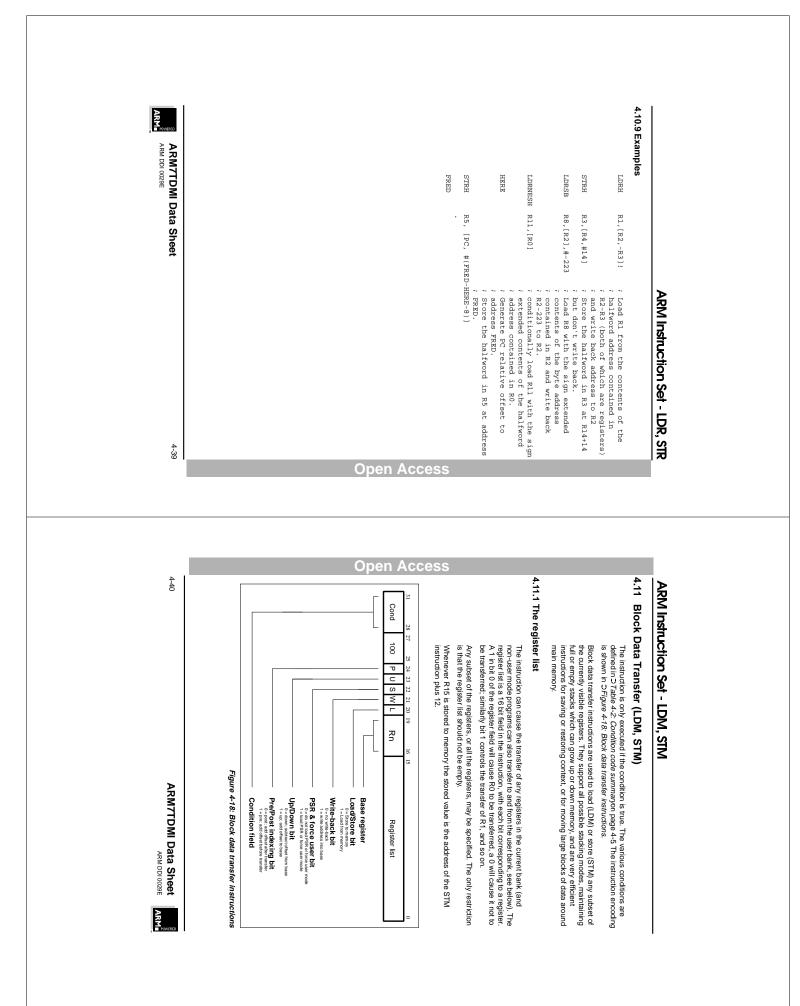
Unsigned Multiply & Accumulate Long

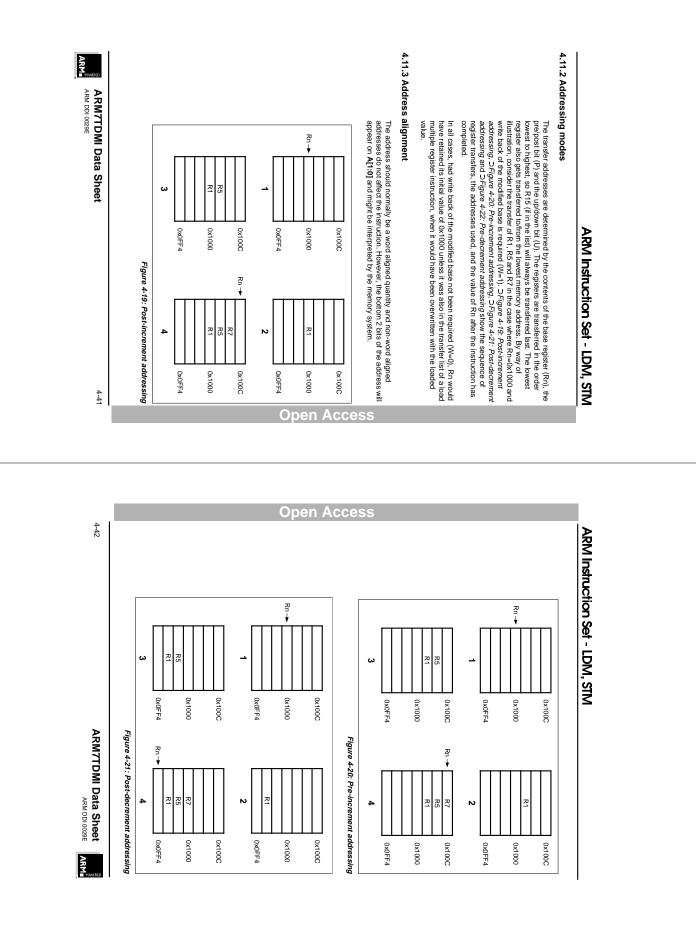

32 x 32 + 64 = 64 32 x 32 = 64 Purpose

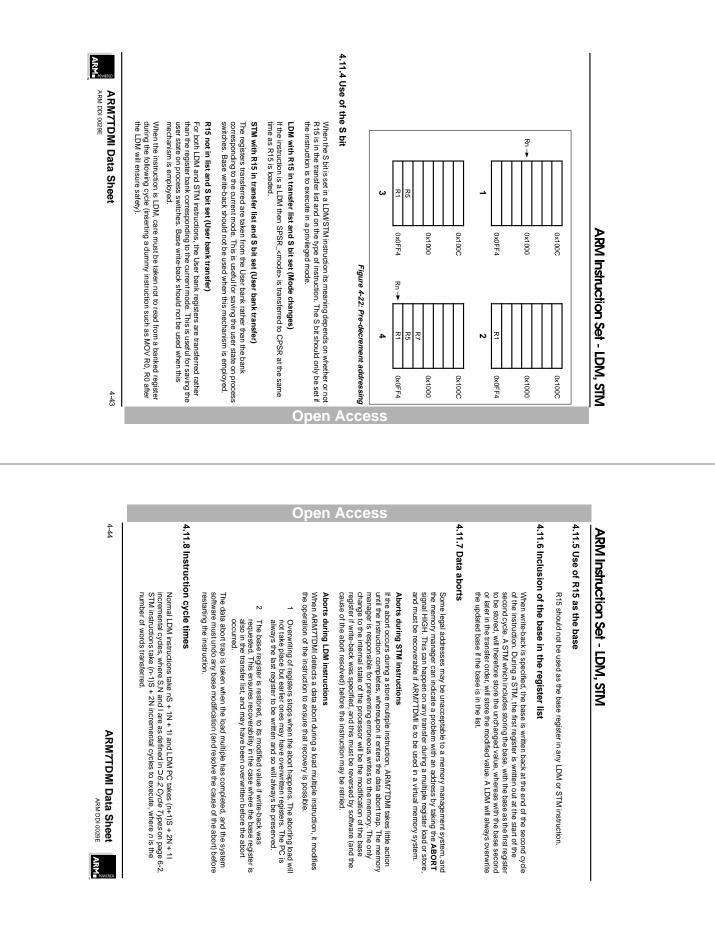

 $32 \times 32 = 64$ 

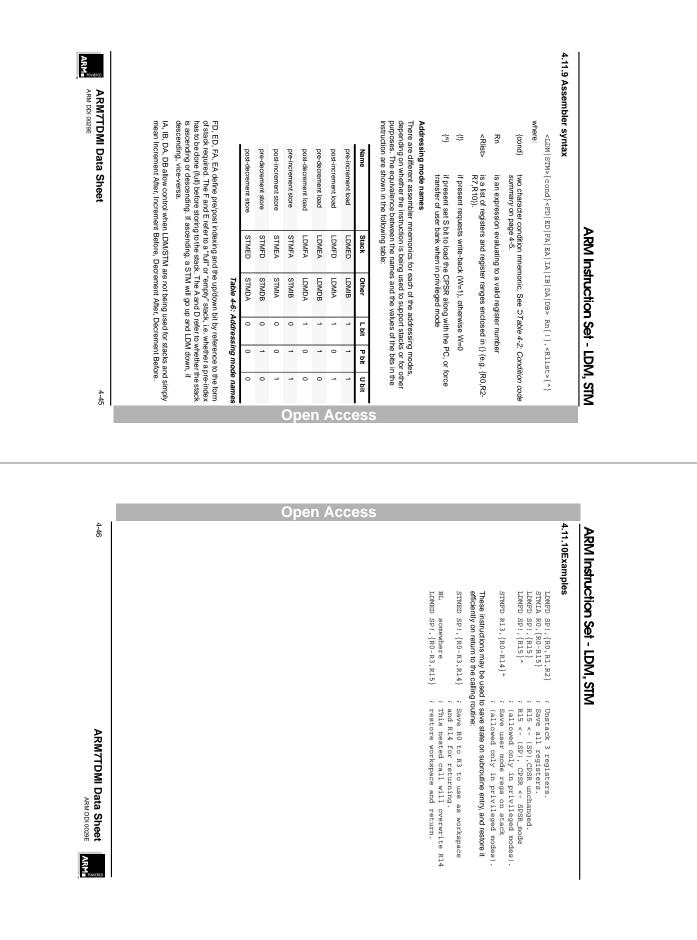

Unsigned Multiply Long Description




| ARM7TDMI Data Sheet | data bus outputs 31 through 0. The external memory system should activate the appropriate byte subsystem to store the data. A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that half-words accessed at offset 6 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of the register. Two shift operations are then required to clear or to sign extend the upper 16 bits. This is illustrated in <i>DFigure 4-15: Little endian offset addressing</i> on page 4-30.         | Little endian configuration<br>A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied<br>address is on a word boundary, on data bus inputs 15 through 8 if it is a word address<br>plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the<br>destination register, and the remaining bits of the register are filled with zeros. Please<br>see <i>D</i> Figure 3-2: Little endian addresses of bytes within words on page 3-3.<br>A byte store (STRB) repeats the bottom 8 bits of the source register four times across | This instruction class may be used to transfer a byte (B=1) or a word (B=0) between<br>an ARM7TDMI register and memory.<br>The action of LDR(B) and STR(B) instructions is influenced by the <b>BIGEND</b> control<br>signal. The two possible configurations are described below.         | 4.9.3 Bytes and words | 4.9.2 Shifted register offset<br>The 8 shift control bits are described in the data processing instructions section.<br>However, the register specified shift amounts are not available in this instruction class.<br>See 24.5.2 Shifts on page 4-12. | The Wb it gives optional auto increment and decrement addressing modes. The modified base value may be written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-privileged mode for the transfer, allowing the operating system to generate a user address in a system where the memory management hardware makes suitable use of this hardware. | The offset from the base may be either a 12 bit unsigned binary immediate value in<br>the instruction, or a second register (possibly shifted in some way). The offset may be<br>added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification<br>may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the<br>base is used as the transfer address. | 4.9.1 Offsets and auto-indexing |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 4-29                | ate the<br>n address<br>ster so that<br>ssed at<br>through 15<br>through 15<br>extend the<br>sssing on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | supplied<br>ord address<br>of the<br>ros. Please<br>-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0) between                                                                                                                                                                                                                                                                                 |                       | ection.<br>Iction class.                                                                                                                                                                                                                              | is. The<br>base value<br>k bit is<br>ined by<br>tie back the<br>back the<br>n privileged<br>ere the<br>ere the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | te value in<br>iset may be<br>nodification<br> , P=0) the                                                                                                                                                                                                                                                                                                                                             |                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                            | 0.01                  |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| 4-30                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pen Ac                                                                                                                                                                                                                                                                                     | ces                   | SS                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| 4-30                | data bus outputs 31 through 0. The external memory system should activate the<br>appropriate byte subsystem to store the data.<br>A word load (LDR) should generate a word aligned address. An address offset of 0 or<br>2 from a word boundary will cause the data to be rotated into the register so that the<br>addressed byte occupies bits 31 through 24. This means that half-words accessed at<br>these offsets will be correctly loaded into bits 15 through 31 of the register. A shift<br>operation is then required to move (and optionally sign extend) will cause the data<br>to be rotated into the register so that the addressed byte occupies bits 15 through 8. | Big endi<br>A byte lo<br>address i<br>plus one<br>destinativ<br>see 2 <i>Fig</i><br>A byte st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figure 4-15: Little endian offset addressing<br>A word store (STR) should generate a word aligned address. The word presented to<br>the data bus is not affected if the address is not word aligned. That is, bit 31 of the<br>register being stored always appears on data bus output 31. | ce                    | A+2<br>A+1                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A+3 A<br>A+2 B                                                                                                                                                                                                                                                                                                                                                                                        | ]                               |

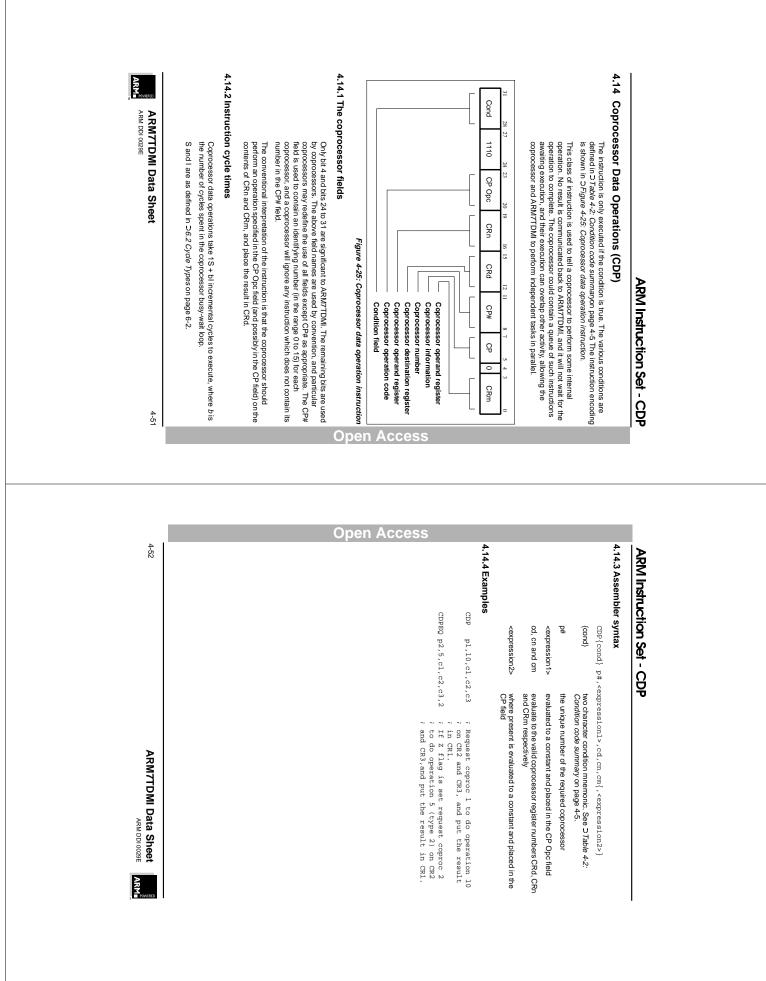


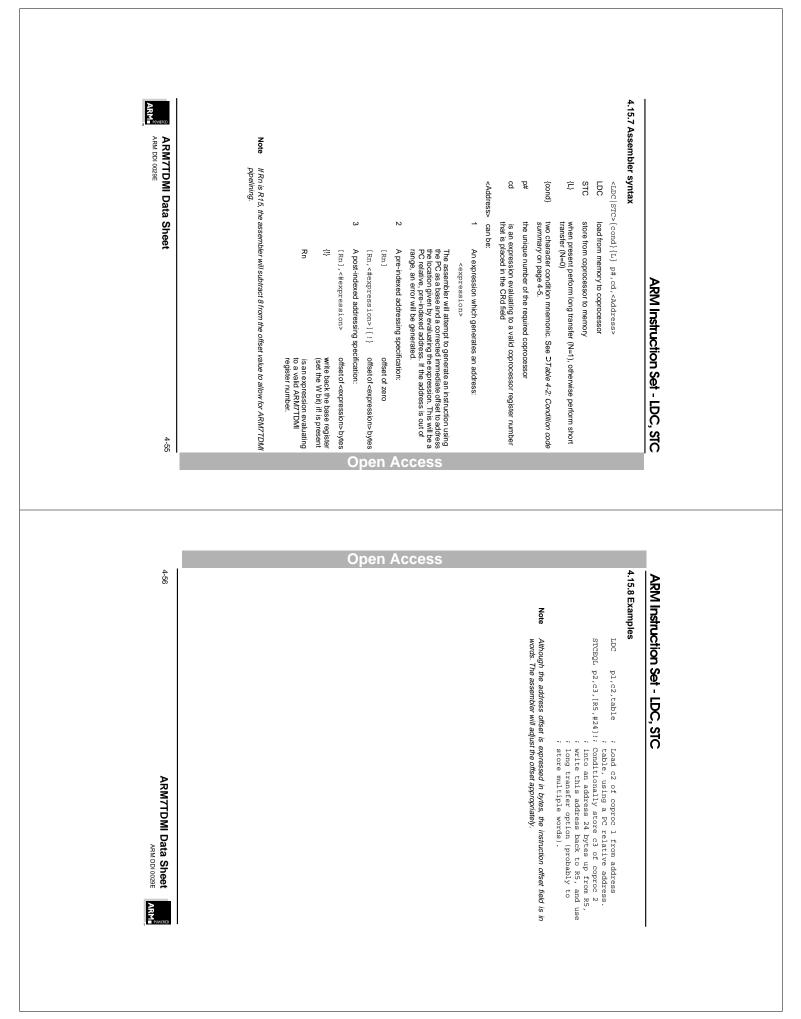

| ARM7TDMI Data Sheet      | LDR(H,SH,SB) PC take 2S + 2N + 11 incremental cycles.<br>S,N and I are defined in 26.2 Cycle Types on page 6-2.<br>STRH instructions take 2N incremental cycles to execute | Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I                 | can be restarted and the original program continued<br>4.10.7 Instruction cycle times                                                                                                                                             | system. For instance, in a system v<br>be absent from the main memory. T<br>taking the processor ABORT input H                                                                                                                                        | A transfer to or from a legal address                                            | 4 10 6 Data aborts      | When R15 is the source register (R                                                | rrom the address of the current instruction.<br>R15 should not be specified as the register offset (Rm) | Write-back should not be specified i using R15 as the base register you                                                                                                   | behaviour.<br>4.10.5 Use of R15 | appropriate halfword subsystem to<br>halfword aligned, if bit 0 of the addr                                                                                        | A halfword store (STRH) repeats the the data bus outputs 31 through to 0                                  | the sign bit, bit 15 of the halfword.                                                                                                                                                                | the destination register. For unsigne                                                                                                                                               | halfword boundary. If bit 0 of the su<br>load an unpredictable value. The se                                                                                                | if the supplied address is on a word<br>if it is a halfword boundary, (A[1]=1)                                                                                             | A halfword load (LDRSH or LDRH)                                                                        | bit, bit 7 of the byte. Please see <i>DF</i>                                                | word address plus one byte, and so<br>of the destination register, and the re                                 | supplied address is on a word boun                                                       | Big endian configuration A signed byte load (LDRSB) expect |                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|
| 4-37                     | 11 incremental cycles.<br><i>Types</i> on page 6-2.<br>Intal cycles to execute.                                                                                            | take 1S + 1N + 1I                                                  | in is up to the system sortware to resolve the cause or the problem, then the instruction<br>can be restarted and the original program continued.<br>In cycle times                                                               | system. For instance, in a system which uses virtual memory the required data may<br>be absent from the main memory. The memory manager can signal a problem by<br>taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. | A transfer to or from a legal address may cause problems for a memory management | ne instruction plus 12. | When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the | register offset (Rm)                                                                                    | Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base register you must remember it contains an address 8 bytes on |                                 | appropriate halfword subsystem to store the data. Note that the address must be<br>halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable | e bottom 16 bits of the source register twice across<br>1. The external memory system should activate the |                                                                                                                                                                                                      | the destination register. For unsigned half-words (LDRH), the top 16 bits of the register<br>are filled with zeros and for sinned half-words (LDRH) the top 16 bits are filled with | halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI will<br>load an unpredictable value. The selected halfword is placed in the bottom 16 bits of | if the supplied address is on a word boundary and on data bus inputs 15 through to 0<br>if it is a halfword boundary, (A[1]=1). The supplied address should always be on a | words on page 3-3<br>A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16  | bit, bit 7 of the byte. Please see <i>DFigure 3-1: Big endian addresses of bytes within</i> | on. The selected byte is placed in the bottom 8 bit<br>emaining bits of the register are filled with the sign | supplied address is on a word boundary, on data bus inputs 21 through to 16 if it is a   | ts data on data bus inputs 31 through to 24 if the         | ARM Instruction Set - LDR, STR |
| 71                       |                                                                                                                                                                            |                                                                    | _                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       | -                                                                                | 0                       | pei                                                                               | n A                                                                                                     |                                                                                                                                                                           | ess                             |                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                                                      | -                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                        |                                                                                             |                                                                                                               |                                                                                          |                                                            |                                |
|                          |                                                                                                                                                                            |                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                                                                  |                         |                                                                                   |                                                                                                         |                                                                                                                                                                           |                                 |                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                        |                                                                                             |                                                                                                               |                                                                                          |                                                            |                                |
|                          |                                                                                                                                                                            |                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                                                                  | 0                       | реі                                                                               | n <i>A</i>                                                                                              |                                                                                                                                                                           | ess                             |                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                        |                                                                                             |                                                                                                               |                                                                                          |                                                            | _                              |
| 4-38                     |                                                                                                                                                                            |                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                                                                  | 0                       | pei                                                                               | n A                                                                                                     | \cc                                                                                                                                                                       | ess                             |                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                        |                                                                                             |                                                                                                               |                                                                                          | 4.10.8 Assem                                               | ARM Inst                       |
| 4-38                     |                                                                                                                                                                            | {i}                                                                |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                                                                  | 0                       | реі                                                                               | n <i>I</i>                                                                                              |                                                                                                                                                                           | ess                             |                                                                                                                                                                    |                                                                                                           | <address< td=""><td>SH</td><td>2 SB</td><td></td><td>{cond}</td><td>STR</td><td>LDR</td><td><ldr st<="" td=""  =""><td>4.10.8 Assembler syntax</td><td>ARM Instruction Se</td></ldr></td></address<> | SH                                                                                                                                                                                  | 2 SB                                                                                                                                                                        |                                                                                                                                                                            | {cond}                                                                                                 | STR                                                                                         | LDR                                                                                                           | <ldr st<="" td=""  =""><td>4.10.8 Assembler syntax</td><td>ARM Instruction Se</td></ldr> | 4.10.8 Assembler syntax                                    | ARM Instruction Se             |
| 4-38 ARM7TDMI Data Sheet |                                                                                                                                                                            | {I} writes back the base register (set the W bit) if I is present. | Rn and Rm are expressions evaluating to a register number.<br>If Rn is R15 then the assembler will subtract 8 from the offset<br>value to allow for ARM7TDMI pipelining. In this case base<br>write-back should not be specified. | [Rn],{+/-}Rm                                                                                                                                                                                                                                          | 3 A post-moexed addressing specification:<br>[Rn], <#expression> offset of       |                         |                                                                                   |                                                                                                         | 2                                                                                                                                                                         |                                 | <expression></expression>                                                                                                                                          | 1 An expression which generates an address:                                                               | <address> can be:</address>                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                                                                                                             | H Transfer halfword quantity                                                                                                                                               | (cond) two-character condition mnemonic. See <i>STable 4-2: Condition code</i><br>summary on page 4-5. | STR Store from a register into memory                                                       | LDR load from memory into a register                                                                          | <ldr  str="">{cond}<h sh sb> Rd, <address></address></h sh sb></ldr>                     | 4.10.8 Assembler syntax                                    | ARM Instruction Set - LDR, STR |

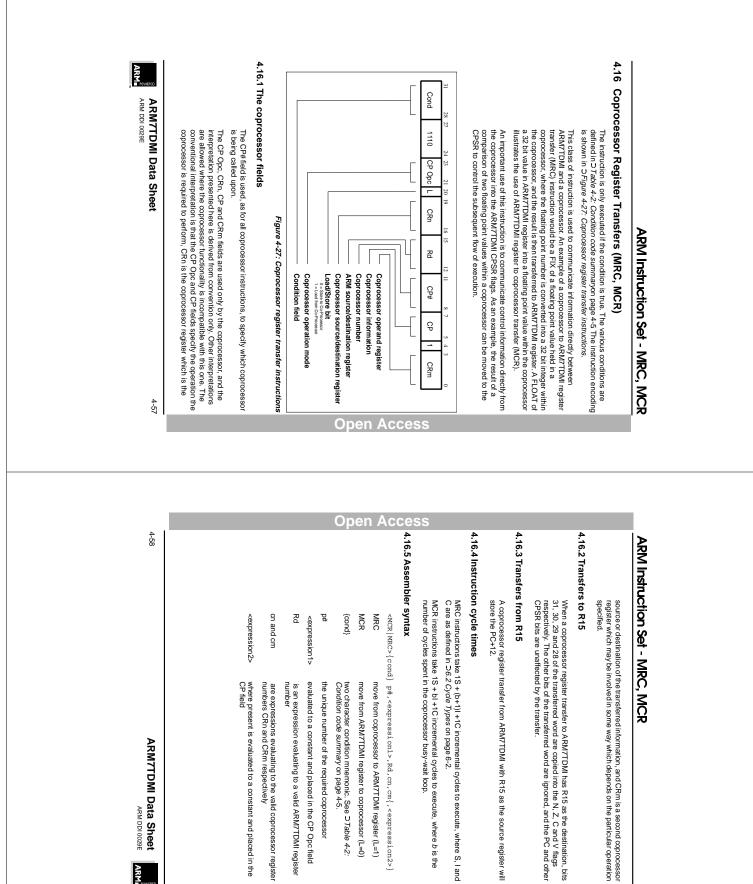






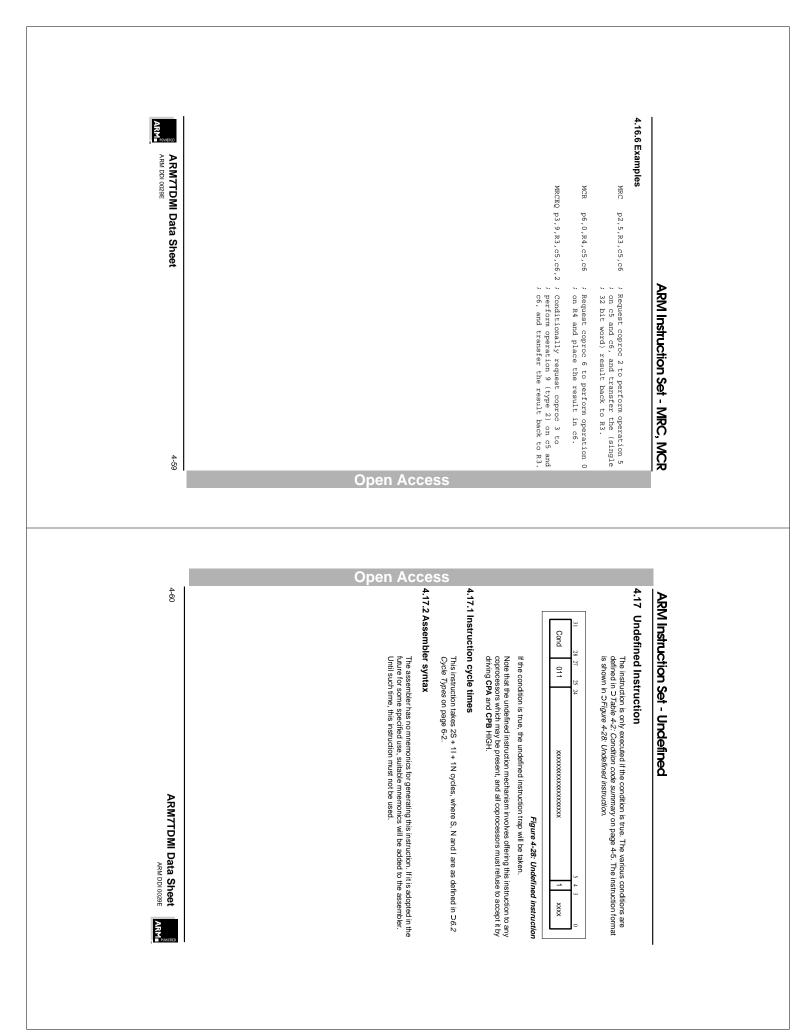






| ARM7TDMI Data Sheet 4-47 | 4.12.1 Bytes and words<br>This instruction class may be used to swap a byte (B=1) or a word (B=0) between an<br>ARM/TDMI register and memory. The SWP instruction is implemented as a LDR<br>followed by a STR and the action of these is as described in the section on single data<br>transfers. In particular, the description of Big and Little Endian configuration applies to<br>the SWP instruction. | The <b>LOCK</b> output goes HIGH for the duration of the read and write operations to signal<br>to the external memory manager that they are locked together, and should be allowed<br>to complete without interruption. This is important in multi-processor systems where<br>the swap instruction is the only indivisible instruction which may be used to implement<br>semaphores: control of the memory must not be removed from a processor while it is<br>performing a locked operation. | The swap address is determined by the contents of the base register (Rn). The processor first reads the contents of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the old memory contents in the destination register (Rd). The same register may be specified as both the source and destination. | -                             | The data swap instruction is used to swap a byte or word quantity between a register of the struction encoding  | Figure 4-23: Swap instruction<br>The instruction is only executed if the condition is true. The various conditions are | SystemWord bit<br>1 = set by word savely<br>Condition field                                                                                                                       | Source register | Cond         00010         B         00         Rn         Rd         0000         1001         Rm | 28 27                                                            | 4.12 Single Data Swan (SWP)   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                 |                                                                                                                        |                                                                                                                                                                                   |                 |                                                                                                    |                                                                  |                               |
| 4-48                     | -                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Оре                                                                                                                                                                                                                                                                                                                                                            | n Acces<br>4.12.6 Example     | <b>S</b> S                                                                                                      | 4.12.5 Assembl                                                                                                         |                                                                                                                                                                                   |                 | 4.12.3 Data abo                                                                                    |                                                                  | ARM Instru<br>4.12.2 Use of R |
| 4-48                     |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWPE R0,R0,[R1]<br>SWPEQ R0,R0,[R1]                                                                                                                                                                                                                                                                                                                            | (B)<br>Rd,<br>4.12.6 Examples | {cond} two-character condition mnemonic. See <i>3 Table 4-2</i> :<br><i>Condition code summary</i> on page 4-5. | 4.12.5 Assembler syntax                                                                                                | •• 1.4.•• Instruction: cycle times<br>Swap instructions take 1S + 2N +11 incremental cycles to execute, where S,N and I<br>are as defined in <i>D6.2 Cycle Types</i> on page 6-2. |                 | 4.12.3 Data aborts                                                                                 | Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction | ARM Instruction Set - SWP     |

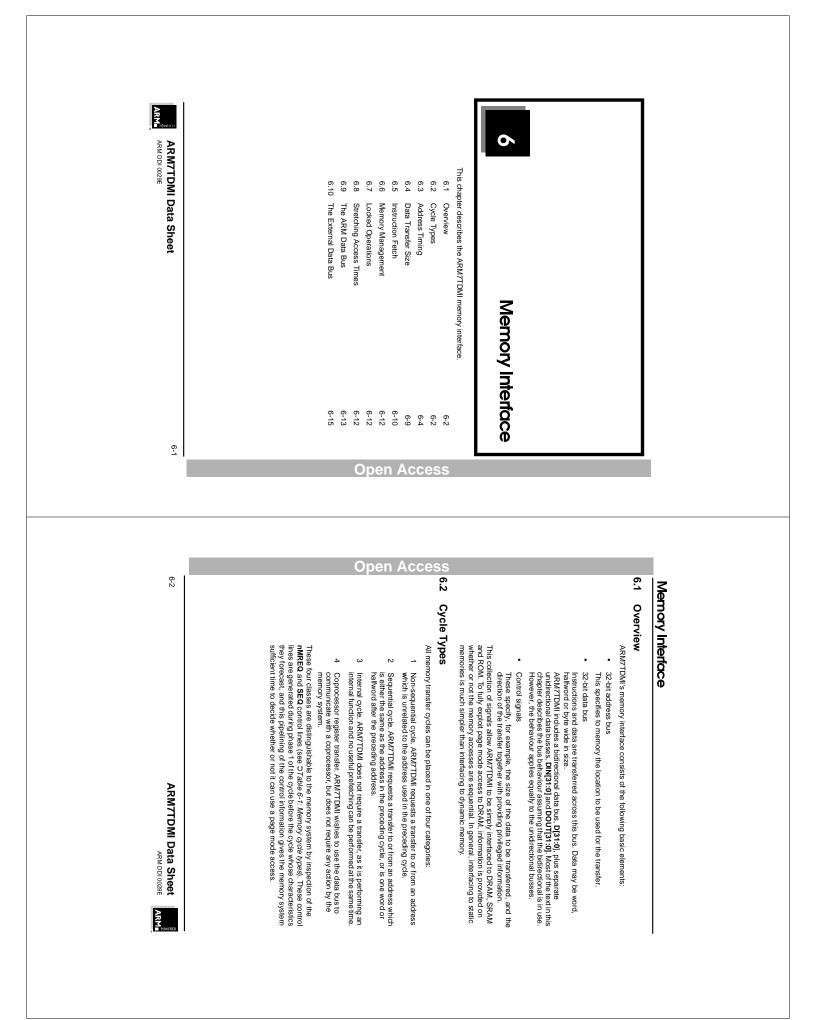
| Continue of the nonder is the The writes conditions are fourner interrupt instruction scored from the function of the nonder interrupt instruction, below.       Statement interrupt instruction is used in the Viet Schwarz interrupt instruction of the schwarz interrupt instruction, below.       Statement instruction is used in the Schwarz interrupt instruction of the schwarz interrupt instruction of the schwarz interrupt instruction of the schwarz interrupt instruction is used in schwarz in the Schwarz interrupt instruction is used in schwarz in the Schwarz interrupt instruction is used in schwarz in the Schwarz interrupt instruction.       State instruction is used in the Schwarz interrupt instruction of the schwarz instruction.       Schwarz interrupt instruction is used in schwarz instruction.       Schwarz interrupt instruction. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

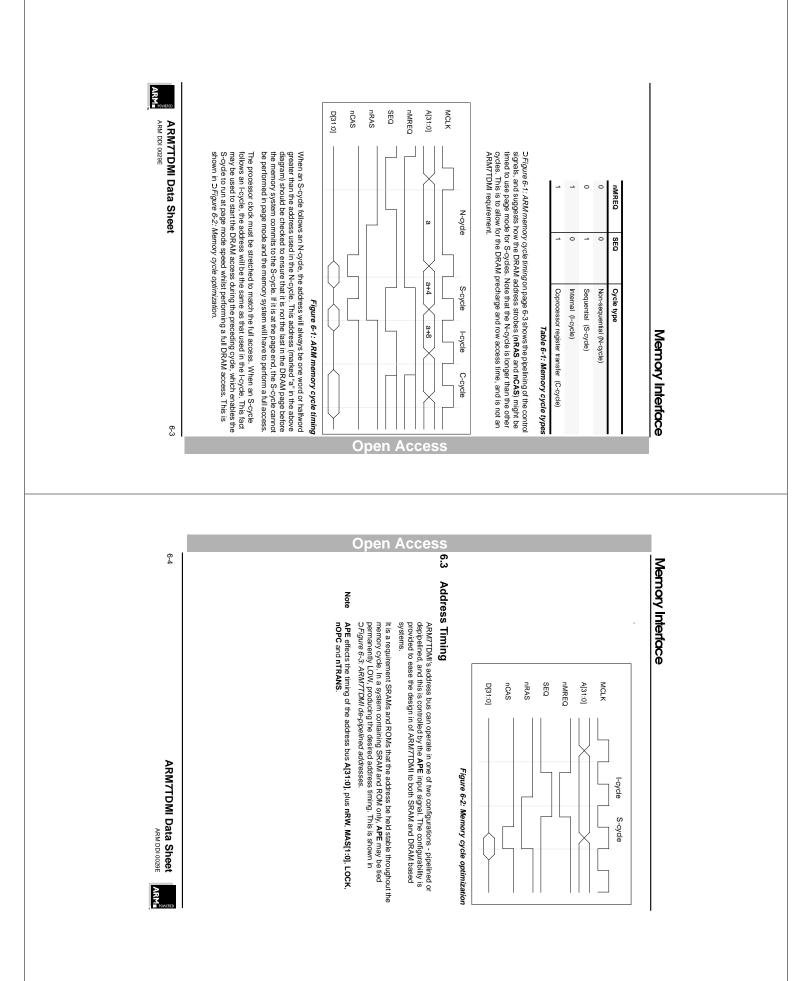


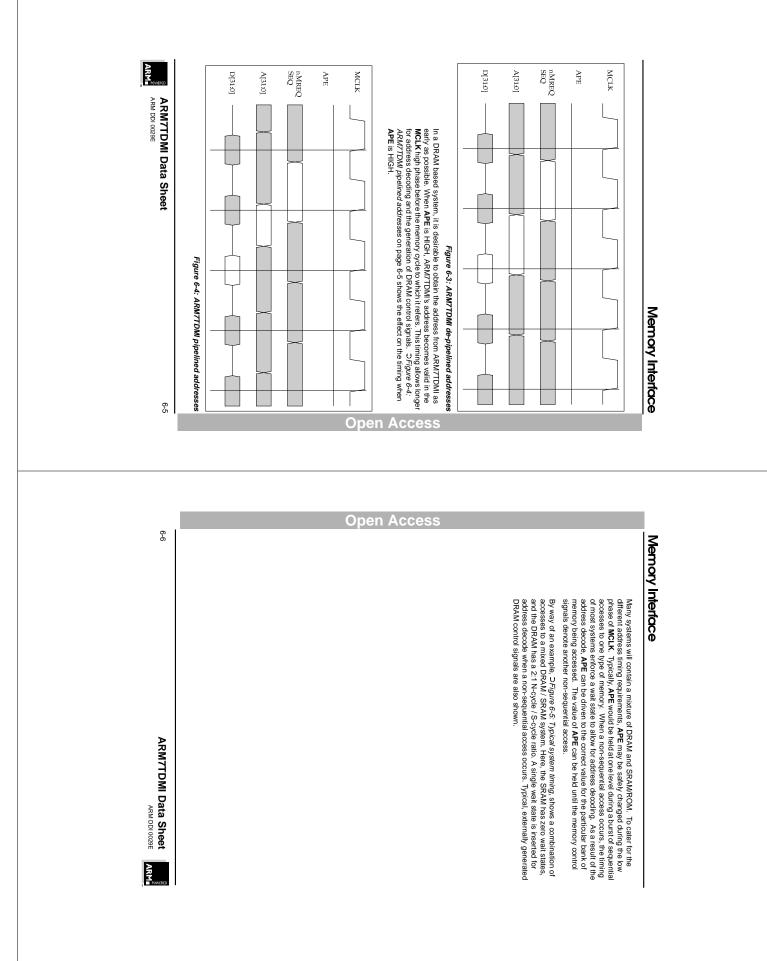


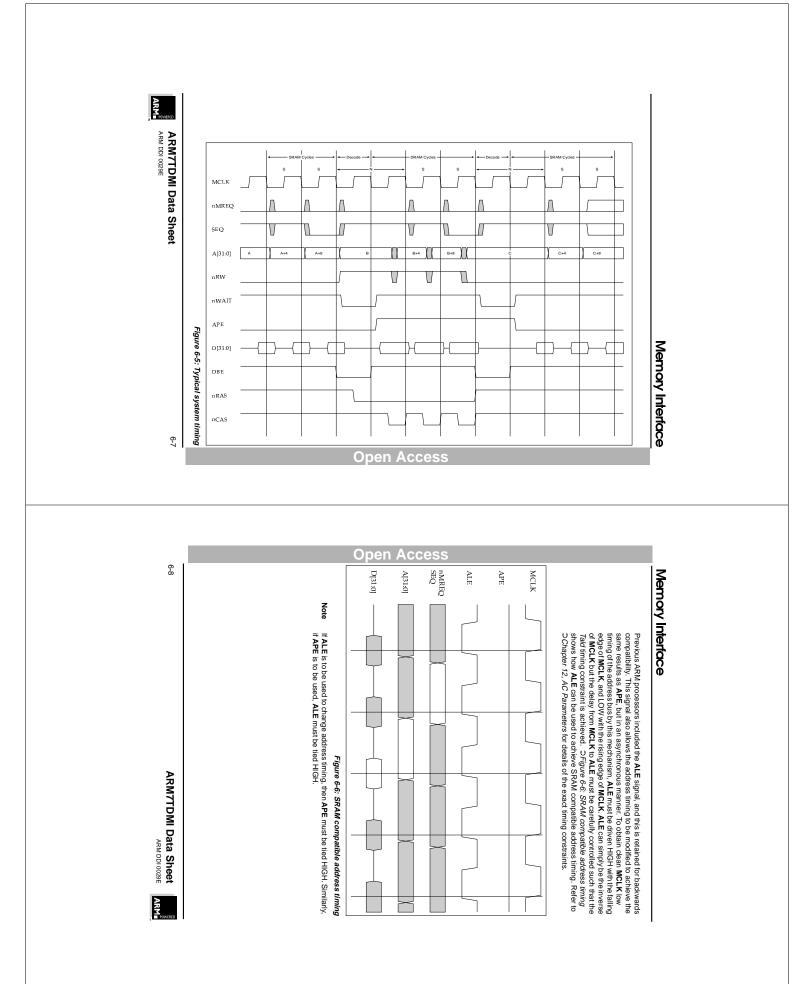




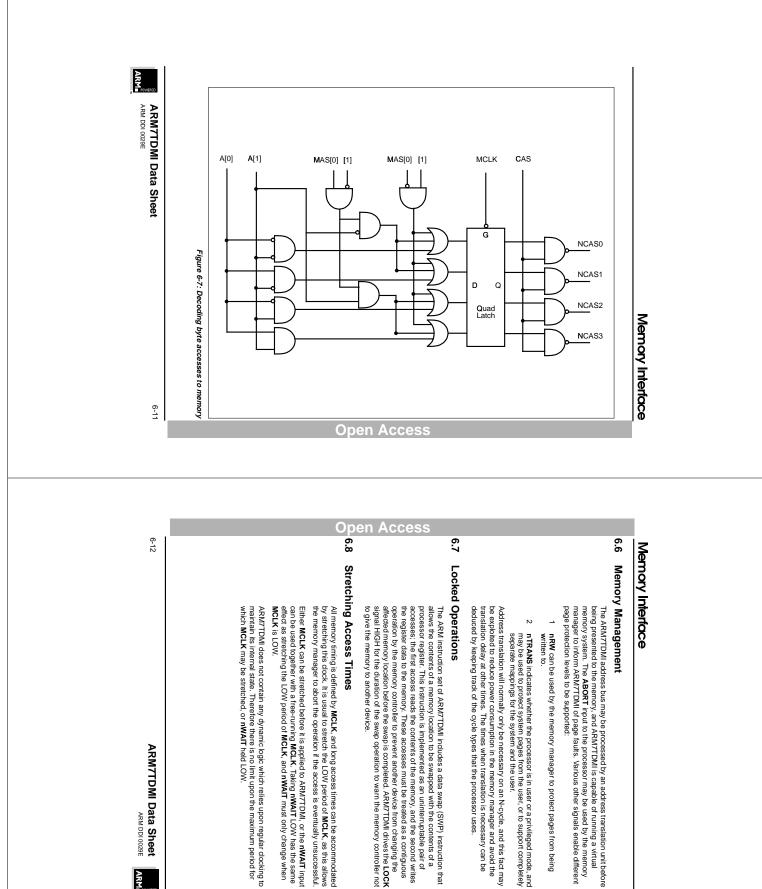


ARM DDI 0029E

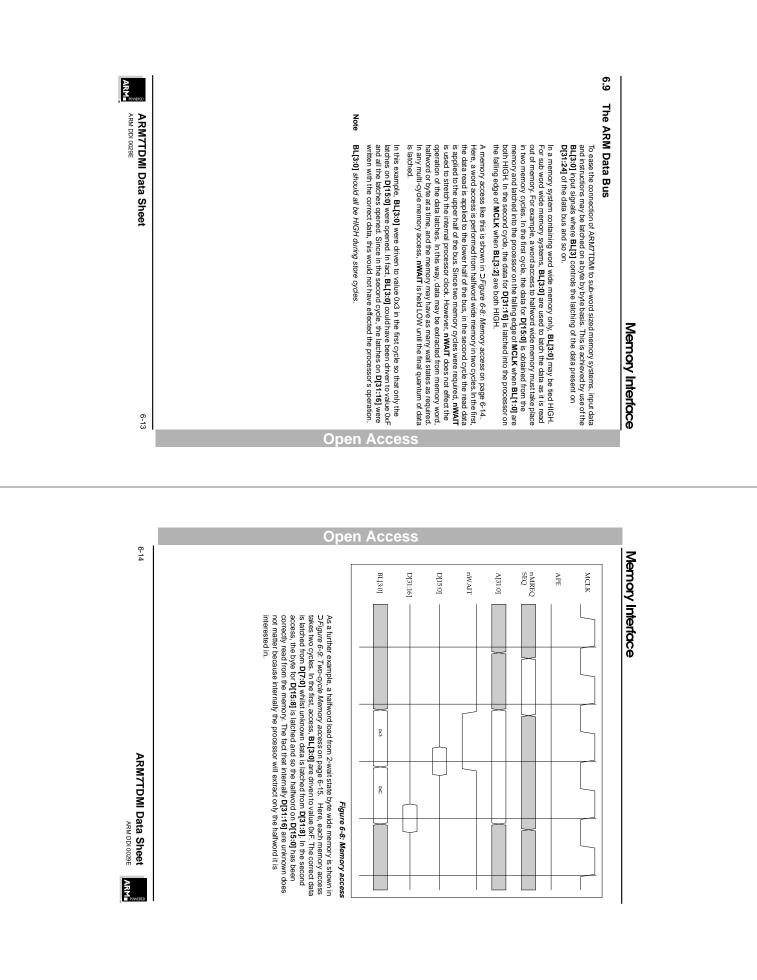

ARM7TDMI Data Sheet

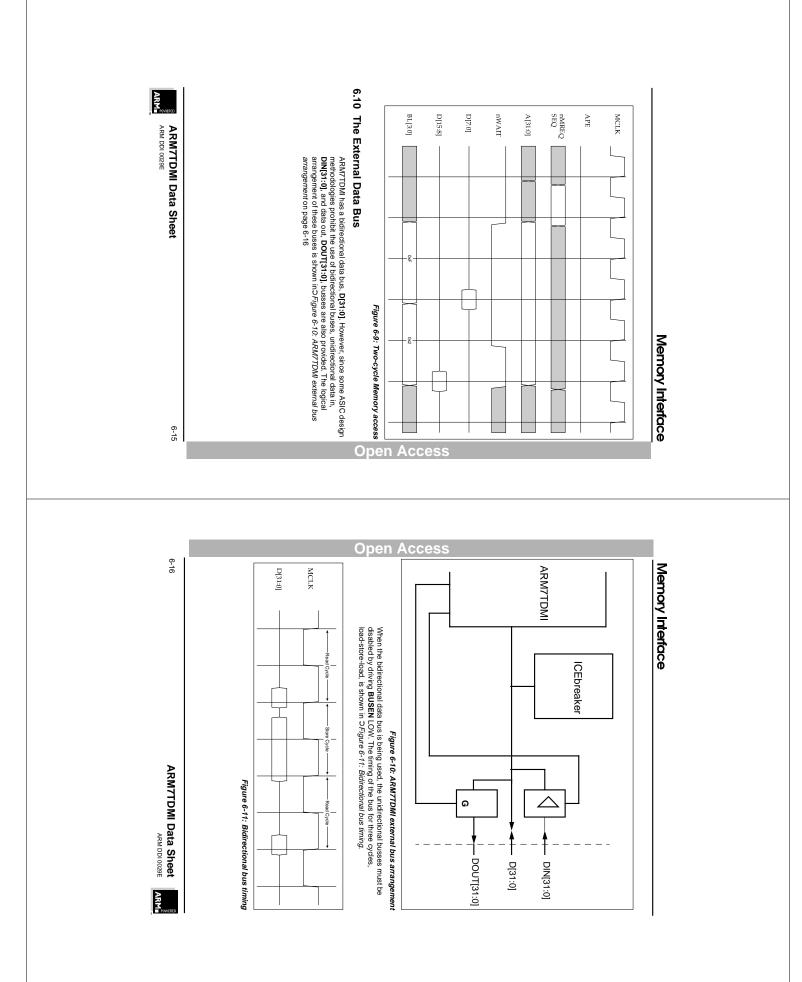


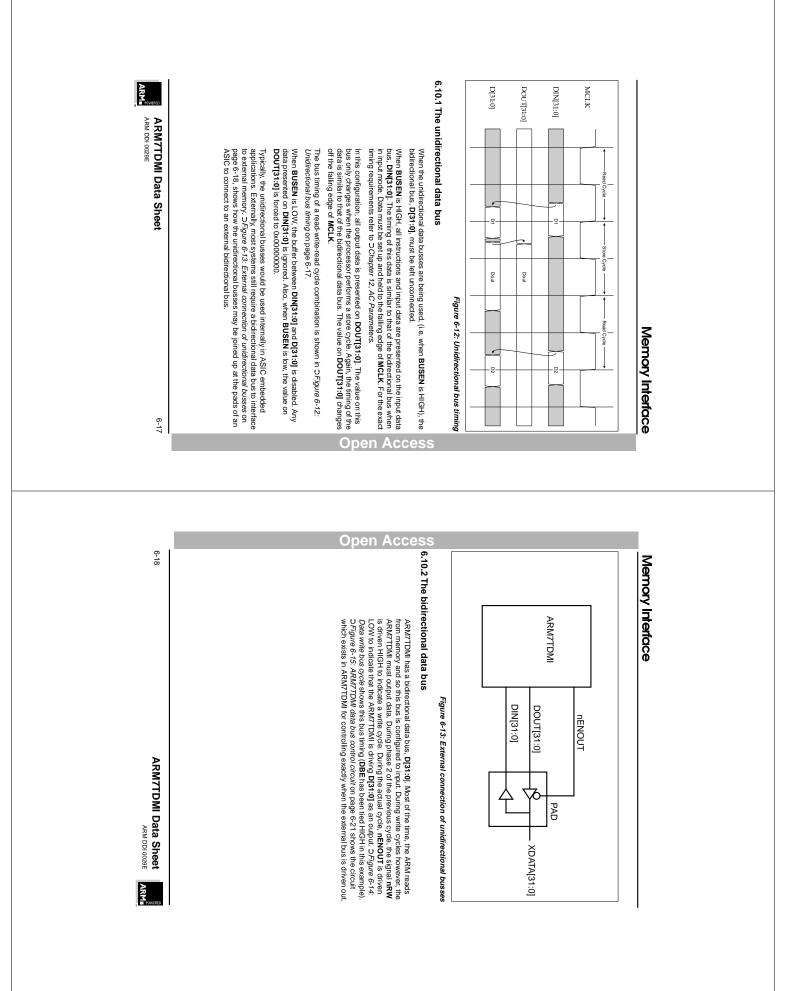


| ARM7TDMI Data Sheet | Divl CMP Rb.#A000000<br>CMPCC Rb.Rb.ASL#1<br>MOVCC Rb.Rb.ASL#1<br>MOVCC Rb.Rt.ACL#1<br>BCC Divl<br>MOV Rc.#0                                         | from your supplier. A short g                                                                         | A number of divide routines f                                                                                                                                              | TEQ RC.#127<br>CMPNE RC.#"."-1<br>MOVLS RC.#"."<br>Division and remainder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CMP Rb,#5 ; test v;<br>ADDCS Rc,Rc,Ra ; complet<br>ADDHI Rc,Rc,Ra ; complet<br>Combining discrete and range tests                                      | TEQ Rn,#0 i Test s<br>RSBMI Rn,Rn,#0 i and 2'<br>Multiplication by 4.5 or 6 (run time)<br>MOV Rc,Ra_LSL#2 i Multip                                                   | S E                                                                                                                                      | This can be replaced by<br>CMP Rn , #p |                                                      | Using conditionals for logical OR<br>CMP Rn,#p / If R<br>BEQ Label | 4.18.1 Using the conditional instructions | The following examples show<br>combine to give efficient code<br>time (although they may save                                                                                                                                             | 4.18 Instruction Set Examples |                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|
| 4-61                | ; Bit to control the division.<br>00000 ; Move Rb until greater than Ra.<br>#1<br>,ASL#1<br>,ASL#1                                                   | from your supplier. A short general purpose divide routine follows. ; Enter with numbers in Ra and Rb | A number of divide routines for specific applications are provided in source form as<br>part of the ANSIC library provided with the ARM Cross Development Torkit available | pisorete test,<br>range test<br>IF Rcc=" " OR Rc=ASCII(127)<br>THEN Rc:="."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | test value,<br>complete multiply by 5,<br>complete multiply by 6.<br>nge tests                                                                         | Test sign<br>and 2's complement if necessary.<br>un time)<br>Multiply by 4,                                                                                          | If condition not satisfied try<br>other test.                                                                                            |                                        |                                                      | <b>calOR</b><br>If Rn=p OR Rm=q THEN GOTO Label.                   | ns                                        | The following examples show ways in which the basic ARM7TDMI instructions can<br>combine to give efficient code. None of these methods saves a great deal of execution<br>time (although they may save some), mostly they just save code. |                               | <b>ARM Instruction Set - Examples</b> |
|                     |                                                                                                                                                      |                                                                                                       |                                                                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )pen A                                                                                                                                                 | ccess                                                                                                                                                                |                                                                                                                                          |                                        |                                                      |                                                                    |                                           |                                                                                                                                                                                                                                           |                               |                                       |
|                     |                                                                                                                                                      |                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                          |                                        |                                                      |                                                                    |                                           |                                                                                                                                                                                                                                           |                               |                                       |
|                     |                                                                                                                                                      |                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                          |                                        |                                                      |                                                                    |                                           |                                                                                                                                                                                                                                           |                               |                                       |
| ca-t                | _                                                                                                                                                    |                                                                                                       |                                                                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )pen A                                                                                                                                                 | ccess                                                                                                                                                                |                                                                                                                                          |                                        |                                                      |                                                                    |                                           |                                                                                                                                                                                                                                           |                               | AR                                    |
| 2-20                | Note                                                                                                                                                 |                                                                                                       |                                                                                                                                                                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )pen A                                                                                                                                                 | ccess                                                                                                                                                                |                                                                                                                                          |                                        |                                                      |                                                                    |                                           |                                                                                                                                                                                                                                           |                               | ARM Instru                            |
| 4-62                | Note Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow does not occur in such calculations. | SMULL ST.K.R.<br>ADDS Rl.Rl.Rl<br>ADC Rh.Rh.Ra<br>BVS overflow                                        | in sigr                                                                                                                                                                    | S     Overflow in unsigned multiply accumulate with a 64 bit result       UNULL     R1, R1, R1, R1       ADDS     R1, R1, R1       ADC     R1, R1, R2       ADC     Rh, Rh, R2       ADC     Rh, Rh, R2       ADC     State       ADC </td <td>A Overflow in signed multiply accumulate with a 32 bit result<br/>SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles<br/>TEQ Rt.Rd, ASR#31 ;+1 cycle and a<br/>BNE overflow</td> <td>CC BNE overflow in unsigned multiply examulate with a 22 bit result UMLAL Rd,Rt,Rm,Rn <i>i</i>.4 to 7 cycles TEQ TEQ Rt,#0 <i>i</i>.+1 cycle and a re BNE overflow</td> <td>2 Overflow in signed multiply with a 32 bit result<br/>SMULL Rd ,Rt ,Rm ,Rn ; 3 to 6<br/>TEQ Rt ,Rd ASR#31 <i>i</i>+1 cyc<br/>BNE overflow</td> <td>TEQ Rt,#0<br/>BNE overflow</td> <td>1 Overflow in unsigned multiply with a 32 bit result</td> <td>Overflow detection in the ARM7TDMI</td> <td>DNP DT VY</td> <td>8 8 8</td> <td>Div2 CMP Ra,Rb</td> <td>ARM Instruction Set - Examples</td> | A Overflow in signed multiply accumulate with a 32 bit result<br>SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles<br>TEQ Rt.Rd, ASR#31 ;+1 cycle and a<br>BNE overflow | CC BNE overflow in unsigned multiply examulate with a 22 bit result UMLAL Rd,Rt,Rm,Rn <i>i</i> .4 to 7 cycles TEQ TEQ Rt,#0 <i>i</i> .+1 cycle and a re BNE overflow | 2 Overflow in signed multiply with a 32 bit result<br>SMULL Rd ,Rt ,Rm ,Rn ; 3 to 6<br>TEQ Rt ,Rd ASR#31 <i>i</i> +1 cyc<br>BNE overflow | TEQ Rt,#0<br>BNE overflow              | 1 Overflow in unsigned multiply with a 32 bit result | Overflow detection in the ARM7TDMI                                 | DNP DT VY                                 | 8 8 8                                                                                                                                                                                                                                     | Div2 CMP Ra,Rb                | ARM Instruction Set - Examples        |

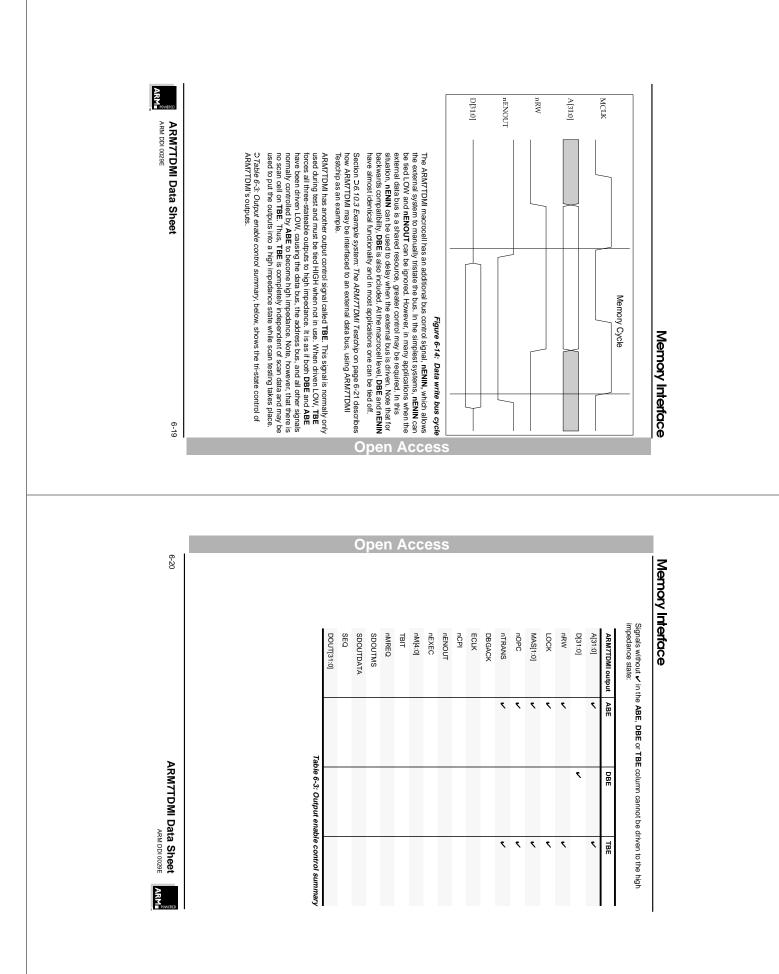
| Submitting squares generate<br>results as a basis to spread to standard and the most effect<br>result expension as a basis to spread to standard and the most effect<br>results as a basis to spread to standard and the most effect<br>results as a basis to spread to standard and the most effect<br>results as a basis to spread to standard and the standard and the<br>results and the most effect results and the standard and the<br>results and the most effect results and the standard and the<br>results and the most effect results and the standard and the<br>results and the standard and the results and the results and<br>results and the results and<br>results and the results and<br>results and results and results and<br>results and results and<br>results and results and results and<br>results and resul |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Open Access<br>4.18.4 Loading a word<br>BIC<br>LDMLA<br>AND<br>PESREE<br>PESREE<br>PESREE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.18.4 Loading a word<br>LDMTA<br>AND<br>MOVNE<br>RSBRE<br>ORENE<br>AND<br>RSBRE<br>ORENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

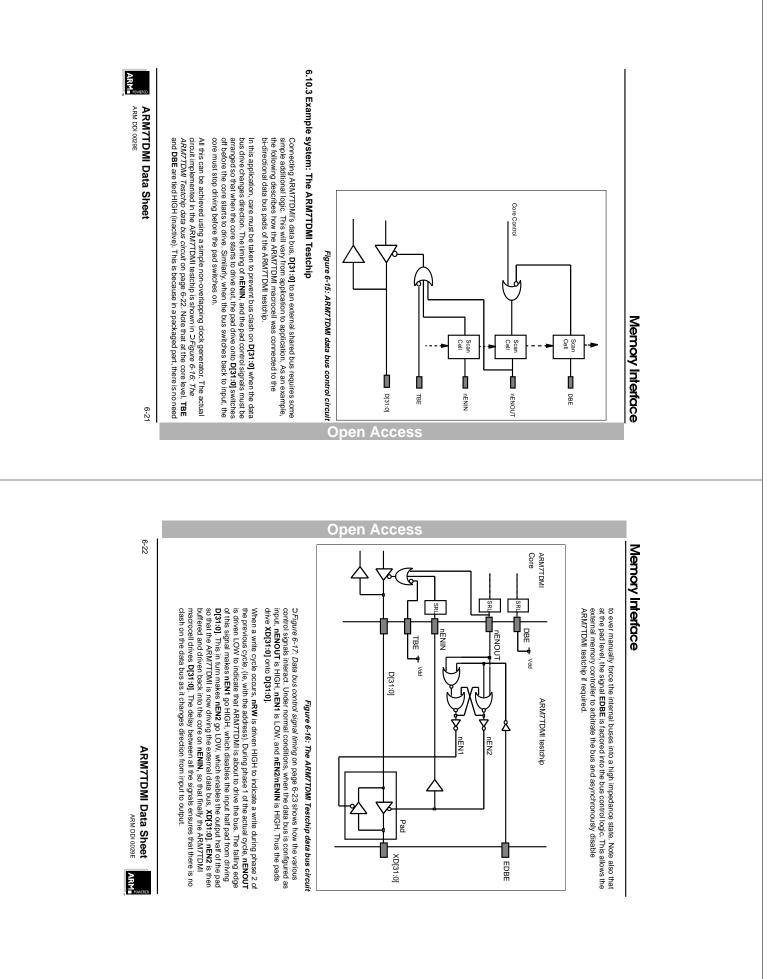


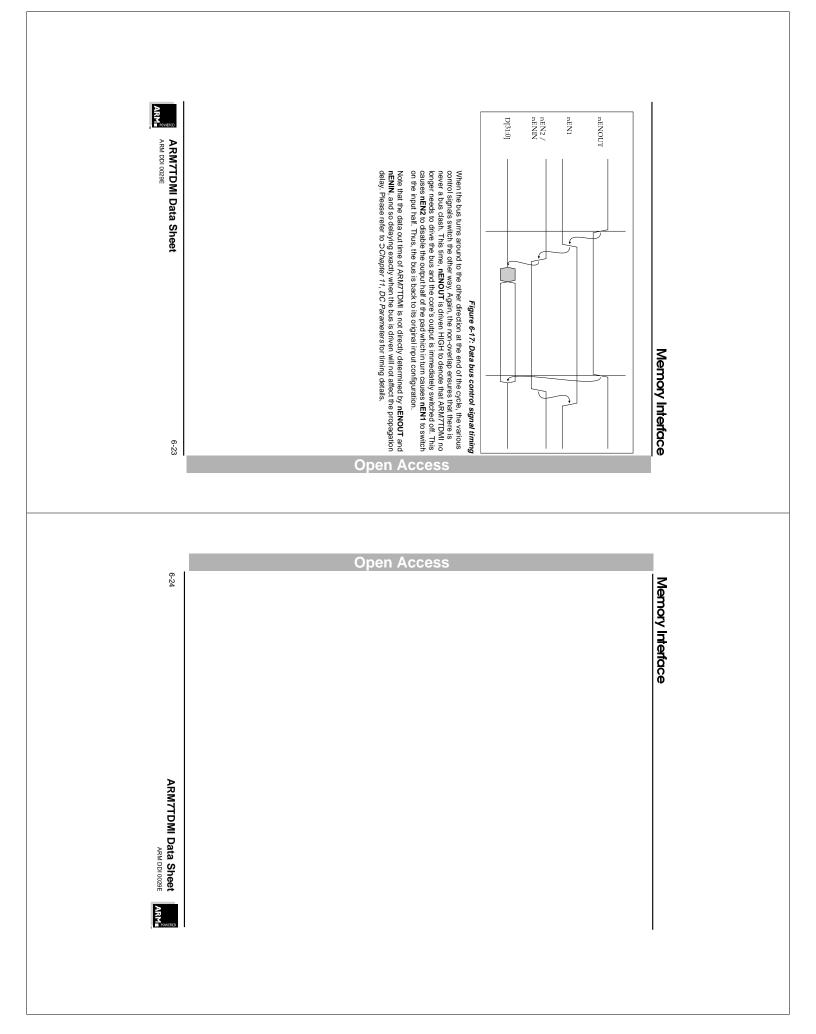



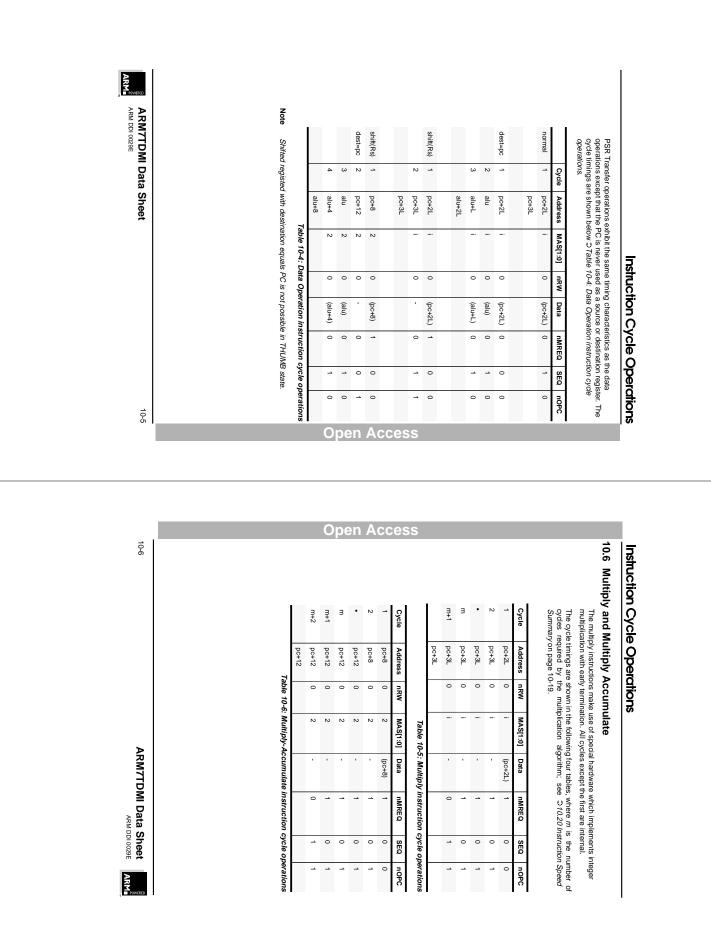



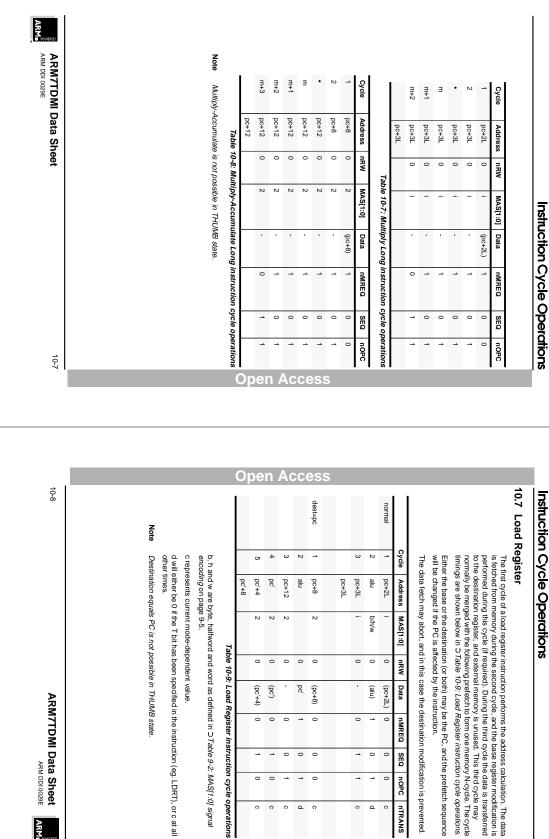


| ARM7TDMI Data Sheet | <text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ° 10                | Open Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| ARM7TDMI Data Sheet | Memory Interface<br>15 Instruction Fetch<br>ARMTTMM will perform 32: or 16-bit instruction fetches depending on whether the<br>accessor is in ARM or THUMB state. The processor is in ATM<br>and THUMB state and 16-bit instructions are fetched. When TBT is HGH, the processor is in<br>THUMB state and 16-bit instructions are fetched. The size of the data being fetched is<br>also indicated on the MARJ10 JISLs, as described above.<br>When the processor is in ARM states. 32:-bit instructions are fetched on D[31:0]. When<br>the processor is in ATMIND state, 16-bit instructions are fetched on D[31:0]. When<br>the processor is in THUMB state, 16-bit instructions are fetched on D[31:0].<br>D[31:10], or the lower D[30:116] in the bus. This is chermined by the ordination<br>of the remony stepson as configurations.<br>Sampled in the different configurations.<br>Table 6:2: Endianism effect on instruction position shows which half of the data bus<br>3: 7able 6:2: Endianism effect on instruction position describes instructions fetched<br>to the bitractional data bus (i.e. BUSEN is LOW). When the undirectional data<br>bus states are in use (i.e. BUSEN is H(H), data will be fetched from the corresponding<br>half of the DIN[31:0] bus. |  |










| ARM7TD              |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  |                                                 |                 |                                                                |                   |                                                                          |                      |               |                                  |                                  |                                                                                                                                                      | 10                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                              |
|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|----------------------------------------------------------------|-------------------|--------------------------------------------------------------------------|----------------------|---------------|----------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|
| ARM7TDMI Data Sheet | 10.19 Unexecuted Instructions<br>10.20 Instruction Speed Summary | 10.17 Coprocessor Register Transfer (Store to coprocessor)<br>10.18 Undefined Instructions and Coprocessor Absent | 10.15 Coprocessor Data Transfer (from coprocessor to memory)<br>10.16 Coprocessor Register Transfer (Load from coprocessor) | 10.13 coprocessor Data Operation<br>10.14 Coprocessor Data Transfer (from memory to coprocessor) | 10.12 Software Interrupt and Exception Entry    | 10.11 Data Swap | 10.9 Load Multiple Registers<br>10.10 Store Multiple Registers |                   |                                                                          | 10.5 Data Operations |               |                                  | 10.2 Branch and Branch with Link |                                                                                                                                                      | Instruction Cycle Operations                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                              |
| -                   | 10-18<br>10-19                                                   | 10-17<br>10-18                                                                                                    | ) 10-15<br>10-16                                                                                                            | ) 10-13<br>) 10-14                                                                               | 10-12                                           | 10-11           | 10-9<br>10-11                                                  | 10-9              | 10-8                                                                     | 10-4                 | 10-3          | 10-3                             | 10-2                             | 2                                                                                                                                                    | ations                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                              |
| 10-1                |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  |                                                 |                 |                                                                |                   |                                                                          |                      |               |                                  |                                  |                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                              |
|                     |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  |                                                 |                 |                                                                | 0                 | oei                                                                      | ז <i>ו</i>           | 400           | ces                              | <b>S</b> S                       |                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                              |
| <u></u>             |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  |                                                 |                 |                                                                |                   |                                                                          |                      |               |                                  |                                  |                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | <br>                         |
| 0-1<br>10-2         |                                                                  | Note                                                                                                              |                                                                                                                             |                                                                                                  |                                                 |                 |                                                                |                   |                                                                          |                      |               |                                  |                                  |                                                                                                                                                      | 10.2 Branc                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.1 Introd       | Instructio                   |
|                     |                                                                  |                                                                                                                   |                                                                                                                             | pc<br>alu                                                                                        |                                                 |                 | ω                                                              | 0                 |                                                                          | ר <i>ו</i>           | \c(           | simp                             | S                                | During the sec<br>return address                                                                                                                     | 10.2 Branch and Branc<br>A branch instru-<br>performing a<br>the time the de<br>prevent the pre                                                                                                                                                      | In the tollowing<br>of the cycle to<br>predict the type<br><b>TBIT</b> (which al<br>apply. The ad-<br>the instruction<br>increment will)<br>(4 bytes in AR<br>the width of th<br>representing w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.1 Introduction | Instruction Cycle O          |
|                     |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  |                                                 | alu+2L          | 3 alu+L<br>i                                                   | 0                 | Cycle Aures                                                              | ר <i>ו</i>           | STM {R14} LDM | simp                             | S                                | During the second cycle a fet<br>return address is stored in rec                                                                                     | <b>10.2 Branch and Branch</b> instruction calculate<br>performing a prefetch from the<br>the time the decision to take t<br>prevent the prefetch.                                                                                                    | of the cycle to which they app<br>predictitle type of the <i>next</i> cyc<br><b>TBIT</b> (which appear up to hall<br>apply. The address is increme<br>the instruction width is 4 byte-<br>increment will vary accordingly<br>(4 bytes in ARM state and 2 the<br>the width of the instruction fet<br>representing word and haltwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.1 Introduction | Instruction Cycle Operation  |
| 10-2                |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  | Table 10                                        |                 |                                                                | 0<br>2 alu<br>i   | OCI<br>1 po+2L i                                                         | ר <i>ו</i>           | STM {R14} LDM | simp                             | S                                | During the second cycle a fetch is perform<br>return address is stored in register 14 if the                                                         | <b>10.2 Branch and Branch with Link</b><br>A branch instruction calculates the branch<br>performing a prefect from the current PC.<br>the time the decision to take the branch ha<br>prevent the prefetch.                                           | of the cycle to which they apply) are shown<br>predictive type of the <i>next</i> cycle. The addre<br><b>TBIT</b> (which appear up to half a cycle anee<br>apply. The address is incremented for prefe<br>the instruction width is 4 bytes in ARM state<br>increment will vary accordingly. Hence the I<br>(4 bytes in ARM state and 2 bytes in THUM<br>the width of the instruction fetch, i=2 in AR<br>representing word and halfword accesses                                                                                                                                                                                                                                                                                                                                                                                                  | 10.1 Introduction | Instruction Cycle Operations |
| 10-2                |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  | Table 10-1: Branch i                            |                 | alu+L i                                                        | 0<br>2 alu<br>i 0 | OPEI         Address         MASILIU           1         po+2L         i | ר <i>ו</i>           | STM {R14} LDM | simp                             | S                                | During the second cycle a fetch is performed from the b<br>return address is stored in register 14 if the link bit is se                             | <b>10.2 Branch and Branch with Link</b><br>A branch instruction calculates the branch destination ir<br>performing a prefetch from the current PC. This prefetch<br>the time the decision to take the branch has been reach<br>prevent the prefetch. | In the toilowing tables <b>MNREQ</b> and <b>SEQ</b> (which are pip<br>of the cycle to which they apply) are shown in the cycle<br>predictitle type of the <i>next</i> cycle. The address, <b>MAS[1:0</b><br><b>TBIT</b> (which appear up to half a cycle ahead) are show<br>apply. The address is incremented for prefetching of inst<br>the instruction width is 4 bytes in ARM state and 2 bytes<br>increment will vary accordingly. Hence the letter L is used<br>(4 bytes in ARM state and 2 bytes in THUMB state). Sin<br>the width of the instruction fetch, i=2 in ARM state and<br>representing word and halfword accesses respectively.                                                                                                                                                                                                  | 10.1 Introduction | Instruction Cycle Operations |
|                     |                                                                  |                                                                                                                   |                                                                                                                             |                                                                                                  | Table 10-1: Branch instruction cycle operations |                 | alu+L i 0                                                      | 2 alu i 0 (alu)   |                                                                          |                      | \c(           | pipeline, and<br>simplify return | ŝS                               | During the second cycle a fetch is performed from the branch destination, and the<br>return address is stored in register 14 if the link bit is set. | 0 3 9 9 9                                                                                                                                                                                                                                            | In the toilowing tables <b>nMREQ and SEQ</b> (which are pipelined up to one cycle ahead of the cycle to which they apply) are shown in the cycle in which they appear, so they predict the type of the <i>next</i> cycle. The address, <b>MAS[1:0]</b> , <b>nRW</b> , <b>nOPC</b> , <b>nTRANS</b> and <b>TBIT</b> (which appear up to half a cycle ahead) are shown in the cycle to which they apply. The address is incremented for prefetching of instructions in most cases. Since the instruction width is 4 bytes in ARM state and 2 bytes in THUMB state. The increment will vary accordingly. Hence the letter L is used to indicate instruction length (4 bytes in ARM state and 2 bytes in THUMB state the width of the instruction fetch, i=2 in ARM state and i=1 in THUMB state representing word and halfword accesses respectively. | 10.1 Introduction | Instruction Cycle Operations |





0

0

c c c ď c

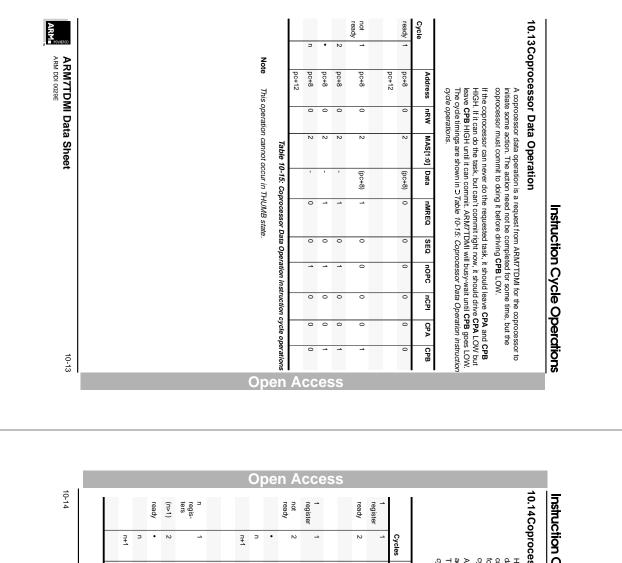
0

\_

The first cycle of a load register instruction performs the address calculation. The data is tetched from memory during the second cycle, and the base register modification is performed during this cycle (if required). During the third cycle the data is transferred to the destination register, and external memory is unused. This third cycle may normally be merged with the following prefetch to form one memory N-cycle. The cycle register is the following prefetch to form one memory N-cycle. The cycle

timings are shown below in Table 10-9: Load Register instruction cycle operations. Either the base or the destination (or both) may be the PC, and the prefetch sequence

SEQ 0 1 c noPC \_ ٩ c c nTRANS


**ARM7TDMI Data Sheet** 

ARM DDI 0029E

ARM

|                           | 7                                                                 | Note                                                                                                                                                                                            | :               |                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                         |                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                 | 10.9 Loa                |                                                                                                            |                                                                           |                                                                                  |                                                          |               | 2               | 1                   | Cycle    |                                                                                                         |                                             |                                                                                   |                           | 10.8 Sto       |
|---------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|---------------|-----------------|---------------------|----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|----------------|
| ARM7TDMI Data Sheet       |                                                                   |                                                                                                                                                                                                 | _               | (whic                                                                                                                                                                           | lf an<br>the a                                                                                                                                                                          | men                                                                                     | Reg                                                   | atter<br>worc<br>desti                                                                                                                                                                                                                                                  | mov                                                                                                                                                                         | first v                                                                                                                                                                          | The                                                                             | Load Multiple Registers | d wil                                                                                                      | enco<br>c rep                                                             | b, h                                                                             |                                                          | pc+3L         | alu             | pc+2L               | Address  | The<br>oper                                                                                             | writte                                      | seco                                                                              | трол о                    | Store Register |
| MI Dat                    | (Rlist,                                                           | PC is all                                                                                                                                                                                       | be invalidated. | ch may h                                                                                                                                                                        | abort occ<br>lbort is pr                                                                                                                                                                | memory N-cycle.                                                                         | sters inst                                            | an abort.<br>I has bee<br>nation re                                                                                                                                                                                                                                     | ed to the<br>lory, and                                                                                                                                                      | sferred, w<br>word, and                                                                                                                                                          | first cycle                                                                     | ole Re                  | d will either be<br>other times.                                                                           | encoding on page 9-5.<br>c represents current m                           | and w are                                                                        |                                                          | -             | b/h/w           |                     | _        | The cycle timi operations.                                                                              | en to mer                                   | nd cycle                                                                          | first cycle               | ster           |
| a Shee                    | PC} equa                                                          | The PC is always the last regi-<br>the PC from being overwritten.                                                                                                                               |                 | ave been                                                                                                                                                                        | ours, the i<br>evented.                                                                                                                                                                 | cle.                                                                                    | ruction c                                             | n accessi<br>gister. Th                                                                                                                                                                                                                                                 | appropria<br>the modif                                                                                                                                                      | hilst perfo<br>i perform:                                                                                                                                                        | of LDM                                                                          | disters                 | 0 if the T                                                                                                 | bage 9-5.<br>Surrent m                                                    | e byte, ha                                                                       |                                                          |               | 2               |                     | MAS[1:0] | ings are s                                                                                              | nory. The                                   | the base                                                                          | of a stor                 |                |
| Ť                         | tes to an                                                         | ast regist<br>written.<br>= PC                                                                                                                                                                  |                 | overwritt                                                                                                                                                                       | nstructior<br>The final                                                                                                                                                                 | nei geu w                                                                               | icle opera                                            | d cycle is<br>ed, then t<br>e cycle tii                                                                                                                                                                                                                                 | ite destin                                                                                                                                                                  | s the base                                                                                                                                                                       | s used to                                                                       |                         | . bit has p                                                                                                | ode-depe                                                                  | lfword an                                                                        | Table :                                                  |               | -               | 0                   | nRW      | hown bel                                                                                                | re is no th                                 | modificat                                                                         | renister                  |                |
|                           | LDM with                                                          | er to be li                                                                                                                                                                                     |                 | en by the                                                                                                                                                                       | cycle is a                                                                                                                                                                              |                                                                                         | itions on                                             | repeated<br>he final (ir<br>nings are                                                                                                                                                                                                                                   | ation regis                                                                                                                                                                 | e modifica                                                                                                                                                                       | calculate                                                                       |                         | een speci                                                                                                  | <i>encoding</i> on page 9-5.<br>c represents current mode-dependent value | d word as                                                                        | 10-10: Sto                                               |               | Rd              | (pc+2L)             | Data     | ow in ⊃ <i>T</i> a                                                                                      | written to memory. There is no third cycle. | ion is per                                                                        | is similar                |                |
|                           | pop{Rlist, pc} equates to an LDM with destination=PC              | The PC is always the last register to be loaded, so an abort at any point will prevent<br>the PC from being overwritten.<br>IDM with destination = PC cannot be executed in THUMB state However |                 | (which may have been overwritten by the load activity before the abort occurred).<br>When the BC is in the list of registers to be loaded the current instruction biseline must | If an abort occurs, the instruction continues to completion, but all register writing after<br>the abort is prevented. The final cycle is altered to restore the modified base register | ты вазноучеты аутье передачить пертох поличнот ревенита полт а зладе<br>memory N-cycle. | Registers instruction cycle operations on page 10-10. | rater an abort. The third cycle is repeated for subsequent tetches until the last data<br>word has been accessed, then the final (internal) cycle moves the last word to its<br>destination register. The cycle timings are shown in <i>CTable 10-11: Load Multiple</i> | moved to the appropriate destination register while the second word is fetched from<br>memory, and the modified base is latched internally in case it is needed to patch up | transferred, whilst performing a prefetch from memory. The second cycle fetches the<br>first word, and performs the base modification. During the third cycle, the first word is | The first cycle of LDM is used to calculate the address of the first word to be |                         | d will either be 0 if the T bit has been specified in the instruction (eg. SDRT), or c at all other times. | ue                                                                        | b, h and w are byte, halfword and word as defined in CTable 9-2: MAS[1:0] signal | Table 10-10: Store Register instruction cycle operations |               | 0               | 0                   | nMREQ    | The cycle timings are shown below in <i>3 Table 10-10: Store Register instruction cycle</i> operations. |                                             | second cycle the base modification is performed, and at the same time the data is | to the first              | -              |
|                           |                                                                   | an abort                                                                                                                                                                                        |                 | ity before                                                                                                                                                                      | letion, but<br>estore the                                                                                                                                                               | יטוי טופופנ                                                                             | 0.                                                    | cle move<br>CTable 1                                                                                                                                                                                                                                                    | in case it                                                                                                                                                                  | ory. The si<br>ng the thir                                                                                                                                                       | ss of the                                                                       |                         | instructio                                                                                                 |                                                                           | n ⊃ <i>Table</i>                                                                 | ter instru                                               | -             | 0               | 0                   | SEQ      | ): Store R                                                                                              | 1                                           | nd at the s                                                                       | rvcle of I                |                |
|                           |                                                                   | atany po<br>Himana s                                                                                                                                                                            |                 | the abort                                                                                                                                                                       | all regist<br>modified                                                                                                                                                                  |                                                                                         | ch to form                                            | s the last                                                                                                                                                                                                                                                              | is neede                                                                                                                                                                    | econd cy<br>d cycle, ti                                                                                                                                                          | first word                                                                      |                         | n (eg. SD                                                                                                  |                                                                           | 9-2: MAS                                                                         | ction cy                                                 |               |                 | 0                   | nOPC     | egister in                                                                                              |                                             | same time                                                                         | nad renis                 | -              |
|                           | TOWD SIGO, TOWOVO                                                 | ant will pr                                                                                                                                                                                     |                 | occurrec                                                                                                                                                                        | er writing<br>I base reç                                                                                                                                                                | i a single                                                                              |                                                       | the last d<br>word to it<br>ad Multipl                                                                                                                                                                                                                                  | fetched f<br>d to patch                                                                                                                                                     | he first wo                                                                                                                                                                      | to be                                                                           |                         | )RT), or c                                                                                                 |                                                                           | 3[1:0] sigr                                                                      | cle opera                                                |               | đ               | с                   | nTRANS   | struction                                                                                               |                                             | the data                                                                          | ter Durin                 |                |
| 10-9                      | 10101                                                             | event                                                                                                                                                                                           |                 |                                                                                                                                                                                 | after<br>jister                                                                                                                                                                         |                                                                                         |                                                       |                                                                                                                                                                                                                                                                         | و<br>ب<br>ع                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                 | es                      |                                                                                                            |                                                                           | al                                                                               | tions                                                    |               |                 |                     | ŝ        | cycle                                                                                                   |                                             | is ue                                                                             | n the                     |                |
|                           |                                                                   |                                                                                                                                                                                                 |                 |                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                         |                                                       | 0                                                                                                                                                                                                                                                                       | per                                                                                                                                                                         | ר A                                                                                                                                                                              |                                                                                 | es                      | S                                                                                                          |                                                                           |                                                                                  |                                                          |               |                 |                     |          |                                                                                                         |                                             |                                                                                   |                           |                |
| 10-10                     |                                                                   |                                                                                                                                                                                                 |                 |                                                                                                                                                                                 |                                                                                                                                                                                         | incl pc                                                                                 | n regisie<br>(n>1)                                    |                                                                                                                                                                                                                                                                         | per                                                                                                                                                                         | ח <b>A</b>                                                                                                                                                                       | \CC                                                                             | :es<br>(n>1)            |                                                                                                            |                                                                           |                                                                                  |                                                          |               | dest=pc         | 1 registe           |          |                                                                                                         |                                             | 1 registe                                                                         |                           |                |
| 10-10                     |                                                                   |                                                                                                                                                                                                 |                 |                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                         | sters                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                 | (n>1)                   | n registers                                                                                                |                                                                           |                                                                                  |                                                          | ω             |                 | 1 register 1        |          | ω                                                                                                       |                                             | 1 register 1                                                                      |                           |                |
| 10-10                     | Tai Tai                                                           | n+4 p                                                                                                                                                                                           |                 | n+1 a                                                                                                                                                                           | _                                                                                                                                                                                       | •                                                                                       | 2                                                     |                                                                                                                                                                                                                                                                         | n+2                                                                                                                                                                         | n+1                                                                                                                                                                              | 5 •                                                                             | (n>1) 2                 | n registers 1                                                                                              |                                                                           | σ                                                                                | 4 p                                                      | _             | 2               | -                   | 9        |                                                                                                         | 2                                           | <b>→</b>                                                                          | Cycle A                   |                |
| 10-10                     | Table 10-11                                                       | n+4 pc+L                                                                                                                                                                                        |                 | alu+•<br>pc+3L                                                                                                                                                                  | alu+•                                                                                                                                                                                   | •                                                                                       | 2 alu                                                 |                                                                                                                                                                                                                                                                         |                                                                                                                                                                             | n+1 alu+•                                                                                                                                                                        | n alu+•                                                                         | (n>1) 2                 | n registers 1 pc+2L                                                                                        | pc+2L                                                                     | _                                                                                | 4 pc'                                                    | 3 pc+3L       | 2 alu           | 1 pc+2L             | pc+3L    |                                                                                                         | 2                                           | <b>→</b>                                                                          | Cycle Address             |                |
| 10-10                     | Table 10-11: Load M                                               |                                                                                                                                                                                                 |                 |                                                                                                                                                                                 | alu+•                                                                                                                                                                                   | • alu+•                                                                                 | 2                                                     |                                                                                                                                                                                                                                                                         | n+2                                                                                                                                                                         | n+1 alu+•                                                                                                                                                                        | 5 •                                                                             | (n>1) 2 alu             | n registers 1                                                                                              | pc+2L                                                                     | _                                                                                |                                                          | _             | 2               | -                   | pc+3L    | pc+3L                                                                                                   | 2                                           | 1 pc+2L                                                                           | Address                   |                |
|                           | Table 10-11: Load Multiple Re                                     |                                                                                                                                                                                                 | pc'             | alu+•<br>pc+3L                                                                                                                                                                  | alu+• 2                                                                                                                                                                                 | • alu+• 2                                                                               | 2 alu                                                 |                                                                                                                                                                                                                                                                         | n+2                                                                                                                                                                         | n+1 alu+• 2                                                                                                                                                                      | n alu+• 2                                                                       | (n>1) 2 alu             | n registers 1 pc+2L                                                                                        | po'+2L                                                                    | _                                                                                | pc'                                                      | pc+3L i       | 2 alu           | r 1 pc+2L i         | po+3L    | pc+3L i                                                                                                 | 2 alu 2                                     | 1 pc+2L i                                                                         | _                         |                |
|                           | Table 10-11: Load Multiple Registers in                           | pc'+L i                                                                                                                                                                                         | pc'             | pc+3L i                                                                                                                                                                         | alu+• 2 0                                                                                                                                                                               | • alu+• 2 0                                                                             | 2 alu 2                                               | · · ·                                                                                                                                                                                                                                                                   | n+2 pc+3L i                                                                                                                                                                 | n+1 alu+• 2 0                                                                                                                                                                    | n alu+• 2                                                                       | (n>1) 2 alu 2 0         | n registers 1 pc+2L i                                                                                      | pc+2L                                                                     | pc'+L i                                                                          | pc'                                                      | pc+3L i       | 2 alu 2 0       | r 1 pc+2L i         | pc+3L    | pc+3L i 0                                                                                               | 2 alu 2 0                                   | 1 pc+2L i 0                                                                       | Address MAS[1:0]          |                |
| ARM7TDMI D:               | Table 10-11: Load Multiple Registers instruction                  | pc'+L i 0                                                                                                                                                                                       | pc' i 0 (pc')   | alu+• 2 0                                                                                                                                                                       | alu+• 2 0 (alu+•)                                                                                                                                                                       | • alu+• 2 0 (alu+•)                                                                     | z z zlu z o                                           |                                                                                                                                                                                                                                                                         | n+2 pc+3L i                                                                                                                                                                 | n+1 alu+• 2 0 (alu+•)                                                                                                                                                            | n alu++ 2 0                                                                     | (n>1) 2 alu 2 0 (alu)   | n registers 1 pc+2L i 0                                                                                    | pc+2L                                                                     | pc'+L i 0                                                                        | pc' i 0 (pc')                                            | pc+3L i 0 -   | 2 alu 2 0       | r 1 pc+2L i 0       | pc+3L    | pc+3L i 0 -                                                                                             | 2 alu 2 0                                   | 1 pc+2L i 0 (pc+2L)                                                               | Address MAS[1:0] nRW Data |                |
| 10-10 ARM7TDMI Data Sheet | Table 10-11: Load Multiple Registers instruction cycle operations | pc'+L i 0 (pc'+L)                                                                                                                                                                               | pc' i 0 (pc') 0 | alu+• 2 0 pc'                                                                                                                                                                   | alu+• 2 0 (alu+•) 0                                                                                                                                                                     | • alu+• 2 0 (alu+•) 0                                                                   | sters i pc+zL i v (pc+zL)<br>2 alu 2 0 (alu)          |                                                                                                                                                                                                                                                                         | n+2 pc+3L i 0 -                                                                                                                                                             | n+1 alu+• 2 0 (alu+•) 1                                                                                                                                                          | n alu+• 2 0 (alu+•)                                                             | (n>1) 2 alu 2 0 (alu) 0 | n registers 1 pc+2L i 0 (pc+2L)                                                                            | pc+2L                                                                     | pc'+L i 0 (pc'+L)                                                                | pc' i 0 (pc')                                            | pc+3L i 0 - 0 | 2 alu 2 0 pc' 1 | 1 pc+2L i 0 (pc+2L) | pc+3L    | pc+3L i 0 - 0                                                                                           | 2 alu 2 0 (alu) 1                           | 1 pc+2L i 0 (pc+2L) 0                                                             | Address MAS[1:0] nRW      |                |

| ARM7TDMI Data Sheet 10-11 10-11 | This is similar to the load and store register instructions, but the actual swap takes place in cycles 2 and 3. In the second cycle, the data is fatched from wattenal memory. The data read in cycle 2 is written into the destination register are written out to the external normal struction cycle operations on page 10-11.         The LOCK output of ARM/TDMI is driven HIGH for the duration of the swap operation on page 10-11.         The data swapped may be a byte or word quantity (bw).         The data swapped may be aborted in either the read or write cycle, and in both cases <u>transform to the affected.</u> The dot for the to the data instruction cycle operations on page 10-11.         The swap operation may be aborted in either the read or write cycle, and in both cases <u>transform to the affected.</u> The data show on the affected. | Table 10-12: Store Multiple Registers instruction cycle operations         10.11 Data Swap         ACC         Cycle | ces                                                                                                   | 1 alu+ 2 1 R 0 0 1 1 SS                                                                                                                                          | alu+• 2 1 R• 0 1                                                   | alut 2 1                                                                                                                                                                                        | n registers 1 pc+8 i 0 (pc+2L) 0 0 0 |                                             | 2 alu 2 1 Ra 0 0 | Oycle         Address         MAS[1:0]         nRW         Data         nMREQ         SEQ         nOPC           1 movel         1         novel         0         (novel)         0         0         0         0 | Instruction Cycle Operations<br>ry much as load multiple, without the final cycle. The restart<br>ightforward here, as there is no wholesale overwriting of<br>s are shown in <i>3 Table 10-12: Store Multiple Registers</i><br>s, below. |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ARM7TDMI Data Sheet             | pc+2L       i       0       (pc+2L)       0       0       C       old mode       T         Xn+4       2       0       (Xn+4)       0       1       0       1       exception mode       0         Xn+8       2       0       (Xn+4)       0       1       0       1       exception mode       0         Xn+8       C       represents the current mode-dependent value.       T       represents the current state-dependent value       For software interrupts is the address of the SWI instruction.<br>for exceptions is the address of the aborting instruction.<br>for prefetch aborts is the address of the aborting instruction.<br>for data aborts is the address of the instruction following the one<br>which attempted the aborted data transfer.       Xn                                                                                                         | Address                                                                                                              | cycle timings are shown below in <i>Table 10-14: Software Interrupt instruction cycle</i> operations. | modification is less useful than in the case of branch with link.<br>The third cycle is required only to complete the refilling of the instruction pipeline. The | During the second cycle the return address is modified to facilita | instruction pipeline from there. During the first cycle the forced address is constructed,<br>and a mode change may take place. The return address is moved to R14 and the<br>CPSR to SPSR svc. |                                      | 10.12Software Interrupt and Exception Entry | page 9-5.        | Table 10-13: Data Swap instruction cycle operations in Table 0.2: MAS(1.0) signal encoding on                                                                                                                      | Instruction Cycle Operations                                                                                                                                                                                                              |  |



## Instruction Cycle Operations

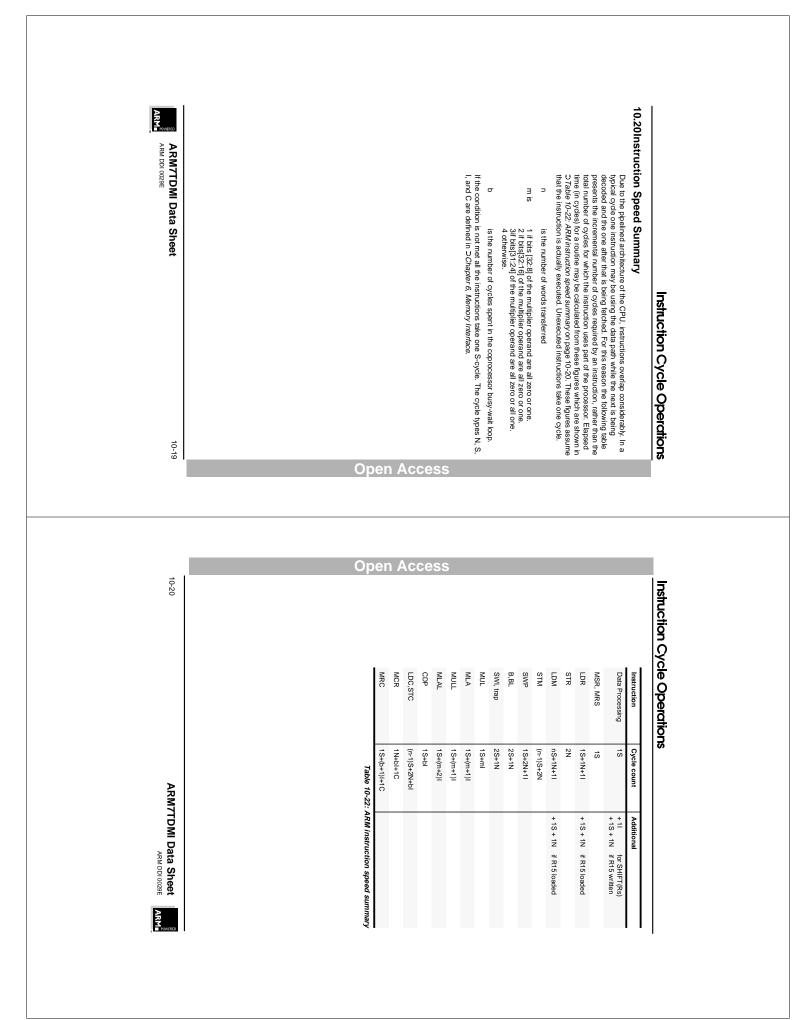
## 10.14Coprocessor Data Transfer (from memory to coprocessor)

Here the coprocessor should commit to the transfer only when it is ready to accept the data. When **CPB** goes LOW, ARM/TDMI will produce addresses and expect the coprocessor to take the data at sequential cycle rates. The coprocessor is responsible for determining the number of words to be transferred, and indicates the last transfer cycle by driving **CPA** and **CPB** HIGH.

ARM7TDMI spends the first cycle (and any busy-wait cycles) generating the transfer address, and performs the write-back of the address base during the transfer cycles. The cycle timings are shown in *3 Table 10-16: Coprocessor Data Transfer instruction* cycle operations on page 10-14.

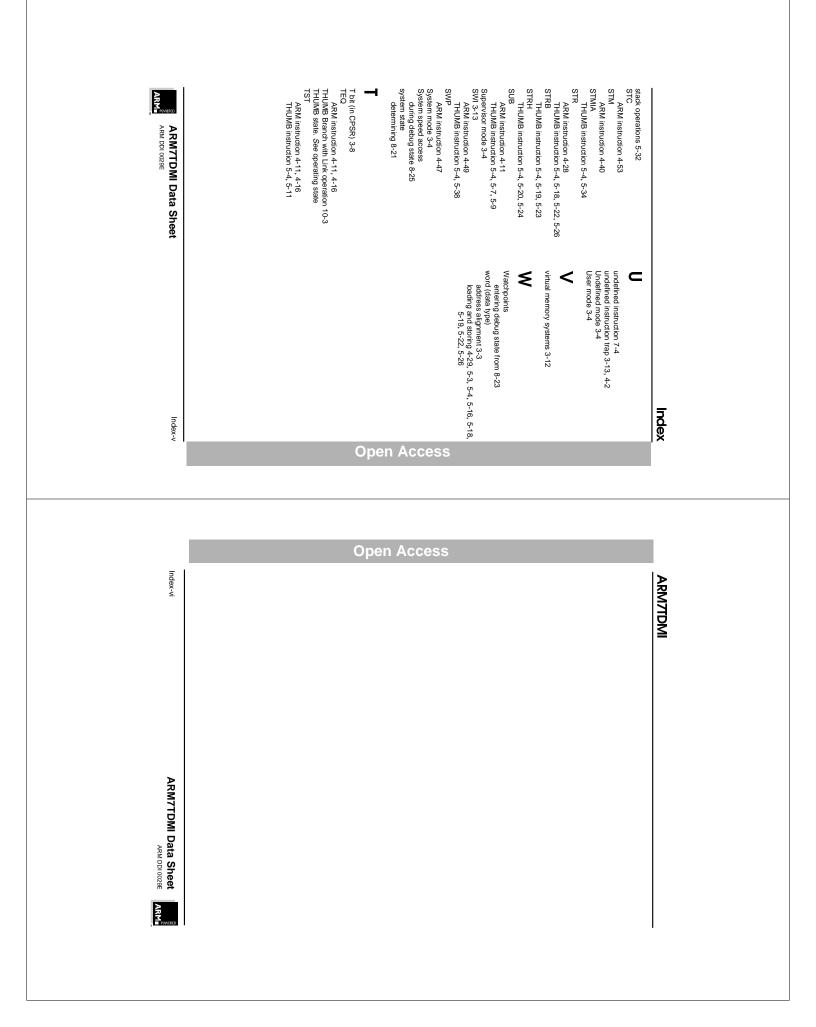
| -                   | Cycles | Address | MAS | nRW | Data    | nMREQ | SEQ | ⊃ z | noPc | _ |
|---------------------|--------|---------|-----|-----|---------|-------|-----|-----|------|---|
| 1<br>register       | 1      | pc+8    | 2   | 0   | (pc+8)  | 0     |     | 0   | 0 0  |   |
| ready               | 2      | alu     | 2   | 0   | (alu)   | 0     | _   | 0   | 0 1  |   |
|                     |        | pc+12   |     |     |         |       |     |     |      |   |
|                     |        |         |     |     |         |       |     |     |      |   |
| 1<br>register       | -      | pc+8    | N   | 0   | (pc+8)  | -     |     | 0   | 0    |   |
| not<br>ready        | 2      | pc+8    | 2   | 0   |         | -     |     | 0   | 0 1  |   |
|                     | •      | pc+8    | 2   | 0   | •       | -     |     | 0   | 0 1  |   |
|                     | n      | pc+8    | 2   | 0   | •       | 0     |     | 0   | 0 1  |   |
|                     | n+1    | alu     | 2   | 0   | (alu)   | 0     |     | 0   | 0 1  |   |
|                     |        | pc+12   |     |     |         |       |     |     |      |   |
|                     |        |         |     |     |         |       |     |     |      |   |
| n<br>regis-<br>ters | -      | pc+8    | Ν   | 0   | (pc+8)  | 0     |     | 0   | 0    |   |
| (n>1)               | 2      | alu     | 2   | 0   | (alu)   | 0     |     |     | 1    |   |
| ready               | •      | alu+•   | 2   | 0   | (alu+•) | 0     |     |     | 1    |   |
|                     | п      | alu+•   | 2   | 0   | (alu+•) | 0     |     |     | 1    |   |
|                     | n+1    | alu+•   | Ν   | 0   | (alu+•) | 0     |     | 0   | 0 1  |   |
|                     |        | pc+12   |     |     |         |       |     |     |      |   |

**ARM7TDMI Data Sheet** 


ARM DDI 0029E ARM

| ARM7TDMI Data Sheet |                                                               | ±      |            | •    | 2          | 1 register 1 |       | 1 register 1 p<br>ready 2 a | Cycle        | The ARM7TDM<br>transfers, with th<br>The cycle timin<br><i>cycle operation</i>                                                                                                                                                                                                              | Note Thi                                                                                                | q     | n+m+1 a | n+m a   | •       | n+1 a | n    | not • p  | (m>1) 2 p | m 1 p  | Cycles A     |
|---------------------|---------------------------------------------------------------|--------|------------|------|------------|--------------|-------|-----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------|---------|---------|---------|-------|------|----------|-----------|--------|--------------|
| MI Da               |                                                               |        | D0+28      | pc+8 | pc+8       | pc+8         | pc+12 | pc+8<br>alu                 | Address      | The ARM7TDMI<br>transfers, with th<br>The cycle timing<br>cycle operations                                                                                                                                                                                                                  | rable 10-10: coprocessor uata<br>This operation cannot occur in THUMB state                             | pc+12 | alu+•   | alu+•   | alu+•   | alu   | pc+8 | pc+8     | pc+8      | pc+8   | Address      |
| ta She              | ē                                                             | 2      | <b>v</b> 1 | 2    | 2          | N            |       | 2 2                         | MAS<br>[1:0] | DMI cont<br>th the one<br>nings are<br><i>ions</i> .                                                                                                                                                                                                                                        | able Tu-                                                                                                |       | 2       | 2       |         | N     | 2    | 2        | 2         | 2      | MAS<br>[1:0] |
| et                  | 17: Co                                                        | · •    |            | 0    | 0          | 0            |       | 1 0                         | nRW          | rols the<br>excep<br>show i                                                                                                                                                                                                                                                                 | t occur                                                                                                 |       | 0       | 0       | 0       | 0     | 0    | 0        | 0         | 0      | nRW          |
|                     | process                                                       | CPdata | •          |      | ' <u>-</u> | (pc+8)       |       | (pc+8)<br>CPdata            | Data         | tion that t<br>n ⊃ <i>Table</i>                                                                                                                                                                                                                                                             | in THUM                                                                                                 |       | (alu+•) | (alu+•) | (alu+•) | (alu) |      |          | '         | (pc+8) | Data         |
|                     | 10-17: Coprocessor Data Transfer instruction cycle operations | 0      | э ·        | -    |            | -            |       | 0 0                         | nMREQ        | The ARM7TDMI controls these instructions exactly as for memory to coprocessor transfers, with the one exception that the <b>nRW</b> line is inverted during the transfer cycle. The cycle timings are show in <i>3 Table 10-17: Coprocessor Data Transfer instruction cycle operations.</i> | Table 10-16: Coprocessor Data Transfer Instruction cycle operations<br>fon cannot occur in THUMB state. |       | 0       | 0       | 0       | 0     | 0    | <u>د</u> | -         | -      | nMREQ        |
|                     | ansfer                                                        | 0      | - C        | 0    | 0          | 0            |       | 0 0                         | SEQ          | nctly as<br>ne is inv<br>oproces                                                                                                                                                                                                                                                            | anster                                                                                                  |       | 0       | -       |         | -     | 0    | 0        | 0         | 0      | SEQ          |
|                     | instruct                                                      | • •    | . د        | -    |            | 0            |       | 1 0                         | порс         | for mem<br>erted du<br>ssor Data                                                                                                                                                                                                                                                            | Instruct                                                                                                |       | -       | 1       | -       | -     | -    | -        | -         | 0      | nOPC         |
|                     | ion cyc                                                       | · •    | о (        | 0    | 0          | 0            |       | - 0                         | nCPI         | ory to co<br>ring the<br>a <i>Transt</i>                                                                                                                                                                                                                                                    | ion cyc                                                                                                 |       | -       | -       | -       | -     | 0    | 0        | 0         | 0      | nCPI         |
|                     | le oper                                                       |        |            |      |            | 0            |       | 1 0                         | CPA          | oproces<br>transfer<br>fer instri                                                                                                                                                                                                                                                           | ie opei                                                                                                 |       | -       | 0       | 0       | 0     | 0    | 0        | 0         | 0      | СРА          |
| 10-15               | ations                                                        | -      | 0.         | 1    | -          | 1            |       | 0                           | СРВ          | ssor<br>· cycle.<br>uction                                                                                                                                                                                                                                                                  | rations                                                                                                 |       | -       | 0       | 0       | 0     | 0    | -        | -         | -      | СРВ          |

| 10 16 |                                                                    |       |        | ready  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.                                                        |                                            | )er                                               |       |        | 66     | 22     |        |      | not       | (m>1)    | m           |       |        |        | ready  | (n>1)  | n re        |       |                 |
|-------|--------------------------------------------------------------------|-------|--------|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|-------|--------|--------|--------|--------|------|-----------|----------|-------------|-------|--------|--------|--------|--------|-------------|-------|-----------------|
| ,<br> |                                                                    |       |        |        | ç            |                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16Cop                                                      | z                                          |                                                   |       |        |        |        |        |      | not ready | <u>.</u> | m registers |       |        |        | đ      | 1)     | n registers |       |                 |
|       |                                                                    | ω     | 2      | 1      | Cycle        |                                                                                                                                                                                                                                                                                                                                                                                                                                  | oroce                                                      | Note                                       | 7                                                 |       | n+m+1  | n+m    | •      | n+1    | 2    | •         | N        | -           |       | n+1    | Þ      | •      | N      | -           |       | Cycle           |
|       |                                                                    | pc+12 | pc+12  | pc+8   | Address      | Here the busy-wait cycles are much as above, but the transfer is limited to one data<br>word, and ARM7TDMI puts the word into the destination register in the third cycle. The<br>third cycle may be merged with the following prefetch cycle into one memory N-cycle<br>as with all ARM7TDMI register load instructions. The cycle timings are shown in<br>DTable 10-18: Coprocessor register transfer (Load from coprocessor). | 10.16Coprocessor Register Transfer (Load from coprocessor) | This operation cannot occur in THUMB state | Table 10-17:                                      | pc+12 | alu+•  | alu+•  | alu+•  | alu    | pc+8 | pc+8      | pc+8     | pc+8        | pc+12 | alu+•  | alu+•  | alu+•  | alu    | pc+8        | pc+12 | Address         |
|       | Tabl                                                               | 2     | 2      | 2      | MAS<br>[1:0] | busy-w<br>d ARM7<br>e may t<br>0-18: C                                                                                                                                                                                                                                                                                                                                                                                           | Regis                                                      | ration c                                   |                                                   |       | N      | N      | N      | N      | N    | 2         | 2        | 2           |       | 2      | N      | 2      | 2      | 2           |       | SS MAS<br>[1:0] |
|       | 'e 10-18                                                           | 0     | 0      | 0      | nRW          | ait cycle<br>TDMI pu<br>Poe merge<br>TDMI re<br><i>oproces</i>                                                                                                                                                                                                                                                                                                                                                                   | ter Tr                                                     | annot oc                                   | Coprocessor Data                                  |       |        | _      | -      | -      | 0    | 0         | 0        | 0           |       | -      | -      | -      |        | 0           |       | oj<br>OJ        |
|       | : Copro                                                            | •     | CPdata | (pc+8) | / Data       | es are m<br>ed with t<br>egister l<br>ssor reg                                                                                                                                                                                                                                                                                                                                                                                   | ansfe                                                      | cur in 1                                   | or Data                                           |       | СР     | СР     | CP     | CP     | •    |           | •        | (pc+8)      |       | СР     | СР     | СР     | СР     | (pc+8)      |       | W Data          |
|       | cesso                                                              | 0     | ata 1  | 8) 1   |              | luch as<br>vord in<br>the foll<br>ister tr                                                                                                                                                                                                                                                                                                                                                                                       | ər (L                                                      | THUM                                       | Trans                                             |       | CPdata | CPdata | CPdata | CPdata |      |           |          |             |       | CPdata | CPdata | CPdata | CPdata |             |       |                 |
|       | Table 10-18: Coprocessor register transfer (Load from coprocessor) | 0     |        | -      | nMREQ        | s above,<br>to the dee<br>lowing pr<br>structions<br>ansfer (L                                                                                                                                                                                                                                                                                                                                                                   | oad fr                                                     | 3 state.                                   | Transfer instruction cycle operations (Continued) |       | 0      | 0      | 0      | 0      | 0    | -         | -        | -           |       | 0      | 0      | 0      | 0      | 0           |       | nMREQ           |
|       | ər trans                                                           | 1     | 0      | 1      | SEQ          | but the<br>stination<br>efetch c<br>s. The c<br>. <i>oad fro</i>                                                                                                                                                                                                                                                                                                                                                                 | om c                                                       |                                            | uction                                            |       | 0      | -      | -      | -      | 0    | 0         | 0        | 0           |       | 0      | -      | -      | -      | 0           |       | SEQ             |
|       | sfer (Loa                                                          | -     | -      | 0      | noPc         | transfer<br>n registe<br>cycle into<br>cycle tim<br><i>m copro</i>                                                                                                                                                                                                                                                                                                                                                               | oproc                                                      |                                            | cycle op                                          |       |        | -      |        |        | -    |           | -        | 0           |       | -      | -      | -      |        | 0           |       | noPC            |
|       | ad from                                                            | -     | -      | 0      | nCPI         | is limite<br>r in the t<br>o one m<br>ings are<br><i>cessor)</i> .                                                                                                                                                                                                                                                                                                                                                               | esso                                                       |                                            | peration                                          |       | -      | -      |        | -      | 0    | 0         | 0        | 0           |       | -      | -      | -      |        | 0           |       | nCPI            |
|       | coproc                                                             | •     | -      | 0      | СРА          | emory h<br>shown                                                                                                                                                                                                                                                                                                                                                                                                                 | Ē                                                          |                                            | ıs (Con                                           |       | -      | 0      | 0      | 0      | 0    | 0         | 0        | 0           |       |        | 0      | 0      | 0      | 0           |       | CPA             |
|       | cesso                                                              | •     | -      | 0      | СРВ          | ie data<br>de. Th<br>V-cycle<br>in                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                            | tinue                                             |       | -      | 0      | 0      | 0      | 0    | -         | -        | -           |       | -      | 0      | 0      | 0      | 0           |       | СРВ             |


| ARM                       |                                            |                                                                   |       |     |          |      | not ready                                            |       |                       | ready                                 |                 |                                                                                                                |            | 10.17                                                     |                                               |                                                                    |       |                     |                         |                         |                               |                                                  | not ready |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                    |
|---------------------------|--------------------------------------------|-------------------------------------------------------------------|-------|-----|----------|------|------------------------------------------------------|-------|-----------------------|---------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|-------|---------------------|-------------------------|-------------------------|-------------------------------|--------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|
| ARM D                     | Note                                       |                                                                   | _     | N+1 | <b>.</b> | N    |                                                      | -     | •                     | v -                                   | Cycle           |                                                                                                                | -          | Copro                                                     | Note                                          |                                                                    |       | n+2                 | n+1                     | Þ                       | •                             | 2                                                | ±y<br>1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | Cycle                                              |
| ARM7TDMI Data Sheet       | This of                                    |                                                                   | pc+12 |     | pc+8     | pc+8 | pc+8                                                 | pc+1z | pc+12                 | pc+8                                  | e Address       | umings<br><i>coproc</i>                                                                                        | As for t   | 10.17Coprocessor Register Transfer (Store to coprocessor) |                                               |                                                                    | pc+12 | pc+12               | pc+12                   | pc+8                    | pc+8                          | pc+8                                             | pc+8      | pc+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              | Address                                            |
| I Data                    | This operation cannot occur in THUMB state | 7                                                                 | _     | N   | 2 N      | 2    | 22                                                   | 1     |                       | 2 2                                   | ss MAS<br>[1:0] | timings are snown in <i>J rabie 10-19: coprocessor register transfer</i> (store to coprocessor) on page 10-17. | the load f | r Regis                                                   | This operation cannot occur in THUMB state    | Tab                                                                |       | 2                   | 2                       | N                       | 2                             | N                                                | 2         | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [1:0]                                                                        | MAS                                                |
| Sheet                     | annot oc                                   | able 10-1                                                         |       | -   | 0 0      | 0    | 0                                                    |       | -                     | - 0                                   | _ nRW           | i page 10                                                                                                      |            | ster Tr                                                   | annot oc                                      | le 10-18:                                                          |       | 0                   | 0                       | 0                       | 0                             | 0                                                | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | nRW                                                |
|                           | cur in TH                                  | 19: Copr                                                          | _     | Rd  | • •      | •    | (pc+8)                                               |       | 2                     | (pc+8)                                | Data            | able 10-1<br>)-17.                                                                                             | ocessor,   | ansfei                                                    | cur in TH                                     | Coproc                                                             |       | •                   | CPdata                  | •                       | •                             | •                                                | (pc+8)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | Data                                               |
|                           | HUMB sta                                   | Table 10-19: Coprocessor register transfer (Store to coprocessor) |       | 0   |          |      | -                                                    | 1     | c                     | 0 -                                   | nMREQ           | 9: Copro                                                                                                       | except th  | r (Stor                                                   | IUMB sta                                      | Table 10-18: Coprocessor register transfer (Load from coprocessor) |       | 0                   | a<br>1                  | -                       | -                             | -                                                | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | nMREQ                                              |
|                           | ë.                                         | register t                                                        |       | 0   | - 0      | 0    | 0                                                    |       | c                     | o -                                   | Q SEQ           | cessor re                                                                                                      | at the las | e to cc                                                   | ē                                             | lister tra                                                         |       | -                   | 0                       | -                       | 0                             | 0                                                | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | iq SEQ                                             |
|                           |                                            | ransfer (                                                         |       |     | <u> </u> |      | 0                                                    |       | ľ                     | - 0                                   | noPC            | gister trar                                                                                                    | t cycle is | proce                                                     |                                               | nsfer (Lo                                                          |       |                     |                         |                         | -                             |                                                  | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | noPC                                               |
|                           |                                            | Store to                                                          |       | -   | 0        | 0    | 0                                                    |       |                       | - 0                                   | nCPI            | ister (Sto                                                                                                     | omitted.   | ssor)                                                     |                                               | ad from                                                            |       |                     |                         | 0                       | 0                             | 0                                                | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | nCPI                                               |
|                           |                                            | coproce                                                           |       |     | 0 0      |      | 0                                                    |       |                       | <u> </u>                              | CPA             | re to                                                                                                          | The cycle  |                                                           |                                               | coproce                                                            |       |                     |                         | 0                       | 0                             | 0                                                | 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | CPA                                                |
| 10-17                     |                                            | ssor)                                                             |       | -   | 0 1      |      | -                                                    |       |                       | - 0                                   | СРВ             |                                                                                                                | U.         |                                                           |                                               | ssor)                                                              |       | •                   | -                       | 0                       | -                             | -                                                | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | СРВ                                                |
|                           |                                            |                                                                   |       |     |          | _    | _                                                    | _     |                       |                                       |                 |                                                                                                                | es         |                                                           | _                                             |                                                                    |       |                     |                         |                         |                               |                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                    |
| 10-18                     |                                            |                                                                   |       |     |          |      |                                                      |       |                       |                                       | en /            | Acc                                                                                                            |            |                                                           |                                               |                                                                    |       | 4                   | 3                       | 2                       | -                             |                                                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | 10.1                                               |
| 10-18                     |                                            |                                                                   |       |     |          |      |                                                      |       |                       |                                       |                 | Acc                                                                                                            | es         |                                                           |                                               |                                                                    | Xn+8  | 4 Xn+4              |                         |                         | 1 pc+2L                       | Cycle Addre                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | 10.18Unde                                          |
| 10-18                     |                                            |                                                                   |       |     |          |      |                                                      |       |                       |                                       | en /            | ACC 10.19Unexecu                                                                                               | es         |                                                           |                                               |                                                                    | Xn+8  | Xn+4                |                         |                         | pc+2L                         | Address                                          |           | this<br>will t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Whe                                                                          | 10.18Undefined                                     |
| 10-18                     |                                            |                                                                   |       |     |          |      |                                                      |       |                       |                                       | en /            | ACC 10.19Unexecu                                                                                               | es         | S I                                                       |                                               |                                                                    | Xn+8  | Xn+4 2 0            | xn 2 0                  | pc+2L i 0               | pc+2L i 0                     | Address MAS nRW<br>[1:0]                         |           | will remain the way in the second sec | When a copre                                                                 | 10.18Undefined Instru                              |
| 10-18                     |                                            |                                                                   |       |     |          |      |                                                      | pc+3L |                       | Ор                                    | en /            | ACC 10.19Unexecu                                                                                               | es         | S                                                         |                                               |                                                                    | Xn+8  | Xn+4 2              | Xn 2                    | pc+2L i 0               | pc+2L i                       | Address MAS nRW Data<br>[1:0]                    |           | will remain HIGH, causi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | When a coprocessor d                                                         | 10.18Undefined Instructions                        |
| 10-18                     |                                            |                                                                   |       |     |          |      | Tab                                                  | ⊢     | -                     | Cycle Address                         | en /            | ACC 10.19Unexecu                                                                                               | es         | S                                                         |                                               | Ta                                                                 | Xn+8  | Xn+4 2 0 (Xn+4)     | 3 Xn 2 0 (Xn)           | pc+2L i 0 - 0           | pc+2L i 0 (pc+2L)             | Address MAS nRW Data<br>[1:0]                    |           | this must include all undefined in<br>will remain HIGH, causing the un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | When a coprocessor detects a c                                               | 10.18Undefined Instructions and C                  |
|                           |                                            |                                                                   |       |     |          |      | Table 10-21:                                         | ⊢     | -                     | Cycle Address MAS(1:0)                | en /            | ACC 10.19Unexecu                                                                                               | es         | S                                                         |                                               | Table 10-20                                                        | Xn+8  | Xn+4 2 0 (Xn+4)     | xn 2 0 (Xn) 0           | pc+2L i 0 - 0 0         | pc+2L i 0 (pc+2L) 1           | Address MAS nRW Data nMREQ SEQ nOPC              |           | this must include all undefined instructions<br>will remain HIGH, causing the undefined in<br>channe in ~ The 40 and 10 and instru-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | When a coprocessor detects a coprocess                                       | 10.18Undefined Instructions and Coproce            |
|                           |                                            |                                                                   |       |     |          |      | Table 10-21: Unexecu                                 | ⊢     | 1 pc+2L i 0           | Cycle Address MAS[1:0] nRW            | en /            | ACC 10.19Unexecu                                                                                               | es         | S                                                         |                                               | Table 10-20: Undefi                                                | Xn+8  | Xn+4 2 0 (Xn+4) 0 1 | Xn 2 0 (Xn) 0 1         | pc+2L i 0 - 0 0 0       | pc+2L i 0 (pc+2L) 1 0         | Address MAS nRW Data nMREQ SEQ nOPC nCPI         |           | this must include all undefined instructions, it must no will remain HGP actualing the undefined instruction will remain HGP actualing the undefined instruction and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | When a coprocessor detects a coprocessor instruc                             | 10.18Undefined Instructions and Coprocessor        |
|                           |                                            |                                                                   |       |     |          |      | Table 10-21: Unexecuted instri                       | ⊢     | 1 pc+2L i             | Cycle Address MAS[1:0] nRW Data       | en /            | ACC 10.19Unexecu                                                                                               | es         | S                                                         | C represents the current mode-dependent value | Table 10-20: Undefined instru                                      | Xn+8  | Xn+4 2 0 (Xn+4) 0 1 | Xn 2 0 (Xn) 0 1         | pc+2L i 0 - 0 0 1       | pc+2L i 0 (pc+2L) 1 0 0       | Address MAS nRW Data nMREQ SEQ NOPC NCPI CPA CPB |           | this must include all undefined instructions, it must not drive <b>C</b><br>will remain HIGH, causing the undefined instruction trap to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | When a coprocessor detects a coprocessor instruction which                   | 10.18 Undefined Instructions and Coprocessor Absen |
|                           |                                            |                                                                   |       |     |          |      | Table 10-21: Unexecuted instruction c)               | ⊢     | 1 pc+2L i 0 (pc+2L) 0 | Cycle Address MAS[1:0] nRW Data nMREQ | en /            | ACC 10.19Unexecu                                                                                               | es         | S                                                         |                                               | Table 10-20: Undefined instruction cy                              | Xn+8  | Xn+4 2 0 (Xn+4) 0 1 | xn 2 0 (xn) 0 1 0 1 1   | pc+2L i 0 - 0 0 0 1 1 1 | pc+2L i 0 (pc+2L) 1 0 0       | Address MAS nRW Data nMREQ SEQ NOPC NCPI CPA CPB |           | this must include all undefined instructions, it must not drive <b>CPA</b> or <b>CF</b><br>will remain HIGH, causing the undefined instruction trap to be taken. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | When a coprocessor detects a coprocessor instruction which it canno          | 10.18Undefined Instructions and Coprocessor Absent |
| 10-18 ARM7TDMI Data Sheet |                                            |                                                                   |       |     |          |      | Table 10-21: Unexecuted instruction cycle operations | ⊢     | 1 pc+2L i 0 (pc+2L)   | Cycle Address MAS[1:0] nRW Data       | en /            | Acc                                                                                                            | es         | S                                                         |                                               | Table 10-20: Undefined instruction cycle operations                | Xn+8  | Xn+4 2 0 (Xn+4) 0 1 | xn 2 0 (xn) 0 1 0 1 1 1 | pc+2L i 0 - 0 0 0 1 1 1 | pc+2L i 0 (pc+2L) 1 0 0 0 1 1 | Address MAS nRW Data nMREQ SEQ nOPC nCPI         |           | this must include all undefined instructions, it must not drive <b>CPB</b> or <b>CPB</b> LOW. These will remain HIGH, causing the undefined instruction trap to be taken. Cycle timings are shown in CT-blo 10 2011 Instruction cardo noncommentarian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | When a coprocessor detects a coprocessor instruction which it cannot perform | 10.18Undefined Instructions and Coprocessor Absent |

| 1       | Cycle    |  |
|---------|----------|--|
| pc+2L   | Address  |  |
| i       | MAS[1:0] |  |
| 0       | nRW      |  |
| (pc+2L) | Data     |  |
| 0       | nMREQ    |  |
| 1       | SEQ      |  |
| 0       | nOPC     |  |



| ARM7TDMI Data Sheet | Abort<br>data 3:12<br>abda 3:12<br>Abort<br>data 3:12<br>Abort node 3:4     B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Open Access Open Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Index-ii            | ARMITICMI<br>BYPASS<br>public instruction 8-11<br>Bypas register 8-12<br>byte (data type) 3.3<br>loading and storing 4-29, 5-3, 5-4, 5-19, 5-20,<br>5-23<br>CDP<br>ARM instruction 8-11<br>CLAMPZ<br>public instruction 8-12<br>CLAMPZ<br>debug state 8-18<br>test state 8-19<br>CMP<br>ARM instruction 4-11, 4-16<br>THUMB instruction 5-3, 5-12<br>with Hi register operand 5-14<br>Concepts<br>of THUMB 1-32<br>condition codes<br>summary of 4-5<br>condition and abort 4-51<br>data transfer 4-53<br>action on data abort 4-54<br>passing instructions to 7-2<br>pipeline following 7-3<br>register transfer 4-57<br>corrocessor interface 7-2-7-4<br>Core state<br>determining 8-19<br>CPSR (Current Processor Status Register) 3-8<br>iorant of 3-8<br>writing 4-18<br>writing 4-18 |

| Jug state machine 8-8<br>LDC<br>ARM instruction 4-53<br>LDM<br>ARM instruction 4-40<br>LDM<br>ARM instruction 4-40<br>LDM<br>ARM instruction 4-40<br>5-26<br>LDRB<br>THUMB instruction 5-3, 5-16, 5-17, 5-1<br>SC<br>LDRB<br>THUMB instruction 5-3, 5-19, 5-23<br>LDRH<br>THUMB instruction 5-3, 5-20, 5-21, 5-<br>LDSH<br>THUMB instruction 5-3, 5-20, 5-21, 5-<br>IDSH<br>THUMB instruction 5-3, 5-20, 5-21, 5-<br>IDSH<br>THUMB instruction 5-3, 5-50, 5-21, 5-<br>IDSN<br>ARM instruction 4-12, 4-13<br>THUMB instruction 5-3, 5-5, 5-11<br>LSR<br>ARM instruction 4-12, 4-13<br>THUMB instruction 5-3, 5-5, 5-11<br>LSR<br>ARM instruction 4-12, 4-13<br>THUMB instruction 5-3, 5-5, 5-11<br>CSC<br>ARM instruction 4-12, 4-13<br>THUMB instruction 5-3, 5-5, 5-11<br>CSC<br>ARM instruction 5-3, 5-5, 5-11 | Decession of the factor of th | ARM7TDMI Data Sheet | <ul> <li>Halkord<br/>loading and storing 4-34<br/>halkword (data type) 3-3, 4-34<br/>loading and storing 5-3, 5-4, 5-20, 5-21, 5-24</li> <li>Hiregister<br/>accessing from THUMB state 3-7<br/>description 3-7<br/>operations on 5-13<br/>HIGHZ<br/>HIGHZ</li> <li>ICEbreaker<br/>Breakpoints 9-6<br/>coupling with Watchpoints 9-11<br/>hardware 9-7<br/>Software 9-7<br/>Communications 9-14<br/>Control register 9-10<br/>disabling 9-13 9-2, 9-4<br/>Watchpoints 9-10<br/>UDCDDE<br/>public instruction 8-10<br/>INTEST</li> <li>IDCODE<br/>public instruction 8-10<br/>INTEST</li> <li>IRQ mode 3-4<br/>definition of 3-12<br/>See also interrupts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Index-ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Index-ii            | 44<br>3, 5-16, 5-17, 5<br>3, 5-19, 5-23<br>3, 5-20, 5-21, (<br>3, 5-5, 5-11<br>3, 5-5<br>format<br>format<br>format<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Open Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | Open Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inte endan<br>description 33<br>single data transfer in 4.29<br>memory transfer cycle<br>non-sequential 6-12<br>MLAL<br>ARM instruction 4-23, 4-25<br>MOV<br>ARM instruction 4-23, 4-25<br>MUL<br>ARM instruction 4-13<br>HUNB instruction 4-18<br>ARM instruction 4-18<br>MUL<br>ARM instruction 4-18<br>MUL<br>ARM instruction 4-13<br>THUMB instruction 4-23, 5-12<br>MULL<br>ARM instruction 4-23, 5-12<br>MULL<br>ARM instruction 4-23, 5-12<br>MULL<br>Operating mode<br>reading 3-9<br>switching 3-2<br>to ARM 3-2, 5-14, 5-15<br>to ARM 3-2, 5-14, 5-15<br>to THUMB 3-2, 4-7<br>THUMB 3-2<br>ARM instruction 4-11<br>THUMB 3-2<br>ARM instruction 4-11<br>THUMB 3-2<br>ARM instruction 4-11<br>THUMB 3-2<br>ARM instruction 4-11<br>THUMB 3-2<br>ARM instruction 4-14<br>THUMB instruction 5-4, 5-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Index-iv            | MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL<br>MILAL |

