
n only on signaling NaNs.

osed in braces ( { and } ).

eptions
Invalid operation
Overflow
Underflow
Inexact result
Division by zero

TAT to transfer flags.
TAT to transfer flags.

ddress in Rn.
ing)
g)

ddress in Rn.
ng)
ing)

 FMDHR.
 FMRDH.
 FMDLR.
FMRDL.
M until all VFP ops complete.
M until all VFP ops complete.
t to FMRX R15, FPSCR

umulative exception bits
3 2 1 0

UFC OFC DZC IOC
ouble precision operands.

ank of registers. 
Vector Floating Point Instruction Set 
Quick Reference Card

Key to Tables
{cond} See Table Condition Field (on ARM side). {E} E : raise exception on any NaN. Without E : raise exceptio
<S/D> S (single precision) or D (double precision). {Z} Round towards zero. Overrides FPSCR rounding mode.
<S/D/X> As above, or X (unspecified precision). <VFPregs> A comma separated list of consecutive VFP registers, encl
Fd, Fn, Fm Sd, Sn, Sm (single precision), or Dd, Dn, Dm (double precision). <VFPsysreg> FPSCR, or FPSID.

Operation Assembler Exceptions Action Notes
Vector arithmetic Multiply FMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fn * Fm

negative FNMUL<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := - (Fn * Fm)
accumulate FMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd + (Fn * Fm)
deduct FNMAC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := Fd - (Fn * Fm) Exc
negate and accumulate FMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := -Fd + (Fn * Fm) IO
negate and deduct FNMSC<S/D>{cond} Fd, Fn, Fm IO, OF, UF, IX Fd := -Fd - (Fn * Fm) OF

Add FADD<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn + Fm UF
Subtract FSUB<S/D>{cond} Fd, Fn, Fm IO, OF, IX Fd := Fn - Fm IX
Divide FDIV<S/D>{cond} Fd, Fn, Fm IO, DZ, OF, UF, IX Fd := Fn / Fm DZ
Copy FCPY<S/D>{cond} Fd, Fm Fd := Fm
Absolute FABS<S/D>{cond} Fd, Fm Fd := abs(Fm)
Negative FNEG<S/D>{cond} Fd, Fm Fd := -Fm
Square root FSQRT<S/D>{cond} Fd, Fm IO, IX Fd := sqrt(Fm)

Scalar compare FCMP{E}<S/D>{cond} Fd, Fm IO Set FPSCR flags on Fd - Fm Use FMS
Compare with zero FCMP{E}Z<S/D>{cond} Fd IO Set FPSCR flags on Fd - 0 Use FMS

Scalar convert Single to double FCVTDS{cond} Dd, Sm IO Dd := convertStoD(Sm)
Double to single FCVTSD{cond} Sd, Dm IO, OF, UF, IX Sd := convertDtoS(Dm)
Unsigned integer to float FUITO<S/D>{cond} Fd, Sm Fd := convertUItoF(Sm)
Signed integer to float FSITO<S/D>{cond} Fd, Sm IX Fd := convertSItoF(Sm)
Float to unsigned integer FTOUI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoUI(Fm)
Float to signed integer FTOSI{Z}<S/D>{cond} Sd, Fm IO, IX Sd := convertFtoSI(Fm)

Save VFP registers FST<S/D>{cond} Fd, [Rn{, #<immed_8*4>}] [address] := Fd
Multiple, unindexed FSTMIA<S/D/X>{cond} Rn, <VFPregs> Saves list of VFP registers, starting at a

increment after FSTMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMEA (empty ascend
decrement before FSTMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FSTMFD (full descendin

Load VFP registers FLD<S/D>{cond} Fd, [Rn{, #<immed_8*4>}] Fd := [address]
Multiple, unindexed FLDMIA<S/D/X>{cond} Rn, <VFPregs> Loads list of VFP registers, starting at a

increment after FLDMIA<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMFD (full descendi
decrement before FLDMDB<S/D/X>{cond} Rn!, <VFPregs> synonym: FLDMEA (empty ascend

Transfer registers ARM to single FMSR{cond} Sn, Rd Sn := Rd
Single to ARM FMRS{cond} Rd, Sn Rd := Sn
ARM to lower half of double FMDLR{cond} Dn, Rd Dn[31:0] := Rd Use with
Lower half of double to ARM FMRDL{cond} Rd, Dn Rd := Dn[31:0] Use with
ARM to upper half of double FMDHR{cond} Dn, Rd Dn[63:32] := Rd Use with
Upper half of double to ARM FMRDH{cond} Rd, Dn Rd := Dn[63:32] Use with 
ARM to VFP system register FMXR{cond} <VFPsysreg>, Rd VFPsysreg := Rd Stalls AR
VFP system register to ARM FMRX{cond} Rd, <VFPsysreg> Rd := VFPsysreg Stalls AR
FPSCR flags to CPSR FMSTAT{cond} CPSR flags := FPSCR flags Equivalen

FPSCR format Rounding (Stride - 1)*3 Vector length - 1 Exception trap enable bits C
31 30 29 28 24 23 22 21 20 18 17 16 12 11 10 9 8 4
N Z C V FZ RMODE STRIDE LEN IXE UFE OFE DZE IOE IXC

FZ: 1 = flush to zero mode. Rounding: 0 = round to nearest, 1 = towards +∞, 2 = towards -∞, 3 = towards zero. (Vector length * Stride) must not exceed 4 for d

If Fd is S0-S7 or D0-D3, operation is Scalar (regardless of vector length). If Fd is S8-S31 or D4-D15, and Fm is S0-S7 or D0-D3, operation is Mixed (Fm scalar, others vector).
If Fd is S8-S31 or D4-D15, and Fm is S8-S31 or D4-D15, operation is Vector. S0-S7 (or D0-D3), S8-S15 (D4-D7), S16-S23 (D8-D11), S24-S31 (D12-D15) each form a circulating b



igned).
aligned).
aligned).

igned).

o Lo, or Hi to Hi.

 shifts 0-31.

 shifts 1-32.

 shifts 1-32.

58 bytes of current instruction.
M side). AL not allowed.
 current instruction.
structions.
f current instruction.

[0] = 0.
ructions.
f current instruction.

coded in instruction.
Thumb Instruction Set 
Quick Reference Card

All Thumb registers are Lo (R0-R7) except where specified. Hi registers are R8-R15.

Operation § Assembler Update 
flags

Action Notes

Move Immediate MOV Rd, #<immed_8> ✓ Rd := immed_8 8-bit immediate value.
Lo to Lo MOV Rd, Rm ✓ Rd := Rm
Hi to Lo, Lo to Hi, Hi to Hi MOV Rd, Rm ✕ Rd := Rm Not Lo to Lo

Arithmetic Add ADD Rd, Rn, #<immed_3> ✓ Rd := Rn + immed_3 3-bit immediate value.
Lo and Lo ADD Rd, Rn, Rm ✓ Rd := Rn + Rm
Hi to Lo, Lo to Hi, Hi to Hi ADD Rd, Rm ✕ Rd := Rd + Rm Not Lo to Lo
immediate ADD Rd, #<immed_8> ✓ Rd := Rd + immed_8 8-bit immediate value.
with carry ADC Rd, Rm ✓ Rd := Rd + Rm + C-bit
value to SP ADD SP, #<immed_7*4> ✕ SP := SP + immed_7 * 4 9-bit immediate value (word-al
form address from SP ADD Rd, SP, #<immed_8*4> ✕ Rd := SP + immed_8 * 4 10-bit immediate value (word-
form address from PC ADD Rd, PC, #<immed_8*4> ✕ Rd := (PC AND 0xFFFFFFFC) + immed_8 * 4 10-bit immediate value (word-

Subtract SUB Rd, Rn, Rm ✓ Rd := Rn - Rm
immediate 3 SUB Rd, Rn, #<immed_3> ✓ Rd := Rn - immed_3 3-bit immediate value.
immediate 8 SUB Rd, #<immed_8> ✓ Rd := Rd - immed_8 8-bit immediate value.
with carry SBC Rd, Rm ✓ Rd := Rd - Rm - NOT C-bit
value from SP SUB SP, #<immed_7*4> ✕ SP := SP - immed_7 * 4 9-bit immediate value (word-al

Negate NEG Rd, Rm ✓ Rd := - Rm
Multiply MUL Rd, Rm ✓ Rd := Rm * Rd
Compare CMP Rn, Rm ✓ update CPSR flags on Rn - Rm Can be Lo to Lo, Lo to Hi, Hi t

negative CMN Rn, Rm ✓ update CPSR flags on Rn + Rm
immediate CMP Rn, #<immed_8> ✓ update CPSR flags on Rn - immed_8 8-bit immediate value.

No operation NOP ✕ R8 := R8 Flags not affected.
Logical AND AND Rd, Rm ✓ Rd := Rd AND Rm

Exclusive OR EOR Rd, Rm ✓ Rd := Rd EOR Rm
OR ORR Rd, Rm ✓ Rd := Rd OR Rm
Bit clear BIC Rd, Rm ✓ Rd := Rd AND NOT Rm
Move NOT MVN Rd, Rm ✓ Rd := NOT Rm
Test bits TST Rn, Rm ✓ update CPSR flags on Rn AND Rm

Shift/rotate Logical shift left LSL Rd, Rm, #<immed_5> ✓ Rd := Rm << immed_5 5-bit immediate shift. Allowed
LSL Rd, Rs ✓ Rd := Rd << Rs

Logical shift right LSR Rd, Rm, #<immed_5> ✓ Rd := Rm >> immed_5 5-bit immediate shift. Allowed
LSR Rd, Rs ✓ Rd := Rd >> Rs

Arithmetic shift right ASR Rd, Rm, #<immed_5> ✓ Rd := Rm ASR immed_5 5-bit immediate shift. Allowed
ASR Rd, Rs ✓ Rd := Rd ASR Rs

Rotate right ROR Rd, Rs ✓ Rd := Rd ROR Rs
Branch Conditional branch B{cond} label R15 := label label must be within -252 to +2

See Table Condition Field (AR
Unconditional branch B label R15 := label label must be within ±2Kb of
Long branch with link BL label R14 := R15 - 2, R15 := label Encoded as two Thumb in

label must be within ±4Mb o
Branch and exchange BX Rm R15 := Rm AND 0xFFFFFFFE Change to ARM state if Rm
Branch with link and exchange 5TBLX label R14 := R15 - 2, R15 := label

Change to ARM
Encoded as two Thumb inst
label must be within ±4Mb o

Branch with link and exchange 5TBLX Rm R14 := R15 - 2, R15 := Rm AND 0xFFFFFFFE
Change to ARM if Rm[0] = 0

Software 
Interrupt

SWI <immed_8> Software interrupt processor exception 8-bit immediate value en

Breakpoint 5T BKPT <immed_8> Prefetch abort or enter debug state
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Notes

_5 * 2][15:0]) Clears bits 31:16
_5][7:0]) Clears bits 31:8

5:0]) Clears bits 31:16
5:0]) Sets bits 31:16 to bit 15
:0]) Clears bits 31:8
:0]) Sets bits 31:8 to bit 7
) + immed_8 * 4]

Always updates base register.

d[15:0] Ignores Rd[31:16]
] Ignores Rd[31:8]

Ignores Rd[31:16]
Ignores Rd[31:8]

Always updates base register.
Full descending stack.

k

 loaded to PC
 state if address[0] = 0
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Thumb Instruction Set 
Quick Reference Card

Operation § Assembler
Load with immediate offset, word LDR Rd, [Rn, #<immed_5*4

halfword LDRH Rd, [Rn, #<immed_5*
byte LDRB Rd, [Rn, #<immed_5>

with register offset, word LDR Rd, [Rn, Rm]
halfword LDRH Rd, [Rn, Rm]
signed halfword LDRSH Rd, [Rn, Rm]
byte LDRB Rd, [Rn, Rm]
signed byte LDRSB Rd, [Rn, Rm]

PC-relative LDR Rd, [PC, #<immed_8*4
SP-relative LDR Rd, [SP, #<immed_8*4
Multiple LDMIA Rn!, <reglist>

Store with immediate offset, word STR Rd, [Rn, #<immed_5*4
halfword STRH Rd, [Rn, #<immed_5*
byte STRB Rd, [Rn, #<immed_5>

with register offset, word STR Rd, [Rn, Rm]
halfword STRH Rd, [Rn, Rm]
byte STRB Rd, [Rn, Rm]

SP-relative, word STR Rd, [SP, #<immed_8*4
Multiple STMIA Rn!, <reglist>

Push/
Pop

Push PUSH <reglist>
Push with link PUSH <reglist, LR>
Pop POP <reglist>
Pop and return POP <reglist, PC>
Pop and return with exchange 5T POP <reglist, PC>
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Action
>] Rd := [Rn + immed_5 * 4]
2>] Rd := ZeroExtend([Rn + immed
] Rd := ZeroExtend([Rn + immed

Rd := [Rn + Rm]
Rd := ZeroExtend([Rn + Rm][1
Rd := SignExtend([Rn + Rm][1
Rd := ZeroExtend([Rn + Rm][7
Rd := SignExtend([Rn + Rm][7

>] Rd := [(PC AND 0xFFFFFFFC
>] Rd := [SP + immed_8 * 4]

Loads list of registers
>] [Rn + immed_5 * 4] := Rd
2>] [Rn + immed_5 * 2][15:0] := R
] [Rn + immed_5][7:0] := Rd[7:0

[Rn + Rm] := Rd
[Rn + Rm][15:0] := Rd[15:0]
[Rn + Rm][7:0] := Rd[7:0]

>] [SP + immed_8 * 4] := Rd
Stores list of registers
Push registers onto stack
Push LR and registers onto stac
Pop registers from stack
Pop registers, branch to address
Pop, branch, and change to ARM
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