
Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DUI 0056B

ARM Developer Suite
Version 1.0.1

Developer Guide

ii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Copyright © 1999 and 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks
of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

Contents
Developer Guide

Preface
About this book .. Preface-viii
Feedback .. Preface-xii

Chapter 1 Introduction
1.1 About the ARM Developer Suite ... 1-2
1.2 Supported platforms .. 1-5
1.3 What is different? .. 1-6

Chapter 2 Assembly Language Programming
2.1 Introduction ... 2-2
2.2 Overview of the ARM architecture .. 2-3
2.3 Structure of assembly language modules ... 2-12
2.4 Conditional execution .. 2-19
2.5 Loading constants into registers ... 2-24
2.6 Loading addresses into registers .. 2-30
2.7 Load and store multiple register instructions ... 2-39
2.8 Using macros .. 2-48
2.9 Describing data structures with MAP and FIELD directives 2-51
2.10 Using frame directives ... 2-66

Chapter 3 Using the Procedure Call Standard

iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.1 About the ARM-Thumb Procedure Call Standard 3-2
3.2 Register roles and names ... 3-4
3.3 The stack .. 3-6
3.4 Parameter passing ... 3-8
3.5 Stack limit checking .. 3-10
3.6 Read-only position independence .. 3-13
3.7 Read-write position independence ... 3-14
3.8 Interworking between ARM and Thumb states ... 3-16
3.9 Floating-point options ... 3-17

Chapter 4 Interworking ARM and Thumb
4.1 About interworking .. 4-2
4.2 Basic assembly language interworking .. 4-5
4.3 C and C++ interworking and veneers ... 4-10
4.4 Assembly language interworking using veneers 4-14

Chapter 5 Mixed Language Programming
5.1 Using the inline assemblers .. 5-2
5.2 Accessing C global variables from assembly code 5-14
5.3 Using C header files from C++ ... 5-15
5.4 Calling between C, C++, and ARM assembly language 5-17

Chapter 6 Handling Processor Exceptions
6.1 Overview ... 6-2
6.2 Entering and leaving an exception ... 6-5
6.3 Installing an exception handler ... 6-9
6.4 SWI handlers .. 6-14
6.5 Interrupt handlers ... 6-22
6.6 Reset handlers ... 6-32
6.7 Undefined Instruction handlers ... 6-33
6.8 Prefetch Abort handler .. 6-34
6.9 Data Abort handler ... 6-35
6.10 Chaining exception handlers .. 6-37
6.11 Handling exceptions on Thumb-capable processors 6-39
6.12 System mode .. 6-44

Chapter 7 Writing Code for ROM
7.1 About writing code for ROM ... 7-2
7.2 Memory map considerations .. 7-3
7.3 Initializing the system ... 7-6
7.4 The reference C example using semihosting ... 7-11
7.5 Loading the ROM image at address 0 .. 7-14
7.6 Using a simple scatter-loading file .. 7-23
7.7 Using both scatter-loading and remapping ... 7-26
7.8 A semihosted application with interrupt handling 7-30
7.9 An embeddable application with interrupt handling 7-35

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. v

7.10 Using scatter loading with memory-mapped I/O 7-37
7.11 Troubleshooting .. 7-44
7.12 Measuring code and data size .. 7-46

vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-vii

Preface

This preface introduces the ARM Developer Suite (ADS) Developer Guide. It contains
the following sections:

• About this book on page Preface-viii

• Feedback on page Preface-xii.

Preface

Preface-viii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

About this book

This book provides tutorial information on writing code targeted at the ARM family of
processors.

Intended audience

This book is written for all developers writing code for the ARM. It assumes that you
are an experienced software developer, and that you are familiar with the ARM
development tools as described in ADS Getting Started.

Using this book

This book is organized into the following chapters:

 Chapter 1 Introduction
Read this chapter for an introduction to the ARM Developer Suite (ADS)
and the differences between ADS and the ARM Software Development
Toolkit version 2.50.

Chapter 2 Assembly Language Programming
Read this chapter for an introduction to the general principles of writing
ARM and Thumb assembly language.

Chapter 3 Using the Procedure Call Standard
Read this chapter for details of how to use the ARM-Thumb Procedure
Call Standard. Using this standard makes it easier to ensure that
separately compiled and assembled modules work together.

Chapter 4 Interworking ARM and Thumb
Read this chapter for details of how to change between ARM state and
Thumb state when writing code for processors that implement the Thumb
instruction set.

Chapter 5 Mixed Language Programming
Read this chapter for details of how to write mixed C, C++, and ARM
assembly language code. It also describes how to use the ARM inline
assemblers from C and C++.

Chapter 6 Handling Processor Exceptions
Read this chapter for details of how to handle the various types of
exception supported by ARM processors.

Preface

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-ix

Chapter 7 Writing Code for ROM
Read this chapter for details on building ROM images. These can be used
in, for example, embedded applications. There are also hints on how to
avoid the most common errors in writing code for ROM.

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

typewriter italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

typewriter bold
Denotes language keywords when used outside example code and ARM
processor signal names.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

Preface

Preface-x Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM publications

This book contains information that is specific to the version of the CodeWarrior IDE
supplied with the ARM Developer Suite (ADS). Refer to the following books in the
ADS document suite for information on other components:

• Getting Started (ARM DUI 0064A)

• ADS Tools Guide (ARM DUI 0067A)

• ADS Debuggers Guide (ARM DUI 0066A)

• ADS Debug Target Guide (ARM DUI 0058A)

• CodeWarrior IDE Guide (ARM DUI 0065A). The CodeWarrior IDE and guide is
available only on Windows.

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DUI 0100). This is supplied in
Dynatext format, and in PDF format in
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM Applications Library Programmer’s Guide (ARM DUI 0081). This is
supplied in Dynatext format, and in PDF format on the CD.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARM ELFA08.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• Angel Debug Protocol. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0052C.pdf

• Angel Debug Protocol Messages. This is supplied in PDF format in
install_directory\PDF\specs\ADP ARM-DUI0053D.pdf

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Preface

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. Preface-xi

Other publications

This book is not intended to be an introduction to the ARM assembly language, C, or
C++ programming languages. It does not try to teach programming in C or C++, and it
is not a reference manual for the C or C++ standards.

The following book gives general information about the ARM architecture:

• ARM System Architecture, Furber, S., (1996). Addison Wesley Longman, Harlow,
England. ISBN 0-201-40352-8.

Preface

Preface-xii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite, and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with this book, please contact your supplier. To help us
provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version number of the tool, including the version number and build number.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the ARM Developer Suite (ADS) and describes the differences
between ADS and the ARM Software Development Toolkit. It contains the following
sections:

• About the ARM Developer Suite on page 1-2

• Supported platforms on page 1-5

• What is different? on page 1-6.

Introduction

1-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

1.1 About the ARM Developer Suite

The ARM Developer Suite (ADS) consists of a suite of applications, together with
supporting documentation and examples, that enable you to write and debug
applications for the ARM family of RISC processors.

You can use ADS to develop, build, and debug C, C++, or ARM assembly language
programs.

1.1.1 Components of the ADS

ADS consists of the following major components:

• Command-line development tools

• GUI development tools on page 1-3

• Utilities on page 1-4

• Supporting software on page 1-4.

Command-line development tools

The following command-line development tools are provided:

armcc The ARM C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI source into
32-bit ARM code.

armcpp This is the ARM C++ compiler. It compiles ISO C++ or EC++ source
into 32-bit ARM code.

tcc The Thumb C compiler. The compiler is tested against the Plum Hall C
Validation Suite for ANSI conformance. It compiles ANSI source into
16-bit Thumb code.

tcpp This is the Thumb C++ compiler. It compiles ISO C++ or EC++ source
into 16-bit Thumb code.

armasm The ARM and Thumb assembler. This assembles both ARM assembly
language and Thumb assembly language source.

armlink The ARM linker. This combines the contents of one or more object files
with selected parts of one or more object libraries to produce an
executable program. The ARM linker creates ELF executable images.

Introduction

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3

armsd The ARM and Thumb symbolic debugger. This enables source level
debugging of programs. You can single-step through C or assembly
language source, set breakpoints and watchpoints, and examine program
variables or memory.

Rogue Wave C++ library
The Rogue Wave library provides an implementation of the standard C++
library as defined in the ISO/IEC 14822:1998 International Standard for
C++. For more information on Rogue Wave, see the online HTML
documentation.

support library
The ARM C libraries provide additional components to enable support
for C++ and to compile code for different architectures and processors.

GUI development tools

The following GUI development tools are provided:

AXD The new ARM Debugger for Windows and UNIX. This provides a full
Windows environment for debugging your C, C++, and assembly
language source.

ADW The old ARM Debugger for Windows. This provides a full Windows
environment for debugging your C, C++, and assembly language source.

ADU The old ARM Debugger for UNIX. This provides a full GUI environment
for debugging your C, C++, and assembly language source.

CodeWarrior IDE
The project manager for Windows. This is a graphical user interface tool
that automates the routine operations of managing source files and
building your software development projects. The CodeWarrior IDE
helps you to construct the environment, and specify the procedures
needed to build your software.

See the ADS Debuggers Guide and the CodeWarrior IDE Guide for more information
on the development tools.

Introduction

1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Utilities

The following utility tools are provided to support the main development tools:

fromELF The ARM image conversion utility. This accepts ELF format input files
and converts them to a variety of output formats, including AIF, plain
binary, Extended Intellec Hex (IHF) format, Motorola 32-bit S record
format, and Intel Hex 32 format.

armprof The ARM profiler displays an execution profile of a program from a
profile data file generated by an ARM debugger.

armar The ARM librarian enables sets of ELF format object files to be collected
together and maintained in libraries. You can pass such a library to the
linker in place of several ELF files.

Supporting software

The following support software is provided to enable you to debug your programs,
either under simulation, or on ARM-based hardware:

ARMulator The ARM core simulator. This provides instruction-accurate simulation
of ARM processors, and enables ARM and Thumb executable programs
to be run on non-native hardware. The ARMulator is integrated with the
ARM debuggers.

Angel The ARM debug monitor. Angel runs on target development hardware
and enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either
ARM state or Thumb state.

Introduction

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-5

1.2 Supported platforms

This release of the ADS is supported on the following platforms:

• Sun workstations running Solaris 2.5.1 or 2.6

• Hewlett Packard workstations running HP-UX 10.20

• IBM-compatible PCs running Windows 95, Windows 98, or Windows NT 4.

The CodeWarrior IDE is supported on IBM-compatible PCs running Windows 95,
Windows 98, and Windows NT 4.

Introduction

1-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

1.3 What is different?

This section describes the major differences between ADS and ARM Software
Development Toolkit version 2.50. The most important changes are:

• C and C++ libraries supplied as binaries with automatic selection of the
appropriate library for the build option. See the ADS Tools Guide.

• The CodeWarrior IDE is used for project management instead of APM. See the
CodeWarrior IDE Guide.

• AXD is a new debugger for Windows or UNIX (ADW and ADU are still
supported). See the ADS Debuggers Guide.

• armar replaces armlib as library manager. See the ADS Tools Guide.

• The preferred and default executable image format is now ELF. Refer to the ELF
description in \PDF\specs for details of the ARM implementation of standard
ELF format.

• The preferred and default debug table format is now DWARF2.

• There are additional command-line options for the compilers, assembler, and
linker. See the ADS Tools Guide.

• The default Procedure Call Standard (PCS) for both the ARM and Thumb
compilers, and the assembler in ADS has changed. See Chapter 3 Using the
Procedure Call Standard and the ADS Tools Guide for more details.

• The default options are different for ADS and ARM Software Development
Toolkit version 2.50. See the ADS Tools Guide.

For a complete list of differences, see the differences chapter in Getting Started and the
referenced manuals.

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-1

Chapter 2
Assembly Language Programming

This chapter provides an introduction to the general principles of writing ARM and
Thumb assembly language. It contains the following sections:

• Introduction on page 2-2

• Overview of the ARM architecture on page 2-3

• Structure of assembly language modules on page 2-12

• Conditional execution on page 2-19

• Loading constants into registers on page 2-24

• Loading addresses into registers on page 2-30

• Load and store multiple register instructions on page 2-39

• Using macros on page 2-48

• Describing data structures with MAP and FIELD directives on page 2-51

• Using frame directives on page 2-66.

Assembly Language Programming

2-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.1 Introduction

This chapter gives a basic, practical understanding of how to write ARM and Thumb
assembly language modules. It also gives information on the facilities provided by the
ARM assembler (armasm). Refer to the assembler chapter in ADS Tools Guide for
further information.

This chapter does not give specific information about the inline assemblers in the ARM
C and C++ compilers (see Chapter 5 Mixed Language Programming).

This chapter does not provide a detailed description of either the ARM instruction set
or the Thumb instruction set. This information can be found in the ARM Architecture
Reference Manual.

2.1.1 Code examples

There are a number of code examples in this chapter. Many of them are supplied in the
examples\asm directory of the ADS.

Follow these steps to build, link, and execute an assembly language file:

1. Type armasm -g filename.s at the command prompt to assemble the file and
generate debug tables.

2. Type armlink filename.o -o filename to link the object file and generate
and ELF executable image.

3. Type armsd filename to load the image file into the debugger.

4. Type go at the armsd: prompt to execute it.

5. Type quit at the armsd: prompt to return to the command line.

To see how the assembler converts the source code, enter:

 fromelf filename.o -text/c

or run the module in AXD, ADW, or ADU with interleaving on.

See:

• ADS Debuggers Guide for details on armsd, AXD, ADW and ADU.

• ADS Tools Guide for details on armlink and fromelf.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-3

2.2 Overview of the ARM architecture

This section gives a brief overview of the ARM architecture. Refer to ARM Architecture
Reference Manual for a detailed description of the points described here.

The ARM is typical of RISC processors in that it implements a load/store architecture.
Only load and store instructions can access memory. Data processing instructions
operate on register contents only.

2.2.1 Architecture versions

The information and examples in this book assume that you are using a processor that
implements ARM architecture v3 or above. Refer to ARM Architecture Reference
Manual for a summary of the different architecture versions.

All these processors have a 32-bit addressing range.

2.2.2 ARM and Thumb state

Versions 4T, 4TxM, and 5T of the ARM architecture define a 16-bit instruction set
called the Thumb instruction set. The functionality of the Thumb instruction set is a
subset of the functionality of the 32-bit ARM instruction set. Refer to Thumb instruction
set overview on page 2-9 for more information.

A processor that is executing Thumb instructions is operating in Thumb state. A
processor that is executing ARM instructions is operating in ARM state.

A processor in ARM state cannot execute Thumb instructions, and a processor in
Thumb state cannot execute ARM instructions. You must ensure that the processor
never receives instructions of the wrong instruction set for the current state.

Each instruction set includes instructions to change processor state.

You must also switch the assembler mode to produce the correct opcodes using CODE16
and CODE32 directives. Refer to the assembler chapter in ADS Tools Guide for details.

ARM processors always start in ARM state.

Assembly Language Programming

2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.2.3 Processor mode

The ARM supports up to seven processor modes, depending on the architecture version.
These are:

• User

• FIQ - Fast Interrupt Request

• IRQ - Interrupt Request

• Supervisor

• Abort

• Undefined

• System (ARM architecture v4 and above).

Applications that require task protection usually execute in User mode. Some
embedded applications may run entirely in Supervisor or System modes.

The other modes are entered to service exceptions, or to access privileged resources.
Refer to Chapter 6 Handling Processor Exceptions, and the ARM Architecture
Reference Manual for more information.

2.2.4 Registers

The ARM processor has 37 registers. The registers are arranged in partially overlapping
banks. There is a different register bank for each processor mode. The banked registers
give rapid context switching for dealing with processor exceptions and privileged
operations. Refer to the ARM Architecture Reference Manual for a detailed description
of how registers are banked.

The following registers are available in ARM architecture v3 and above:

• 30 general-purpose, 32-bit registers

• The program counter (pc) on page 2-5

• The Current Program Status Register (CPSR) on page 2-5

• Five Saved Program Status Registers (SPSRs) on page 2-5.

30 general-purpose, 32-bit registers

Fifteen general-purpose registers are visible at any one time, depending on the current
processor mode, as r0, r1, ... ,r13, r14.

By convention in ARM assembly language r13 is used as a stack pointer (sp). The C
and C++ compilers always use r13 as the stack pointer.

In User mode, r14 is used as a link register (lr) to store the return address when a
subroutine call is made. It can also be used as a general-purpose register if the return
address is stored on the stack.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-5

In the exception handling modes, r14 holds the return address for the exception, or a
subroutine return address if subroutine calls are executed within an exception. r14 can
be used as a general-purpose register if the return address is stored on the stack.

The program counter (pc)

The program counter is accessed as r15 (or pc). It is incremented by one word (four
bytes) for each instruction in ARM state, or by two bytes in Thumb state. Branch
instructions load the destination address into the program counter. You can also load the
program counter directly using data operation instructions. For example, to return from
a subroutine, you can copy the link register into the program counter using:

 MOV pc,lr

The Current Program Status Register (CPSR)

The CPSR holds:

• copies of the Arithmetic Logic Unit (ALU) status flags

• the current processor mode

• interrupt disable flags.

On Thumb-capable processors, the CPSR also holds the current processor state (ARM
or Thumb).

The ALU status flags in the CPSR are used to determine whether or not conditional
instructions are executed. Refer to Conditional execution on page 2-19 for more
information.

Five Saved Program Status Registers (SPSRs)

The SPSRs are used to store the CPSR when an exception is taken. One SPSR is
accessible in each of the exception-handling modes. User mode and System mode do
not have an SPSR because they are not exception handling modes. Refer to Chapter 6
Handling Processor Exceptions, and the ARM Architecture Reference Manual for more
information.

Assembly Language Programming

2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.2.5 ARM instruction set overview

All ARM instructions are 32 bits long. Instructions are stored word-aligned, so the least
significant two bits of instruction addresses are always zero in ARM state. Some
instructions use the least significant bit to determine whether the code being branched
to is Thumb code or ARM code.

See the ARM Architecture Reference Manual for detailed information on the syntax of
the ARM instruction set.

ARM instructions can be classified into a number of functional groups:

• Branch instructions

• Data processing instructions

• Single register load and store instructions

• Multiple register load and store instructions on page 2-7

• Status register access instructions on page 2-7

• Semaphore instructions on page 2-7

• Coprocessor instructions on page 2-7.

Branch instructions

These instructions are used to:

• branch backwards to form loops

• branch forward in conditional structures

• branch to subroutines

• change the processor from ARM state to Thumb state.

Data processing instructions

These instructions operate on the general-purpose registers. They perform operations
such as addition, subtraction, or bitwise logic on the contents of two registers and place
the result in a third register. Long multiply instructions (unavailable in some
architectures) give a 64-bit result in two registers.

Single register load and store instructions

These instructions load or store the value of a single register from or to memory. They
can load or store a 32-bit word or an 8-bit unsigned byte. In ARM architecture v4 and
above they can also load or store a 16-bit unsigned halfword, or load and sign extend a
16-bit halfword or an 8-bit byte.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-7

Multiple register load and store instructions

These instructions load or store any subset of the general-purpose registers from or to
memory. Refer to Load and store multiple register instructions on page 2-39 for a
detailed description of these instructions.

Status register access instructions

These instructions move the contents of the CPSR or an SPSR to or from a
general-purpose register.

Semaphore instructions

These instructions load and alter a memory semaphore.

Coprocessor instructions

These instructions support a general way to extend the ARM architecture.

Assembly Language Programming

2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.2.6 ARM instruction capabilities

The following general points apply to ARM instructions:

• Conditional execution

• Register access

• Access to the inline barrel shifter.

Conditional execution

All ARM instructions can be executed conditionally on the value of the ALU status
flags in the CPSR. You do not need to use branches to skip conditional instructions,
although it may be better to do so when a series of instructions depend on the same
condition.

You can specify whether a data processing instruction sets the state of these flags or not.
You can use the flags set by one instruction to control execution of other instructions
even if there are many instructions in between.

Refer to Conditional execution on page 2-19 for a detailed description.

Register access

In ARM state, all instructions can access r0-r14, and most also allow access to r15 (pc).
The MRS and MSR instructions can move the contents of the CPSR and SPSRs to a
general-purpose register, where they can be manipulated by normal data processing
operations. Refer to the ARM Architecture Reference Manual for more information.

Access to the inline barrel shifter

The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and
rotate operations. The second operand to all ARM data-processing and single register
data-transfer instructions can be shifted, before the data-processing or data-transfer is
executed, as part of the instruction. This supports, but is not limited to:

• scaled addressing

• multiplication by a constant

• constructing constants.

Refer to Loading constants into registers on page 2-24 for more information on using
the barrel-shifter to generate constants.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-9

2.2.7 Thumb instruction set overview

The functionality of the Thumb instruction set, with one exception, is a subset of the
functionality of the ARM instruction set. The instruction set is optimized for production
by a C or C++ compiler.

All Thumb instructions are 16 bits long and are stored halfword-aligned in memory.
Because of this, the least significant bit of the address of an instruction is always zero
in Thumb state. Some instructions use the least significant bit to determine whether the
code being branched to is Thumb code or ARM code.

All Thumb data processing instructions:

• operate on full 32-bit values in registers

• use full 32-bit addresses for data access and for instruction fetches.

Refer to the ARM Architecture Reference Manual for detailed information on the syntax
of the Thumb instruction set, and how Thumb instructions differ from their ARM
counterparts.

In general, the Thumb instruction set differs from the ARM instruction set in the
following ways:

• Branch instructions

• Data processing instructions on page 2-10

• Single register load and store instructions on page 2-10

• Multiple register load and store instructions on page 2-10.

There are no Thumb coprocessor instructions, no Thumb semaphore instructions, and
no Thumb instructions to access the CPSR or SPSR.

Branch instructions

These instructions are used to:

• branch backwards to form loops

• branch forward in conditional structures

• branch to subroutines

• change the processor from Thumb state to ARM state.

Program-relative branches, particularly conditional branches, are more limited in range
than in ARM code, and branches to subroutines can only be unconditional.

Assembly Language Programming

2-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Data processing instructions

These operate on the general-purpose registers. The result of the operation is put in one
of the operand registers, not in a third register. There are fewer data processing
operations available than in ARM state. They have limited access to registers r8 to r15.

The ALU status flags in the CPSR are always updated by these instructions except when
MOV or ADD instructions access registers r8 to r15. Thumb data processing instructions
that access registers r8 to r15 cannot update the flags.

Single register load and store instructions

These instructions load or store the value of a single low register from or to memory. In
Thumb state they cannot access registers r8 to r15.

Multiple register load and store instructions

These instructions load from memory or store to memory any subset of the registers in
the range r0 to r7.

In addition, the PUSH and POP instructions implement a full descending stack using the
stack pointer (r13) as the base. PUSH can stack the link register and POP can load the
program counter.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-11

2.2.8 Thumb instruction capabilities

The following general points apply to Thumb instructions:

• Conditional execution

• Register access

• Access to the barrel shifter.

Conditional execution

The conditional branch instruction is the only Thumb instruction that can be executed
conditionally on the value of the ALU status flags in the CPSR. All data processing
instructions update these flags, except when one or more high registers are specified as
operands to the MOV or ADD instructions. In these cases the flags cannot be updated.

You cannot have any data processing instructions between an instruction that sets a
condition and a conditional branch that depends on it. Use a conditional branch over any
instruction that you wish to be conditional.

Register access

In Thumb state, most instructions can access only r0-r7. These are referred to as the low
registers.

Registers r8 to r15 are limited access registers. In Thumb state these are referred to as
high registers. They can be used, for example, as fast temporary storage.

Refer to the ARM Architecture Reference Manual for a complete list of the Thumb data
processing instructions that can access the high registers.

Access to the barrel shifter

In Thumb state you can use the barrel shifter only in a separate operation, using an LSL,
LSR, ASR, or ROR instruction.

Assembly Language Programming

2-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.3 Structure of assembly language modules

Assembly language is the language that the ARM assembler (armasm) parses and
assembles to produce object code. This can be:

• ARM assembly language

• Thumb assembly language

• a mixture of both.

2.3.1 Layout of assembly language source files

The general form of source lines in assembly language is:

{label} {instruction|directive|pseudo-instruction} {;comment}

Note

Instructions, pseudo-instructions, and directives must be preceded by white space, such
as a space or a tab, even if there is no label.

All three sections of the source line are optional. You can use blank lines to make your
code more readable.

Case rules

Instruction mnemonics, directives, and symbolic register names can be written in
uppercase or lowercase, but not mixed.

Line length

To make source files easier to read, a long line of source can be split onto several lines
by placing a backslash character (\) at the end of the line. The backslash must not be
followed by any other characters (including spaces and tabs). The backslash/end-of-line
sequence is treated by the assembler as white space.

Note

Do not use the backslash/end-of-line sequence within quoted strings.

The exact limit on the length of lines, including any extensions using backslashes,
depends on the contents of the line, but is generally between 128 and 255 characters.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-13

Labels

Labels are symbols that represent addresses. The address given by a label is calculated
during assembly.

The assembler calculates the address of a label relative to the origin of the section where
the label is defined. A reference to a label within the same section can use the program
counter plus or minus an offset. This is called program-relative addressing.

Labels can be defined in a map. See Describing data structures with MAP and FIELD
directives on page 2-51. You can place the origin of the map in a specified register at
runtime, and references to the label use the specified register plus an offset. This is
called register-relative addressing.

Addresses of labels in other sections are calculated at link time, when the linker has
allocated specific locations in memory for each section.

Local labels

Local labels are a subclass of label. A local label begins with a number in the range
0-99. Unlike other labels, a local label can be defined many times. Local labels are
useful when you are generating labels with a macro. When the assembler finds a
reference to a local label, it links it to a nearby instance of the local label.

The scope of local labels is limited by the AREA directive. You can use the ROUT
directive to limit the scope more tightly.

Refer to the assembler chapter in ADS Tools Guide for details of:

• the syntax of local label declarations

• how the assembler associates references to local labels with their labels.

Comments

The first semicolon on a line marks the beginning of a comment, except where the
semicolon appears inside a string constant. The end of the line is the end of the
comment. A comment alone is a valid line. All comments are ignored by the assembler.

Assembly Language Programming

2-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Constants

Numbers Numeric constants are accepted in three forms:

• Decimal, for example, 123

• Hexadecimal, for example, 0x7b

• n_xxx where:

n is a base between 2 and 9

xxx is a number in that base.

Boolean The Boolean constants TRUE and FALSE must be written as {TRUE} and
{FALSE}.

Characters Character constants consist of opening and closing single quotes,
enclosing either a single character or an escaped character, using the
standard C escape characters.

Strings Strings consist of opening and closing double quotes, enclosing
characters and spaces. If double quotes or dollar signs are used within a
string as literal text characters, they must be represented by a pair of the
appropriate character. For example, you must use $$ if you require a
single $ in the string. The standard C escape sequences can be used
within string constants.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-15

2.3.2 An example ARM assembly language module

Example 2-1 illustrates some of the core constituents of an assembly language module.
The example is written in ARM assembly language. It is supplied as armex.s in the
examples\asm subdirectory of ADS. Refer to Code examples on page 2-2 for
instructions on how to assemble, link, and execute the example.

The constituent parts of this example are described in more detail in the following
sections.

Example 2-1

 AREA ARMex, CODE, READONLY
 ; Name this block of code ARMex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 END ; Mark end of file

The AREA directive

ELF sections are independent, named, indivisible sequences of code or data. A single
code section is the minimum required to produce an application.

The output of an assembly or compilation usually consists of two or more sections:

• a code section that is usually a read-only section

• a data section that is usually a read-write section.

The linker places each section in a program image according to section placement rules.
Sections that are adjacent in source files are not necessarily adjacent in the application
image. Refer to the linker chapter in ADS Tools Guide for more information on how the
linker places sections.

In an ARM assembly language source file, the start of a section is marked by the AREA
directive. This directive names the section and sets its attributes. The attributes are
placed after the name, separated by commas. Refer to the assembler chapter in ADS
Tools Guide for a detailed description of the syntax of the AREA directive.

Assembly Language Programming

2-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

You can choose any name for your sections. However, names starting with any
nonalphabetic character must be enclosed in bars, or an AREA name missing error is
generated. For example: |1_DataArea|.

Example 2-1 defines a single section called ARMex that contains code and is marked as
being READONLY.

The ENTRY directive

The ENTRY directive marks the first instruction to be executed. In applications
containing C code, an entry point is also contained within the C library initialization
code.

Application execution

The application code in Example 2-1 begins executing at the label start, where it
loads the decimal values 10 and 3 into registers r0 and r1. These registers are added
together and the result placed in r0.

Application termination

After executing the main code, the application terminates by returning control to the
debugger. This is done using the ARM semihosting SWI (by default this is 0x123456),
with the following parameters:

• r0 equal to angel_SWIreason_ReportException (by default 0x18)

• r1 equal to ADP_Stopped_ApplicationExit (by default 0x20026)

Refer to the Angel chapter in ADS Debug Target Guide for additional information.

The END directive

This directive instructs the assembler to stop processing this source file. Every
assembly language source module must finish with an END directive on a line by itself.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-17

2.3.3 Calling subroutines

To call subroutines in assembly language, use a branch and link instruction. The syntax
is:

 BL destination

where destination is usually the label on the first instruction of the subroutine.

destination could alternatively be a program-relative or register-relative expression.
Refer to the assembler chapter in ADS Tools Guide for further information.

The BL instruction:

• places the return address in the link register (lr)

• sets pc to the address of the subroutine.

After the subroutine code is executed you can use a MOV pc,lr instruction to return.
By convention, registers r0-r3 are used to pass parameters to subroutines, and to pass
results back to the callers.

Note

Calls between separately assembled or compiled modules must comply with the
restrictions and conventions defined by the procedure call standard. Refer to Chapter 3
Using the Procedure Call Standard for more information.

Example 2-2 shows a subroutine that adds the values of its two parameters and returns
a result in r0. It is supplied as subrout.s in the examples\asm subdirectory of the
ADS. Refer to Code examples on page 2-2 for instructions on how to assemble, link,
and execute the example.

Example 2-2

 AREA subrout, CODE, READONLY
 ; Name this block of code
 ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

doadd ADD r0, r0, r1 ; Subroutine code
 MOV pc, lr ; Return from subroutine
 END ; Mark end of file

Assembly Language Programming

2-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.3.4 An example Thumb assembly language module

Example 2-3 illustrates some of the core constituents of a Thumb assembly language
module. It is based on subrout.s. It is supplied as thumbsub.s in the
examples\asm subdirectory of the ADS. Refer to Code examples on page 2-2 for
instructions on how to assemble, link, and execute the example.

Example 2-3

 AREA ThumbSub, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 CODE32 ; Subsequent instructions are ARM
header ADR r0, start + 1 ; Processor starts in ARM state,
 BX r0 ; so small ARM code header used
 ; to call Thumb main program
 CODE16 ; Subsequent instructions are Thumb
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0xAB ; Thumb semihosting SWI
doadd
 ADD r0, r0, r1 ; Subroutine code
 MOV pc, lr ; Return from subroutine
 END ; Mark end of file

CODE32 and CODE16 directives

These directives instruct the assembler to assemble subsequent instructions as ARM
(CODE32) or Thumb (CODE16) instructions. They do not assemble to an instruction to
change the processor state at runtime. They only change the assembler state.

The ARM assembler, armasm, starts in ARM mode by default. You can use the -16
option in the command line if you want it to start in Thumb mode.

BX instruction

This instruction is a branch that can change processor state at runtime. The least
significant bit of the target address specifies whether it is an ARM instruction (clear) or
a Thumb instruction (set). In this example, this bit is set in the ADR pseudo-instruction.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-19

2.4 Conditional execution

In ARM state, each data processing instruction has an option to update ALU status flags
in the Current Program Status Register (CPSR) according to the result of the operation.

Add an S suffix to an ARM instruction to make it update the ALU status flags in the
CPSR.

Do not use the S suffix with CMP, CMN, TST, or TEQ. These comparison instructions
always update the flags. This is their only effect.

In Thumb state, there is no option. All data processing instructions update the ALU
status flags in the CPSR, except when one or more high registers are used in MOV and
ADD instructions. MOV and ADD cannot update the status flags in these cases.

Every ARM instruction can be executed conditionally on the state of the ALU status
flags in the CPSR. Refer to Table 2-1 on page 2-20 for a list of the suffixes to add to
instructions to make them conditional.

In ARM state, you can:

• update the ALU status flags in the CPSR on the result of a data operation

• execute several other data operations without updating the flags

• execute following instructions or not, according to the state of the flags updated
in the first operation.

In Thumb state you cannot execute data operations without updating the flags, and
conditional execution can only be achieved using conditional branches. The only
Thumb instruction that can be conditional is the conditional branch instruction (B). The
suffixes for this instruction are the same as in ARM state. The branch with link (BL) or
branch and exchange instruction set (BX) instructions cannot be conditional.

2.4.1 The ALU status flags

The CPSR contains the following ALU status flags:

N Set when the result of the operation was Negative.

Z Set when the result of the operation was Zero.

C Set when the operation resulted in a Carry.

V Set when the operation caused oVerflow.

Q Sticky flag. (ARM architecture v5E only.)

A carry occurs if the result of an add, subtract, or compare is greater than or equal to
232, or as the result of an inline barrel shifter operation in a move or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to
231, or less than –231.

Assembly Language Programming

2-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.4.2 Execution conditions

The relation of condition code suffixes to the N, Z, C and V flags is shown in Table 2-1.

Examples

 ADD r0, r1, r2 ; r0 = r1 + r2, don’t update flags

 ADDS r0, r1, r2 ; r0 = r1 + r2 and update flags

 ADDEQS r0, r1, r2 ; If Z flag set then r0 = r1 + r2,
 ; and update flags

 CMP r0, r1 ; update flags based on r0-r1.

 Table 2-1 Condition code suffixes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS/HS C set Higher or same (unsigned >=)

CC/LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear and Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-21

2.4.3 Using conditional execution in ARM state

You can use conditional execution of ARM instructions to reduce the number of branch
instructions in your code. This improves code density.

Branch instructions are also expensive in processor cycles. On ARM processors without
branch prediction hardware, it typically takes three processor cycles to refill the
processor pipeline each time a branch is taken.

Some ARM processors, for example ARM10 and StrongARM, have branch prediction
hardware. In systems using these processors, the pipeline only needs to be flushed and
refilled when there is a misprediction.

Example 2-4: Euclid’s Greatest Common Divisor

This example uses two implementations of Euclid’s Greatest Common Divisor (gcd)
algorithm. It demonstrates how you can use conditional execution to improve code
density and execution speed. The detailed analysis of execution speed only applies to
an ARM7 processor. The code density calculations apply to all ARM processors.

In C the algorithm can be expressed as:

int gcd(int a, int b)
{
 while (a != b) do
 {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

You can implement the gcd function with conditional execution of branches only, in the
following way:

gcd CMP r0, r1
 BEQ end
 BLT less
 SUB r0, r0, r1
 B gcd
less
 SUB r1, r1, r0
 B gcd
end

Assembly Language Programming

2-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Because of the number of branches, the code is seven instructions long. Every time a
branch is taken, the processor must refill the pipeline and continue from the new
location. The other instructions and non-executed branches use a single cycle each.

By using the conditional execution feature of the ARM instruction set, you can
implement the gcd function in only four instructions:

gcd
 CMP r0, r1
 SUBGT r0, r0, r1
 SUBLT r1, r1, r0
 BNE gcd

In addition to improving code size, this code executes faster in most cases. Table 2-2
and Table 2-3 show the number of cycles used by each implementation for the case
where r0 equals 1 and r1 equals 2. In this case, replacing branches with conditional
execution of all instructions saves three cycles.

The conditional version of the code executes in the same number of cycles for any case
where r0 equals r1. In all other cases, the conditional version of the code executes in
fewer cycles.

 Table 2-2 Conditional branches only

r0: a r1: b Instruction Cycles (ARM7)

1 2 CMP r0, r1 1

1 2 BEQ end 1 (not executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-23

Converting to Thumb

Because B is the only Thumb instruction that can be executed conditionally, the gcd
algorithm in Example 2-4 must be written with conditional branches in Thumb code.

Like the ARM conditional branch implementation, the Thumb code requires seven
instructions. However, because Thumb instructions are only 16 bits long, the overall
code size is 14 bytes, compared to 16 bytes for the smaller ARM implementation.

In addition, on a system using 16-bit memory the Thumb version runs faster than the
second ARM implementation because only one memory access is required for each
Thumb instruction, whereas each ARM instruction requires two fetches.

Branch prediction and caches

To optimize code for execution speed you need detailed knowledge of the instruction
timings, branch prediction logic, and cache behavior of your target system. Refer to the
ARM Architecture Reference Manual and data sheets for individual processors for full
information.

 Table 2-3 All instructions conditional

r0: a r1: b Instruction Cycles (ARM7)

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1

1 1 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1 (not executed)

1 1 BNE gcd 1 (not executed)

Total = 10

Assembly Language Programming

2-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.5 Loading constants into registers

You cannot load an arbitrary 32-bit immediate constant into a register in a single
instruction without performing a data load from memory. This is because ARM
instructions are only 32 bits long.

Thumb instructions have the same limitation.

You can load any 32-bit value into a register with a data load, but there are more direct
and efficient ways to load many commonly-used constants.

The following sections describe:

• how to use the MOV and MVN instructions to load a range of immediate values, see
Direct loading with MOV and MVN on page 2-25

• how to use the LDR pseudo-instruction to load any 32-bit constant, see Loading
with LDR Rd, =const on page 2-27

• how to load floating-point constants, see Loading floating-point constants on
page 2-29.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-25

2.5.1 Direct loading with MOV and MVN

In ARM state, you can use the MOV and MVN instructions to load a range of 8-bit constant
values directly into a register:

• MOV loads any 8-bit constant value, giving a range of 0x0 to 0xff (0-255)

• MVN loads the bitwise complement of these values, giving a range of 0xffffff00
to 0xffffffff.

In addition, you can use either MOV or MVN in conjunction with the barrel shifter to
generate a wider range of constants. The barrel shifter can right-rotate 8-bit values
through any even number of positions from 2 to 30.

You can use MOV to load values that follow the pattern shown in Table 2-4, in a single
instruction. Use MVN to load the bitwise complement of these values. Right-rotates by
2, 4, or 6 bits produce bit patterns with a few bits at each end of a 32-bit word.

 Table 2-4 ARM-state immediate constants

Decimal values Equivalent hexadecimal
Step
between
values

Rotate

0-255 0-0xff 1 No rotate

256, 260, 264, ... , 1020 0x100-0x3fc 4 Right by 30 bits

1024, 1040, 1056, ... , 4080 0x400-0xff0 16 Right by 28 bits

4096, 4160, 4224, ... , 16320 0x1000-0x3fc0 64 Right by 26 bits

...

64 x 224, 65 x 224, ... , 255 x 224 0x40000000-0xff000000 224 Right by 8 bits

4 x 224, ... , 252 x 224 + 3 0x04000000-0xfc000003 226, 1 Right by 6 bits

16 x 224, ... , 240 x 224 + 15 0x10000000-0xf000000f 228, 1 Right by 4 bits

64 x 224, ... , 192 x 224 + 63 0x40000000-0xc000003f 230, 1 Right by 2 bits

Assembly Language Programming

2-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Using MOV and MVN

You do not need to work out how to load a constant using MOV or MVN. The assembler
attempts to convert any constant value to an acceptable form. This means that you can
use MOV and MVN in two ways:

• Convert the value to an 8-bit constant, followed by the right-rotate value. For
example:

 MOV r0, #0xFF,ROR 30 ; r0 = 1020

• Allow the assembler to do the work of converting the value. If you specify the
constant to be loaded, the assembler converts it to an acceptable form if possible.
For example:

 MOV r0, #0x3FC ; r0 = 1020

If the constant cannot be expressed as a right-rotated 8-bit value or its bitwise
complement, the assembler reports the error, Immediate n out of range for
this operation.

Table 2-5 gives an example of how the assembler converts constants. The left-hand
column lists the ARM instructions input to the assembler. The right-hand column shows
the instruction generated by the assembler.

 Table 2-5 Assembler-generated constants

Input instruction Assembled equivalent

MOV r0, #0 MOV r0, #0

MOV r1, #0xFF000000 MOV r1, #0xFF, 8

MOV r2, #0xFFFFFFFF MVN r2, #0

MVN r3, #1 MVN r3, #1

MOV r4, #0xFC000003 MOV r4, #0xFF, 6

MOV r5, #0x03FFFFFC MVN r5, #0xFF, 6

MOV r6, #0x55555555 Error (cannot be constructed)

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-27

Direct loading with MOV in Thumb state

In Thumb state you can use the MOV instruction to load constants in the range 0-255.
You cannot generate constants outside this range because:

• The Thumb MOV instruction does not provide inline access to the barrel shifter.
Constants cannot be right-rotated as they can in ARM state.

• The Thumb MVN instruction can act only on registers and not on constant values.
Bitwise complements cannot be directly loaded as they can in ARM state.

If you attempt to use a MOV instruction with a value outside the range 0-255, the
assembler reports the error, Immediate n out of range for this operation.

2.5.2 Loading with LDR Rd, =const

The LDR Rd,=const pseudo-instruction can construct any 32-bit numeric constant in
a single instruction. Use this pseudo-instruction to generate constants that are out of
range of the MOV and MVN instructions.

The LDR pseudo-instruction generates the most efficient code for a specific constant:

• If the constant can be constructed with a MOV or MVN instruction, the assembler
generates the appropriate instruction.

• If the constant cannot be constructed with a MOV or MVN instruction, the assembler:

— places the value in a literal pool (a portion of memory embedded in the code
to hold constant values)

— generates an LDR instruction with a program-relative address that reads the
constant from the literal pool.

For example:

 LDR rn, [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that there is a literal pool within range of the LDR instruction
generated by the assembler. Refer to Placing literal pools for more information.

Refer to the assembler chapter in ADS Tools Guide for a description of the syntax of the
LDR pseudo-instruction.

Placing literal pools

The assembler places a literal pool at the end of each section. These are defined by the
AREA directive at the start of the following section, or by the END directive at the end of
the assembly. The END directives at the ends of included files do not signal the end of
sections.

Assembly Language Programming

2-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

In large sections the default literal pool may be out of range of one or more LDR
instructions. The offset from the pc to the constant must be:

• less than 4KB in ARM state, but may be in either direction

• forward and less than 1KB in Thumb state.

When an LDR Rd,=const pseudo-instruction requires the constant to be placed in a
literal pool, the assembler:

• Checks if the constant is available and addressable in any previous literal pools.
If so, it addresses the existing constant.

• Attempts to place the constant in the next literal pool if it is not already available.

If the next literal pool is out of range, the assembler generates an error message. In this
case you must use the LTORG directive to place an additional literal pool in the code.
Place the LTORG directive after the failed LDR pseudo-instruction, and within 4KB
(ARM) or 1KB (Thumb). Refer to the assembler chapter in ADS Tools Guide for a
detailed description of the LTORG directive.

You must place literal pools where the processor does not attempt to execute them as
instructions. Place them after unconditional branch instructions, or after the return
instruction at the end of a subroutine.

Example 2-5 shows how this works in practice. It is supplied as loadcon.s in the
examples\asm subdirectory of the ADS. The instructions listed as comments are the
ARM instructions that are generated by the assembler. Refer to Code examples on
page 2-2 for instructions on how to assemble, link, and execute the example.

Example 2-5

 AREA Loadcon, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
func1
 LDR r0, =42 ; => MOV R0, #42
 LDR r1, =0x55555555 ; => LDR R1, [PC, #offset to
 ; Literal Pool 1]
 LDR r2, =0xFFFFFFFF ; => MVN R2, #0
 MOV pc, lr
 LTORG ; Literal Pool 1 contains
 ; literal Ox55555555

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-29

func2
 LDR r3, =0x55555555 ; => LDR R3, [PC, #offset to
 ; Literal Pool 1]
 ; LDR r4, =0x66666666 ; If this is uncommented it
 ; fails, because Literal Pool 2
 ; is out of reach
 MOV pc, lr
LargeTable
 SPACE 4200 ; Starting at the current location,
 ; clears a 4200 byte area of memory
 ; to zero
 END ; Literal Pool 2 is empty

2.5.3 Loading floating-point constants

You can load any single-precision or double-precision floating-point constant in a
single instruction, using the following pseudo-instructions:

• LDFS fp-register,=fp-literal

• LDFD fp-register,=fp-literal

• FLDS fp-register,=fp-literal

• FLDD fp-register,=fp-literal

Refer to the assembler chapter in ADS Tools Guide for details.

Assembly Language Programming

2-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.6 Loading addresses into registers

It is often necessary to load an address into a register. You may need to load the address
of a variable, a string constant, or the start location of a jump table.

Addresses are normally expressed as offsets from the current pc or other register.

This section describes two methods for loading an address into a register:

• load the register directly, see Direct loading with ADR and ADRL below.

• load the address from a literal pool, see Loading addresses with LDR Rd, = label
on page 2-35.

2.6.1 Direct loading with ADR and ADRL

The ADR and ADRL pseudo-instructions enable you to load a range of addresses without
performing a data load. ADR and ADRL accept either of the following:

• A program-relative expression, which is a label with an optional offset, where the
address of the label is relative to the current pc.

• A register-relative expression, which is a label with an optional offset, where the
address of the label is relative to an address held in a specified general-purpose
register. Refer to Describing data structures with MAP and FIELD directives on
page 2-51 for information on specifying register-relative expressions.

The assembler converts an ADR rn,label pseudo-instruction by generating:

• a single ADD or SUB instruction that loads the address, if it is in range

• an error message if the address cannot be reached in a single instruction.

The offset range is 255 bytes for an offset to a non word-aligned address, and 1020 bytes
(255 words) for an offset to a word-aligned address.

The assembler converts an ADRL rn,label pseudo-instruction by generating:

• two data-processing instructions that load the address, if it is in range

• an error message if the address cannot be constructed in two instructions.

The range of an ADRL pseudo-instruction is 64KB for a non word-aligned address and
256KB for a word-aligned address.

ADRL assembles to two instructions, if successful. The assembler generates two
instructions even if the address could be loaded in a single instruction.

Refer to Loading addresses with LDR Rd, = label on page 2-35 for information on
loading addresses that are outside the range of the ADRL pseudo-instruction.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-31

Note

The label used with ADR or ADRL must be within the same code section. The assembler
faults references to labels that are out of range in the same section. The linker faults
references to labels that are out of range in other code sections.

In Thumb state, ADR can generate word-aligned addresses only.

ADRL is not available in Thumb code. Use it only in ARM code.

Example 2-6 shows the type of code generated by the assembler when assembling ADR
and ADRL pseudo-instructions. It is supplied as adrlabel.s in the examples\asm
subdirectory of the ADS. Refer to Code examples on page 2-2 for instructions on how
to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions generated by the
assembler.

Example 2-6

 AREA adrlabel, CODE,READONLY
 ENTRY ; Mark first instruction to execute
Start
 BL func ; Branch to subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
 LTORG ; Create a literal pool
func ADR r0, Start ; => SUB r0, PC, #offset to Start
 ADR r1, DataArea ; => ADD r1, PC, #offset to DataArea
 ; ADR r2, DataArea+4300 ; This would fail because the offset
 ; cannot be expressed by operand2
 ; of an ADD
 ADRL r3, DataArea+4300 ; => ADD r2, PC, #offset1
 ; ADD r2, r2, #offset2
 MOV pc, lr ; Return
DataArea SPACE 8000 ; Starting at the current location,
 ; clears a 8000 byte area of memory
 ; to zero
 END

Assembly Language Programming

2-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Implementing a jump table with ADR

Example 2-7 on page 2-32 shows ARM code that implements a jump table. It is
supplied as jump.s in the examples\asm subdirectory of the ADS. Refer to Code
examples on page 2-2 for instructions on how to assemble, link, and execute the
example.

The ADR pseudo-instruction loads the address of the jump table.

In the example, the function arithfunc takes three arguments and returns a result in
r0. The first argument determines which operation is carried out on the second and third
arguments:

argument1=0 Result = argument2 + argument3

argument1=1 Result = argument2 – argument3

The jump table is implemented with the following instructions and assembler
directives:

EQU Is an assembler directive. It is used to give a value to a symbol. In this
example it assigns the value 2 to num. When num is used elsewhere in the
code, the value 2 is substituted. Using EQU in this way is similar to using
#define to define a constant in C.

DCD Declares one or more words of store. In this example each DCD stores the
address of a routine that handles a particular clause of the jump table.

LDR The LDR pc,[r3,r0,LSL#2] instruction loads the address of the
required clause of the jump table into the pc. It:

• multiplies the clause number in r0 by 4 to give a word offset

• adds the result to the address of the jump table

• loads the contents of the combined address into the program
counter.

Example 2-7 ARM code jump table

 AREA Jump, CODE, READONLY ; Name this block of code
 CODE32 ; Following code is ARM code
num EQU 2 ; Number of entries in jump table
 ENTRY ; Mark first instruction to execute
start ; First instruction to call
 MOV r0, #0 ; Set up the three parameters
 MOV r1, #3

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-33

 MOV r2, #2
 BL arithfunc ; Call the function
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
arithfunc ; Label the function
 CMP r0, #num ; Treat function code as unsigned integer
 MOVHS pc, lr ; If code is >= num then simply return
 ADR r3, JumpTable ; Load address of jump table
 LDR pc, [r3,r0,LSL#2] ; Jump to the appropriate routine
JumpTable
 DCD DoAdd
 DCD DoSub

DoAdd ADD r0, r1, r2 ; Operation 0
 MOV pc, lr ; Return
DoSub SUB r0, r1, r2 ; Operation 1
 MOV pc,lr ; Return
 END ; Mark the end of this file

Converting to Thumb

Example 2-8 on page 2-33 shows the implementation of the jump table converted to
Thumb code.

Most of the Thumb version is the same as the ARM code. The differences are
commented in the Thumb version.

In Thumb state, you cannot:

• increment the base register of LDR and STR instructions

• load a value into the pc using an LDR instruction

• do an inline shift of a value held in a register.

Example 2-8 Thumb code jump table

 AREA Jump, CODE, READONLY
 CODE16 ; Following code is Thumb code
num EQU 2
 ENTRY
start
 MOV r0, #0
 MOV r1, #3
 MOV r2, #2

Assembly Language Programming

2-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 BL arithfunc
stop MOV r0, #0x18
 LDR r1, =0x20026
 SWI 0xAB ; Thumb semihosting SWI
arithfunc
 CMP r0, #num
 BHS exit ; MOV pc, lr cannot be conditional
 ADR r3, JumpTable
 LSL r0, r0, #2 ; 3 instructions needed to replace
 LDR r0, [r3,r0] ; LDR pc, [r3,r0,LSL#2]
 MOV pc, r3
 ALIGN ; Ensure that the table is aligned on a
 ; 4-byte boundary
JumpTable
 DCD DoAdd
 DCD DoSub

DoAdd ADD r0, r1, r2
exit MOV pc, lr
DoSub SUB r0, r1, r2
 MOV pc,lr
 END

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-35

2.6.2 Loading addresses with LDR Rd, = label

The LDR Rd,= pseudo-instruction can load any 32-bit constant into a register. See
Loading with LDR Rd, =const on page 2-27. It also accepts program-relative
expressions such as labels, and labels with offsets.

The assembler converts an LDR r0,=label pseudo-instruction by:

• placing the address of label in a literal pool (a portion of memory embedded in
the code to hold constant values).

• generating a program-relative LDR instruction that reads the address from the
literal pool, for example:

 LDR rn [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that there is a literal pool within range. Refer to Placing literal
pools on page 2-27 for more information.

Unlike the ADR and ADRL pseudo-instructions, you can use LDR with labels that are
outside the current section. If the label is outside the current section, the assembler
places a relocation directive in the object code when the source file is assembled. The
relocation directive instructs the linker to resolve the address at link time. The address
remains valid wherever the linker places the section containing the LDR and the literal
pool.

Example 2-9 on page 2-35 shows how this works. It is supplied as ldrlabel.s in the
examples\asm subdirectory of the ADS. Refer to Code examples on page 2-2 for
instructions on how to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions that are generated by
the assembler.

Example 2-9

 AREA LDRlabel, CODE,READONLY
 ENTRY ; Mark first instruction to execute
start
 BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit

Assembly Language Programming

2-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 SWI 0x123456 ; ARM semihosting SWI
func1
 LDR r0, =start ; => LDR R0,[PC, #offset to
 ; Litpool 1]
 LDR r1, =Darea + 12 ; => LDR R1,[PC, #offset to
 ; Litpool 1]
 LDR r2, =Darea + 6000 ; => LDR R2, [PC, #offset to
 ; Litpool 1]
 MOV pc,lr ; Return
 LTORG ; Literal Pool 1
func2
 LDR r3, =Darea + 6000 ; => LDR r3, [PC, #offset to
 ; Litpool 1]
 ; (sharing with previous literal)
 ; LDR r4, =Darea + 6004 ; If uncommented produces an
 ; error as Litpool 2 is out of range
 MOV pc, lr ; Return
Darea SPACE 8000 ; Starting at the current location,
 ; clears a 8000 byte area of memory
 ; to zero
 END ; Literal Pool 2 is out of range of
 ; the LDR instructions above

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-37

An LDR Rd, =label example: string copying

Example 2-10 on page 2-37 shows an ARM code routine that overwrites one string with
another string. It uses the LDR pseudo-instruction to load the addresses of the two strings
from a data section. The following are particularly significant:

DCB The DCB directive defines one or more bytes of store. In addition to
integer values, DCB accepts quoted strings. Each character of the string is
placed in a consecutive byte. Refer to the assembler chapter in ADS Tools
Guide for more information.

LDR/STR The LDR and STR instructions use post-indexed addressing to update their
address registers. For example, the instruction:

LDRB r2,[r1],#1

loads r2 with the contents of the address pointed to by r1 and then
increments r1 by 1.

Example 2-10 String copy

 AREA StrCopy, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start LDR r1, =srcstr ; Pointer to first string
 LDR r0, =dststr ; Pointer to second string
 BL strcopy ; Call subroutine to do copy
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
strcopy
 LDRB r2, [r1],#1 ; Load byte and update address
 STRB r2, [r0],#1 ; Store byte and update address
 CMP r2, #0 ; Check for zero terminator
 BNE strcopy ; Keep going if not
 MOV pc,lr ; Return

 AREA Strings, DATA, READWRITE
srcstr DCB "First string - source",0
dststr DCB "Second string - destination",0
 END

Assembly Language Programming

2-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Converting to Thumb

There is no post-indexed addressing mode for Thumb LDR and STR instructions.
Because of this, you must use an ADD instruction to increment the address register after
the LDR and STR instructions. For example:

 LDRB r2, [r1] ; load register 2
 ADD r1, #1 ; increment the address in
 ; register 1.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-39

2.7 Load and store multiple register instructions

The ARM and Thumb instruction sets include instructions that load and store multiple
registers to and from memory.

Multiple register transfer instructions provide an efficient way of moving the contents
of several registers to and from memory. They are most often used for block copy and
for stack operations for context changing at subroutine entry and exit. The advantages
of using a multiple register transfer instruction instead of a series of single data transfer
instructions include:

• Smaller code size.

• A single instruction fetch overhead, rather than many instruction fetches.

• Only one register writeback cycle is required for a multiple register load or store,
as opposed to one for each register.

• On uncached ARM processors, the first word of data transferred by a load or store
multiple is always a nonsequential memory cycle, but all subsequent words
transferred can be sequential memory cycles. Sequential memory cycles are faster
in most systems.

Note

The lowest numbered register is transferred to or from the lowest memory address
accessed, and the highest numbered register to or from the highest address accessed.
The order of the registers in the register list in the instructions makes no difference.

Use the -checkreglist assembler command line option to check that registers in
register lists are specified in increasing order. Refer to the assembler chapter in ADS
Tools Guide for further information.

Assembly Language Programming

2-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.7.1 ARM LDM and STM instructions

The load (or store) multiple instruction loads (stores) any subset of the 16
general-purpose registers from (to) memory, using a single instruction.

Syntax

The syntax of the LDM instructions is:

LDM{cond}address-mode Rn{!},reg-list{^}

where:

cond is an optional condition code. Refer to Conditional execution on
page 2-19 for more information.

address-mode

specifies the addressing mode of the instruction. Refer to LDM and STM
addressing modes on page 2-41 for details.

Rn is the base register for the load operation. The address stored in this
register is the starting address for the load operation. Do not specify r15
(pc) as the base register.

! specifies base register write back. If this is specified, the address in the
base register is updated after the transfer. It is decremented or
incremented by one word for each register in the register list.

register-list

is a comma-delimited list of symbolic register names and register ranges
enclosed in braces. There must be at least one register in the list. Register
ranges are specified with a dash. For example:

{r0,r1,r4-r6,pc}

Do not specify writeback if the base register Rn is in register-list.

^ Do not use this option in User or System mode. For details of its use in
privileged modes, see Chapter 6 Handling Processor Exceptions and the
ARM Architecture Reference Manual.

The syntax of the STM instruction corresponds exactly, except for some details in the
effect of the ^ option.

Usage

See Implementing stacks with LDM and STM on page 2-42 and Block copy with LDM
and STM on page 2-44.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-41

2.7.2 LDM and STM addressing modes

There are four different addressing modes. The base register can be incremented or
decremented by one word for each register in the operation, and the increment or
decrement can occur before or after the operation. The suffixes for these options are:

IA Increment after.

IB Increment before.

DA Decrement after.

DB Decrement before.

There are alternative addressing mode suffixes that are easier to use for stack
operations. See Implementing stacks with LDM and STM on page 2-42.

Assembly Language Programming

2-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.7.3 Implementing stacks with LDM and STM

The load and store multiple instructions can update the base register. For stack
operations, the base register is usually the stack pointer, r13. This means that you can
use load and store multiple instructions to implement push and pop operations for any
number of registers in a single instruction.

The load and store multiple instructions can be used with several types of stack:

Descending or ascending
The stack grows downwards, starting with a high address and progressing
to a lower one (a descending stack), or upwards, starting from a low
address and progressing to a higher address (an ascending stack).

Full or empty
The stack pointer can either point to the last item in the stack (a full
stack), or the next free space on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead of the
increment/decrement and before/after suffixes. Refer to Table 2-6 for a list of
stack-oriented suffixes.

For example:

 STMFD r13!, {r0-r5} ; Push onto a Full Descending Stack
 LDMFD r13!, {r0-r5} ; Pop from a Full Descending Stack.

Note

The ARM/Thumb Procedure Call Standard (ATPCS), and ARM C and C++ compilers
always use a full descending stack.

 Table 2-6 Suffixes for load and store multiple instructions

Stack type Push Pop

Full descending STMFD (DB) LDMFD (IA)

Full ascending STMFA (IB) LDMFA (DA)

Empty descending STMED (DA) LDMED (IB)

Empty ascending STMEA (IA) LDMEA (DB)

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-43

Stacking registers for nested subroutines

Stack operations are very useful at subroutine entry and exit. At the start of a subroutine,
any working registers required can be stored on the stack, and at exit they can be popped
off again.

In addition, if the link register is pushed onto the stack at entry, additional subroutine
calls can safely be made without causing the return address to be lost. If you do this, you
can also return from a subroutine by popping the pc off the stack at exit, instead of
popping lr and then moving that value into the pc. For example:

subroutine STMFD sp!, {r5-r7,lr} ; Push work registers and lr
 ; code
 BL somewhere_else
 ; code
 LDMFD sp!, {r5-r7,pc} ; Pop work registers and pc

Note

Use this with care in mixed ARM/Thumb systems. In ARM architecture v4T systems,
you cannot change state by popping directly into the program counter.

In ARM architecture v5T and above, you can change state in this way.

Assembly Language Programming

2-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.7.4 Block copy with LDM and STM

Example 2-11 is an ARM code routine that copies a set of words from a source location
to a destination by copying a single word at a time. It is supplied as word.s in the
examples\asm subdirectory of the ADS. Refer to Code examples on page 2-2 for
instructions on how to assemble, link, and execute the example.

Example 2-11: Block copy

 AREA Word, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction to call
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
wordcopy LDR r3, [r0], #4 ; load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; decrement the counter
 BNE wordcopy ; ... copy more
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

This module can be made more efficient by using LDM and STM for as much of the
copying as possible. Eight is a sensible number of words to transfer at a time, given the
number of registers that the ARM has. The number of eight-word multiples in the block
to be copied can be found (if r2 = number of words to be copied) using:

 MOVS r3, r2, LSR #3 ; number of eight word multiples

This value can be used to control the number of iterations through a loop that copies
eight words per iteration. When there are less than eight words left, the number of words
left can be found (assuming that r2 has not been corrupted) using:

 ANDS r2, r2, #7

Example 2-12 on page 2-45 lists the block copy module rewritten to use LDM and STM
for copying.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-45

Example 2-12

 AREA Block, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction to call
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
 MOV sp, #0x400 ; Set up stack pointer (r13)
blockcopy MOVS r3,r2, LSR #3 ; Number of eight word multiples
 BEQ copywords ; Less than eight words to move?
 STMFD sp!, {r4-r11} ; Save some working registers
octcopy LDMIA r0!, {r4-r11} ; Load 8 words from the source
 STMIA r1!, {r4-r11} ; and put them at the destination
 SUBS r3, r3, #1 ; Decrement the counter
 BNE octcopy ; ... copy more
 LDMFD sp!, {r4-r11} ; Don’t need these now - restore
 ; originals
copywords ANDS r2, r2, #7 ; Number of odd words to copy
 BEQ stop ; No words left to copy?
wordcopy LDR r3, [r0], #4 ; Load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; Decrement the counter
 BNE wordcopy ; ... copy more
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

Assembly Language Programming

2-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.7.5 Thumb LDM and STM instructions

The Thumb instruction set contains two pairs of multiple-register transfer instructions:

• LDM and STM for block memory transfers

• PUSH and POP for stack operations.

LDM and STM

These instructions can be used to load or store any subset of the low registers from or
to memory. The base register is always updated at the end of the multiple register
transfer instruction. You must specify the ! character. The only valid suffix for these
instructions is IA.

Examples of these instructions are:

 LDMIA r1!, {r0,r2-r7}
 STMIA r4!, {r0-r3}

PUSH and POP

These instructions can be used to push any subset of the low registers and (optionally)
the link register onto the stack, and to pop any subset of the low registers and
(optionally) the pc off the stack. The base address of the stack is held in r13. Examples
of these instructions are:

 PUSH {r0-r3}
 POP {r0-r3}
 PUSH {r4-r7,lr}
 POP {r4-r7,pc}

The optional addition of the lr/pc to the register list provides support for subroutine
entry and exit.

The stack is always full descending.

Thumb-state block copy example

The block copy example, Example 2-11 on page 2-44, can be converted into Thumb
instructions. An example conversion can be found as tblock.s in the examples\asm
subdirectory of the ADS.

Because the Thumb LDM and STM instructions can access only the low registers, the
number of words copied per iteration is reduced from eight to four. In addition, the
LDM/STM instructions can be used to carry out the single word at a time copy, because
they update the base pointer after each access. If LDR/STR were used for this, separate
ADD instructions would be required to update each base pointer.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-47

Example 2-13

 AREA Tblock, CODE, READONLY ; Name this block of code
num EQU 20 ; Set number of words to be copied
 ENTRY ; Mark first instruction to execute
header ; The first instruction to call
 MOV sp, #0x400 ; Set up stack pointer (r13)
 ADR r0, start + 1 ; Processor starts in ARM state,
 BX r0 ; so small ARM code header used
 ; to call Thumb main program
 CODE16 ; Subsequent instructions are Thumb
start
 LDR r0, =src ; r0 =pointer to source block
 LDR r1, =dst ; r1 =pointer to destination block
 MOV r2, #num ; r2 =number of words to copy
blockcopy
 LSR r3,r2, #2 ; Number of four word multiples
 BEQ copywords ; Less than four words to move?
 PUSH {r4-r7} ; Save some working registers
quadcopy
 LDMIA r0!, {r4-r7} ; Load 4 words from the source
 STMIA r1!, {r4-r7} ; and put them at the destination
 SUB r3, #1 ; Decrement the counter
 BNE quadcopy ; ... copy more
 POP {r4-r7} ; Don’t need these now-restore originals
copywords
 MOV r3, #3 ; Bottom two bits represent number
 AND r2, r3 ; ...of odd words left to copy
 BEQ stop ; No words left to copy?
wordcopy
 LDMIA r0!, {r3} ; load a word from the source and
 STMIA r1!, {r3} ; store it to the destination
 SUB r2, #1 ; Decrement the counter
 BNE wordcopy ; ... copy more
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0xAB ; Thumb semihosting SWI

 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

Assembly Language Programming

2-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.8 Using macros

A macro definition is a block of code enclosed between MACRO and MEND directives. It
defines a name that can be used instead of repeating the whole block of code. This has
two main uses:

• to make it easier to follow the logic of the source code, by replacing a block of
code with a single, meaningful name

• to avoid repeating a block of code several times.

Refer to the assembler chapter in ADS Tools Guide for more details.

2.8.1 Test-and-branch macro example

A test-and-branch operation requires two ARM instructions to implement.

You can define a macro definition such as this:

 MACRO
$label TestAndBranch $dest, $reg, $cc

$label CMP $reg, #0
 B$cc $dest
 MEND

The line after the MACRO directive is the macro prototype statement. The macro
prototype statement defines the name (TestAndBranch) you use to invoke the macro. It
also defines parameters ($label, $dest, $reg, and $cc). You must give values to the
parameters when you invoke the macro. The assembler substitutes the values you give
into the code.

This macro can be invoked as follows:

test TestAndBranch NonZero, r0, NE
 ...
 ...
NonZero

After substitution this becomes:

test CMP r0, #0
 BNE NonZero
 ...
 ...
NonZero

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-49

2.8.2 Unsigned integer division macro example

Example 2-14 shows a macro that performs an unsigned integer division. It takes four
parameters:

$Bot The register that holds the divisor.

$Top The register that holds the dividend before the instructions are executed.
After the instructions are executed, it holds the remainder.

$Div The register where the quotient of the division is placed. It may be NULL
("") if only the remainder is required.

$Temp A temporary register used during the calculation.

Example 2-14

 MACRO
$Lab DivMod $Div,$Top,$Bot,$Temp
 ASSERT $Top <> $Bot ; Produce an error message if the
 ASSERT $Top <> $Temp ; registers supplied are
 ASSERT $Bot <> $Temp ; not all different
 IF "$Div" <> ""
 ASSERT $Div <> $Top ; These three only matter if $Div
 ASSERT $Div <> $Bot ; is not null ("")
 ASSERT $Div <> $Temp ;
 ENDIF
$Lab
 MOV $Temp, $Bot ; Put divisor in $Temp
 CMP $Temp, $Top, LSR #1 ; double it until
90 MOVLS $Temp, $Temp, LSL #1 ; 2 * $Temp > $Top
 CMP $Temp, $Top, LSR #1
 BLS %b90 ; The b means search backwards
 IF "$Div" <> "" ; Omit next instruction if $Div is null
 MOV $Div, #0 ; Initialize quotient
 ENDIF
91 CMP $Top, $Temp ; Can we subtract $Temp?
 SUBCS $Top, $Top,$Temp ; If we can, do so
 IF "$Div" <> "" ; Omit next instruction if $Div is null
 ADC $Div, $Div, $Div ; Double $Div
 ENDIF
 MOV $Temp, $Temp, LSR #1 ; Halve $Temp,
 CMP $Temp, $Bot ; and loop until
 BHS %b91 ; less than divisor
 MEND

Assembly Language Programming

2-50 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

The macro checks that no two parameters use the same register. It also optimizes the
code produced if only the remainder is required.

To avoid multiple definitions of labels if DivMod is used more than once in the
assembler source, the macro uses local labels (90, 91). Refer to the assembler chapter
in ADS Tools Guide for more information.

Example 2-15 shows the code that this macro produces if it is invoked as follows:

ratio DivMod r0,r5,r4,r2

Example 2-15

 ASSERT r5 <> r4 ; Produce an error if the
 ASSERT r5 <> r2 ; registers supplied are
 ASSERT r4 <> r2 ; not all different
 ASSERT r0 <> r5 ; These three only matter if $Div
 ASSERT r0 <> r4 ; is not null ("")
 ASSERT r0 <> r2 ;
ratio
 MOV r2, r4 ; Put divisor in $Temp
 CMP r2, r5, LSR #1 ; double it until
90 MOVLS r2, r2, LSL #1 ; 2 * r2 > r5
 CMP r2, r5, LSR #1
 BLS %b90 ; The b means search backwards
 MOV r0, #0 ; Initialize quotient
91 CMP r5, r2 ; Can we subtract r2?
 SUBCS r5, r5, r2 ; If we can, do so
 ADC r0, r0, r0 ; Double r0

 MOV r2, r2, LSR #1 ; Halve r2,
 CMP r2, r4 ; and loop until
 BHS %b91 ; less than divisor

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-51

2.9 Describing data structures with MAP and FIELD directives

You can use the MAP and FIELD directives to describe data structures. These directives
are always used together.

Data structures defined using MAP and FIELD:

• are easily maintainable

• can be used to describe multiple instances of the same structure

• make it easy to access data efficiently.

The MAP directive specifies the base address of the data structure. Refer to the assembler
chapter in ADS Tools Guide for further information.

The FIELD directive specifies the amount of memory required for a data item, and can
give the data item a label. It is repeated for each data item in the structure. Refer to the
assembler chapter in ADS Tools Guide for further information.

Note

No space in memory is allocated when a map is defined. Use define constant directives
(for example, DCD) to allocate space in memory.

2.9.1 Absolute maps

Example 2-16 shows a data structure described using MAP and FIELD. It is located at an
absolute (fixed) address, 4096 (0x1000) in this case.

Example 2-16

 MAP 4096
consta FIELD 4 ; consta uses four bytes, and is located at 4096
constb FIELD 4 ; constb uses four bytes, and is located at 5000
x FIELD 8 ; x uses eight bytes, and is located at 5004
y FIELD 8 ; y uses eight bytes, and is located at 5012
string FIELD 256 ; string can be up to 256 bytes long, starting at 5020

You can access data at these locations with LDR or STR instructions, such as:

 LDR r4,constb

You can only do this if each instruction is within 4KB (in either direction) of the data
item it accesses. Refer to the ARM Architecture Reference Manual for details of the LDR
and STR instructions.

Assembly Language Programming

2-52 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.9.2 Relative maps

If you need to access data from more than 4KB away, you can use a register-relative
instruction, such as:

 LDR r4,[r9,offset]

offset is limited to 4096, so r9 must already contain a value within 4KB of the address
of the data.

You can access data in the structure described in Example 2-16 from an instruction at
any address. This program fragment shows how:

 MOV r9,#4096 ; or #0x1000
 LDR r4,[r9,constb - 4096]

The assembler calculates (constb - 4096) for you. However, it is better to redesign
the map description as in Example 2-17.

Example 2-17

 MAP 0
consta FIELD 4 ; consta uses four bytes, located at offset 0
constb FIELD 4 ; constb uses four bytes, located at offset 4
x FIELD 8 ; x uses eight bytes, located at offset 8
y FIELD 8 ; y uses eight bytes, located at offset 16
string FIELD 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 2-17, you can access the data structure at the same location
as before:

 MOV r9,#4096
 LDR r4,[r9,constb]

This program fragment assembles to exactly the same machine instructions as before.
The value of each label is 4096 less than before, so the assembler does not need to
subtract 4096 from each label to find the offset. The labels are relative to the start of the
data structure, instead of being absolute. The register used to hold the start address of
the map (r9 in this case) is called the base register.

There are likely to be many LDR or STR instructions accessing data in this data structure.
You avoid typing -4096 repeatedly by using this method. The code is also easier to
follow.

This map does not contain the location of the data structure. The location of the
structure is determined by the value loaded into the base register at runtime.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-53

The same map can be used to describe many instances of the data structure. These may
be located anywhere in memory.

There are restrictions on what addresses can be loaded into a register using the MOV
instruction. Refer to Loading addresses into registers on page 2-30 for details of how
to load arbitrary addresses.

Note

r9 is the static base register (sb) in the ARM/Thumb Procedure Call Standard. Refer to
Chapter 3 Using the Procedure Call Standard for further information.

2.9.3 Register-based maps

In many cases, you can use the same register as the base register every time you access
a data structure. You can include the name of the register in the base address of the map.
Example 2-18 shows such a register-based map. The labels defined in the map include
the register.

Example 2-18

 MAP 0,r9
consta FIELD 4 ; consta uses four bytes, located at offset 0 (from r9)
constb FIELD 4 ; constb uses four bytes, located at offset 4
x FIELD 8 ; x uses eight bytes, located at offset 8
y FIELD 8 ; y uses eight bytes, located at offset 16
string FIELD 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 2-18, you can access the data structure wherever it is:

 ADR r9,datastart
 LDR r4,constb ; => LDR r4,[r9,#4]

constb contains the offset of the data item from the start of the data structure, and also
includes the base register. In this case the base register is r9, defined in the MAP
directive.

Assembly Language Programming

2-54 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.9.4 Program-relative maps

You can use the program counter (r15) as the base register for a map. In this case, each
STM or LDM instruction must be within 4KB of the data item it addresses, because the
offset is limited to 4KB. The data structure must be in the same section as the
instructions, because otherwise there is no guarantee that the data items will be within
range after linking.

Example 2-19 shows a program fragment with such a map. It includes a directive which
allocates space in memory for the data structure, and an instruction which accesses it.

Example 2-19

datastruc SPACE 280 ; reserves 280 bytes of memory for datastruc
 MAP datastruc
consta FIELD 4
constb FIELD 4
x FIELD 8
y FIELD 8
string FIELD 256

code LDR r2,constb ; => LDR r2,[pc,offset]

In this case, there is no need to load the base register before loading the data as the
program counter already holds the correct address. (This is not actually the same as the
address of the LDR instruction, because of pipelining in the processor. However, the
assembler takes care of this for you.)

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-55

2.9.5 Finding the end of the allocated data

You can use the FIELD directive with an operand of 0 to label a location within a
structure. The location is labeled, but the location counter is not incremented.

The size of the data structure defined in Example 2-20 depends on the values of
MaxStrLen and ArrayLen. If these values are too large, the structure overruns the end
of available memory.

Example 2-20 uses:

• an EQU directive to define the end of available memory

• a FIELD directive with an operand of 0 to label the end of the data structure.

An ASSERT directive checks that the end of the data structure does not overrun the
available memory.

Example 2-20

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Integer FIELD 4
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData

Assembly Language Programming

2-56 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.9.6 Forcing correct alignment

You are likely to have problems if you include some character variables in the data
structure, as in Example 2-21. This is because a lot of words are misaligned.

Example 2-21

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Char FIELD 1
Char2 FIELD 1
Char3 FIELD 1
Integer FIELD 4 ; alignment = 3
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData

You cannot use the ALIGN directive, because the ALIGN directive aligns the current
location within memory. MAP and FIELD directives do not allocate any memory for the
structures they define.

You could insert a dummy FIELD 1 after Char3 FIELD 1. However, this makes
maintenance difficult if you change the number of character variables. You must
recalculate the right amount of padding each time.

Example 2-22 on page 2-57 shows a better way of adjusting the padding. The example
uses a FIELD directive with a 0 operand to label the end of the character data. A second
FIELD directive inserts the correct amount of padding based on the value of the label.
An :AND: operator is used to calculate the correct value.

The (-EndOfChars):AND:3 expression calculates the correct amount of padding:

0 if EndOfChars is 0 mod 4;
3 if EndOfChars is 1 mod 4;
2 if EndOfChars is 2 mod 4;
1 if EndOfChars is 3 mod 4.

This automatically adjusts the amount of padding used whenever character variables are
added or removed.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-57

Example 2-22

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Char FIELD 1
Char2 FIELD 1
Char3 FIELD 1
EndOfChars FIELD 0
Padding FIELD (-EndOfChars):AND:3
Integer FIELD 4
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData

Assembly Language Programming

2-58 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.9.7 Using register-based MAP and FIELD directives

Register-based MAP and FIELD directives define register-based symbols. There are two
main uses for register-based symbols:

• defining structures similar to C structures

• gaining faster access to memory sections described by non-register-based MAP
and FIELD directives.

Defining register-based symbols

Register-based symbols can be very useful, but you must be careful when using them.
As a general rule, use them only in the following ways:

• As the location for a load or store instruction to load from or store to. If Location
is a register-based symbol based on the register Rb and with numeric offset, the
assembler automatically translates, for example, LDR Rn,Location into LDR
Rn,[Rb,#offset].

In an ADR or ADRL instruction, ADR Rn,Location is converted by the assembler
into ADD Rn,Rb,#offset.

• Adding an ordinary numeric expression to a register-based symbol to get another
register-based symbol.

• Subtracting an ordinary numeric expression from a register-based symbol to get
another register-based symbol.

• Subtracting a register-based symbol from another register-based symbol to get an
ordinary numeric expression. Do not do this unless the two register-based
symbols are based on the same register. Otherwise, you have a combination of
two registers and a numeric value. This results in an assembler error.

• As the operand of a :BASE: or :INDEX: operator. These operators are mainly of
use in macros.

Other uses usually result in assembler error messages. For example, if you write LDR
Rn,=Location, where Location is register-based, you are asking the assembler to
load Rn from a memory location that always has the current value of the register Rb plus
offset in it. It cannot do this, because there is no such memory location.

Similarly, if you write ADD Rd,Rn,#expression, and expression is register-based,
you are asking for a single ADD instruction that adds both the base register of the
expression and its offset to Rn. Again, the assembler cannot do this. You must use two
ADD instructions to perform these two additions.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-59

Setting up a C-type structure

There are two stages to using structures in C:

1. Declaring the fields that the structure contains.

2. Generating the structure in memory and using it.

For example, the following typedef statement defines a point structure that contains
three float fields named x, y and z, but it does not allocate any memory. The second
statement allocates three structures of type Point in memory, named origin, oldloc, and
newloc:

typedef struct Point
{
 float x,y,z;
} Point;

Point origin,oldloc,newloc;

The following assembly language code is equivalent to the typedef statement above:

PointBase RN r11
 MAP 0,PointBase
Point_x FIELD 4
Point_y FIELD 4
Point_z FIELD 4

The following assembly language code allocates space in memory. This is equivalent to
the last line of C code:

origin SPACE 12
oldloc SPACE 12
newloc SPACE 12

You must load the base address of the data structure into the base register before you
can use the labels defined in the map. For example:

 LDR PointBase,=origin
 MOV r0,#0
 STR r0,Point_x
 MOV r0,#2
 STR r0,Point_y
 MOV r0,#3
 STR r0,Point_z

is equivalent to the C code:

origin.x = 0;
origin.y = 2;
origin.z = 3;

Assembly Language Programming

2-60 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Making faster access possible

To gain faster access to a section of memory:

1. Describe the memory section as a structure.

2. Use a register to address the structure.

For example, consider the definitions in Example 2-23.

Example 2-23

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Integer FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData

If you want the equivalent of the C code:

Integer = 1;
String = "";
BitMask = 0xA000000A;

With the definitions from Example 2-23, the assembly language code could be as shown
in Example 2-24.

Example 2-24

 MOV r0,#1
 LDR r1,=Integer
 STR r0,[r1]
 MOV r0,#0
 LDR r1,=String
 STRB r0,[r1]
 MOV r0,#0xA000000A
 LDR r1,=BitMask
 STRB r0,[r1]

Example 2-24 uses LDR pseudo-instructions. Refer to Loading with LDR Rd, =const on
page 2-27 for an explanation of these.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-61

Example 2-24 contains separate LDR pseudo-instructions to load the address of each of
the data items. Each LDR pseudo-instruction is converted to a separate instruction by the
assembler. However, it is possible to access the entire data section with a single LDR
pseudo-instruction. Example 2-25 shows how to do this. Both speed and code size are
improved.

Example 2-25

 AREA data, DATA
StartOfData EQU 0x1000
EndOfData EQU 0x2000
DataAreaBase RN r11
 MAP 0,DataAreaBase
StartOfUsedData FIELD 0
Integer FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
UsedDataLen EQU EndOfUsedData - StartOfUsedData
 ASSERT UsedDataLen <= (EndOfData - StartOfData)

 AREA code, CODE
 LDR DataAreaBase,=StartOfData
 MOV r0,#1
 STR r0,Integer
 MOV r0,#0
 STRB r0,String
 MOV r0,#0xA000000A
 STRB r0,BitMask

Note

In this example, the MAP directive is:

MAP 0, DataAreaBase

not:

MAP StartOfData,DataAreaBase

The MAP and FIELD directives give the position of the data relative to the DataAreaBase
register, not the absolute position. The LDR DataAreaBase,=StartOfData
statement provides the absolute position of the entire data section.

Assembly Language Programming

2-62 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

If you use the same technique for a section of memory containing memory-mapped I/O
(or whose absolute addresses must not change for other reasons), you must take care to
keep the code maintainable.

One method is to add comments to the code warning maintainers to take care when
modifying the definitions. A better method is to use definitions of the absolute
addresses to control the register-based definitions.

Using MAP offset,reg followed by label FIELD 0 makes label into a
register-based symbol with register part reg and numeric part offset. Example 2-26
shows this.

Example 2-26

StartOfIOArea EQU 0x1000000
SendFlag_Abs EQU 0x1000000
SendData_Abs EQU 0x1000004
RcvFlag_Abs EQU 0x1000008
RcvData_Abs EQU 0x100000C
IOAreaBase RN r11
 MAP (SendFlag_Abs-StartOfIOArea),IOAreaBase
SendFlag FIELD 0
 MAP (SendData_Abs-StartOfIOArea),IOAreaBase
SendData FIELD 0
 MAP (RcvFlag_Abs-StartOfIOArea),IOAreaBase
RcvFlag FIELD 0
 MAP (RcvData_Abs-StartOfIOArea),IOAreaBase
RcvData FIELD 0

Load the base address with LDR IOAreaBase,=StartOfIOArea. This allows the
individual locations to be accessed with statements like LDR R0,RcvFlag and STR
R4,SendData.

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-63

2.9.8 Using two register-based structures

Sometimes you need to operate on two structures of the same type at the same time. For
example, if you want the equivalent of the pseudo-code:

newloc.x = oldloc.x + (value in r0);
newloc.y = oldloc.y + (value in r1);
newloc.z = oldloc.z + (value in r2);

The base register needs to point alternately to the oldloc structure and to the newloc
one. Repeatedly changing the base register would be inefficient. Instead, use a
non register-based map, and set up two pointers in two different registers as in Example
2-27:

Example 2-27

 MAP 0 ; Non-register based relative map used twice, for
Pointx FIELD 4 ; old and new data at oldloc and newloc
Pointy FIELD 4 ; oldloc and newloc are labels for
Pointz FIELD 4 ; memory allocated in other sections

 ; code

 ADR r8,oldloc
 ADR r9,newloc
 LDR r3,[r8,Pointx] ; load from oldloc (r8)
 ADD r3,r3,r0
 STR r3,[r9,Pointx] ; store to newloc (r9)
 LDR r3,[r8,Pointy]
 ADD r3,r3,r1
 STR r3,[r9,Pointy]
 LDR r3,[r8,Pointz]
 ADD r3,r3,r2
 STR r3,[r9,Pointz]

Assembly Language Programming

2-64 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.9.9 Avoiding problems with MAP and FIELD directives

Using MAP and FIELD directives can help you to produce maintainable data structures.
However, this is only true if the order the elements are placed in memory is not
important to either the programmer or the program.

You can have problems if you load or store multiple elements of a structure in a single
instruction. These problems arise in operations such as:

• loading several single-byte elements into one register

• using a store multiple or load multiple instruction (STM and LDM) to store or load
multiple words from or to multiple registers.

These operations require the data elements in the structure to be contiguous in memory,
and to be in a specific order. If the order of the elements is changed, or a new element
is added, the program is broken in a way that cannot be detected by the assembler.

There are several methods for avoiding problems such as this.

Example 2-28 shows a sample structure.

Example 2-28

MiscBase RN r10
 MAP 0,MiscBase
MiscStart FIELD 0
Misc_a FIELD 1
Misc_b FIELD 1
Misc_c FIELD 1
Misc_d FIELD 1
MiscEndOfChars FIELD 0
MiscPadding FIELD (-:INDEX:MiscEndOfChars) :AND: 3
Misc_I FIELD 4
Misc_J FIELD 4
Misc_K FIELD 4
Misc_data FIELD 4*20
MiscEnd FIELD 0
MiscLen EQU MiscEnd-MiscStart

There is no problem in using LDM/STM instructions for accessing single data elements
that are larger than a word (for example, arrays). An example of this is the 20-word
element Misc_data. It could be accessed as follows:

ArrayBase RN R9
 ADR ArrayBase, MiscBase
 LDMIA ArrayBase, {R0-R5}

Assembly Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-65

Example 2-28 on page 2-64 loads the first six items in the array Misc_data. The array
is a single element and therefore covers contiguous memory locations. It is unlikely that
in the future anyone will split it into separate arrays.

However, for loading Misc_I, Misc_J, and Misc_K into registers r0, r1, and r2 the
following code would work, but could cause problems in the future:

ArrayBase RN R9

 ADR ArrayBase, Misc_I
 LDMIA ArrayBase, {R0-R2}

Problems arise if the order of Misc_I, Misc_J, and Misc_K is changed, or if a new
element Misc_New is added in the middle. Either of these small changes breaks the
code.

If these elements need to be accessed separately elsewhere, you must not amalgamate
them into a single array element. In this case, you must amend the code. The first
remedy is to comment the structure to prevent changes affecting this section:

Misc_I FIELD 4 ; ==} Do not split/reorder
Misc_J FIELD 4 ; } these 3 elements, STM
Misc_K FIELD 4 ; ==} and LDM instructions used.

If the code is strongly commented, no deliberate changes are likely to be made that
would affect the workings of the program. Unfortunately, mistakes can still occur. A
second method of catching these problems would be to add ASSERT directives just
before the STM/LDM instructions to check that the labels are consecutive and in the
correct order:

ArrayBase RN R9

 ; Check that the structure elements
 ; are correctly ordered for LDM
 ASSERT (((Misc_J-Misc_I) = 4) :LAND: ((Misc_K-Misc_J) = 4))
 ADR ArrayBase, Misc_I
 LDMIA ArrayBase, {R0-R2}

This ASSERT directive stops assembly at this point if the structure is not in the correct
order to be loaded with an LDM. Remember that the element with the lowest address is
always loaded from, or stored to, the lowest numbered register.

Assembly Language Programming

2-66 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2.10 Using frame directives

If you are using the ARM/Thumb Procedure Call Standard (ATPCS), you must use
frame directives to describe the way that your code uses the stack. Refer to the
assembler chapter in ADS Tools Guide for details of these directives.

The assembler uses these directives to insert debug frame information into the object
file in ELF format that it produces. This information is required by the debuggers for
stack unwinding. Refer to Chapter 3 Using the Procedure Call Standard for further
information about stack unwinding.

Frame directives do not affect the code produced by armasm.

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-1

Chapter 3
Using the Procedure Call Standard

This chapter describes how to use the ARM-Thumb Procedure Call Standard (ATPCS).
Adhere to the ATPCS to ensure that separately compiled and assembled modules can
work together. The chapter contains the following sections:

• About the ARM-Thumb Procedure Call Standard on page 3-2

• Register roles and names on page 3-4

• The stack on page 3-6

• Parameter passing on page 3-8

• Read-only position independence on page 3-13

• Read-write position independence on page 3-14

• Interworking between ARM and Thumb states on page 3-16

• Floating-point options on page 3-17

Using the Procedure Call Standard

3-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.1 About the ARM-Thumb Procedure Call Standard

Adherence to the ARM-Thumb Procedure Call Standard (ATPCS) ensures that
separately compiled or assembled subroutines can work together. This chapter
describes how to use the ATPCS.

ATPCS has several variants. This chapter gives information enabling you to choose
which variant to use.

Many details of the standard are the same, whichever variant you use. See:

• Register roles and names on page 3-4

• The stack on page 3-6

• Parameter passing on page 3-8.

3.1.1 ATPCS variants

The variants comprise a base standard modified by options that you can select
independently. Code conforming to the base standard runs faster than, and occupies less
memory than, code conforming to other variants. However, code conforming to the base
standard does not provide for:

• interworking between ARM state and Thumb state

• position independence of either data or code

• re-entry to routines

• stack checking.

The compiler or assembler sets attributes in the ELF object file which record the variant
you have chosen. In general, you must choose one variant and then use it for all
subroutines that must work together. Exceptions to this rule are described in the text.

The options are dealt with under the following headings:

• Stack limit checking on page 3-10

• Read-only position independence on page 3-13

• Read-write position independence on page 3-14

• Interworking between ARM and Thumb states on page 3-16

• Floating-point options on page 3-17.

3.1.2 ARM C libraries

There are several variants of the ARM C libraries. The linker selects a variant to link
with your object files. It selects the best variant compatible with the ATPCS options
recorded in your object files. See the linker chapter in ADS Tools Guide.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-3

3.1.3 Conformance to the ATPCS

Routines compiled using the ADS compilers conform to the selected variant of the
ATPCS.

You are responsible for ensuring that routines written in assembly language conform to
the selected variant of the ATPCS.

To conform to the ATPCS, an assembly language routine must:

• follow all details of the standard at publicly visible interfaces

• follow the ATPCS rules of stack usage at all times

• be assembled with the -apcs option selected.

3.1.4 Processes and the memory model

ATPCS applies to a single thread of execution or process. The memory state of a process
is defined by the contents of the machine registers and contents of the memory that it
can address.

A process can address some or all of these types of memory:

• Read-only memory.

• Statically-allocated read-write memory.

• Dynamically-allocated read-write memory. This is called heap memory.

• Stack memory. See The stack on page 3-6.

A process must not alter the memory state of another process unless the two processes
are specifically designed to cooperate.

Using the Procedure Call Standard

3-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.2 Register roles and names

The ATPCS specifies the registers to use for particular purposes.

3.2.1 Register roles

The following register usage applies in all variants of the ATPCS except where
otherwise stated. To comply with the ATPCS you must follow these rules:

• Use registers r0-r3 to pass parameter values into routines, and to pass result values
out. You can refer to r0-r3 as a1-a4 to make this usage apparent. See Parameter
passing on page 3-8. Between subroutine calls you can use r0-r3 for any purpose.
A called routine need not restore r0-r3 before returning.

• Use registers r4-r11 to hold the values of a routine’s local variables. You can refer
to them as v1-v8 to make this usage apparent. In Thumb state, in most instructions
you can only use registers v1-v4 for local variables.

A called routine must restore the values of these registers before returning, if it
has used them. It is not necessary to restore any registers that have not been
altered.

• Register r12 is the intra-procedure-call scratch register, ip. It is used in this role
in procedure linkage veneers. Between procedure calls you can use it for any
purpose.

• Register r13 is the stack pointer, sp. You must not use it for any other purpose.
The value held in sp on exit from a called routine must be the same as it was on
entry.

• Register r14 is the link register, lr. If you save the return address, you can use r14
for other purposes between calls.

• Register r15 is the program counter, pc. It cannot be used for any other purpose.

Frame pointers

If you use a frame pointer, use r11 in ARM state, or any one of r4-r7 in Thumb state.
You can refer to r11 as fp to make this usage apparent.

If you use a frame pointer in a routine, you cannot use the same register for any other
purpose in that routine. In other routines, that do not use the frame pointer, you may use
the register for any purpose.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-5

3.2.2 Register names

Table 3-1 lists the defined roles of the processor registers, and associated names. These
names are predefined in both the compilers and the assembler.

In addition, s0-s31, d0-d15 and f0-f31 are predefined names for registers in
coprocessors, see The VFP architecture on page 3-18 and The FPA architecture on
page 3-20.

 Table 3-1 Register roles and names in ATPCS

Register Synonym Special Role in the procedure call standard

r15 - pc Program counter.

r14 - lr Link register.

r13 - sp Stack pointer.

r12 - ip Intra-procedure-call scratch register.

r11 v8 fp ARM-state variable register 8. ARM-state frame
pointer.

r10 v7 sl ARM-state variable register 7. Stack limit pointer
in stack-checked variants.

r9 v6 sb ARM-state variable register 6. Static base in
RWPI variants.

r8 v5 - ARM-state variable register 5.

r7 v4 wr Variable register 4. Thumb-state work register.

r6 v3 - Variable register 3.

r5 v2 - Variable register 2.

r4 v1 - Variable register 1.

r3 a4 - Argument/result/scratch register 4.

r2 a3 - Argument/result/scratch register 3.

r1 a2 - Argument/result/scratch register 2.

r0 a1 - Argument/result/scratch register 1.

Using the Procedure Call Standard

3-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.3 The stack

This section describes how to use the stack in the base standard. See also Stack limit
checking on page 3-10.

ATPCS specifies a full, descending stack.

3.3.1 Stack terminology

The following stack-related terms are used in ATPCS:

The stack pointer addresses the last value written to the stack (pushed).

The stack base is the address of the top of the stack, from which the stack grows
downwards. The highest location actually used by the stack is the
first word below the stack base.

The stack limit is the lowest address on the stack that the current process is
allowed to use.

The used stack is the region of memory between the stack base and the stack
pointer. It includes the stack pointer but not the stack base.

The unused stack is the region of memory between the stack pointer and the stack
limit. It includes the stack limit but not the stack pointer.

Activation records are regions of memory allocated on the stack by routines for
saving registers and holding local variables.

A process may, or may not, have access to the current values of the stack base and stack
limit.

An interrupt handler may use the stack of the process it interrupts. In this case, it is the
responsibility of the programmer to ensure that stack limits are not exceeded.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-7

 Figure 3-1 Stack memory layout

3.3.2 Stack unwinding

Object files generated by the compilers contain debug frame information. The
debuggers use this information to unwind the stack when necessary during debug.

In assembly language it is the responsibility of the programmer to include debug frame
information in source code. See the assembly language chapter in ADS Tools Guide.

���������	

������
����

����������	�

��	�������

����	�������

����������
�	�����

Using the Procedure Call Standard

3-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.4 Parameter passing

A routine with a variable number of arguments is variadic. A routine with a fixed
number of arguments is nonvariadic. There are different rules about passing parameters
to variadic and to nonvariadic routines.

This section describes the base standard. For additional information relating to
floating-point options, see Floating-point options on page 3-17.

3.4.1 Variadic routines

Parameter values are passed to a variadic routine in integer registers a1-a4, and on the
stack if necessary (a1-a4 are synonyms for r0-r3).

The order of the words used is as if the parameter values were stored in consecutive
memory words and then transferred to:

1. a1-a4, a1 first.

2. The stack, lowest address first. (This means that they are pushed onto the stack in
reverse order.)

Note

As a consequence, a floating-point value might be passed in integer registers, in
memory, or split between integer registers and memory.

3.4.2 Nonvariadic routines

Machine-level parameter values are passed to a nonvariadic routine as if:

1. The first four integer values are assigned to a1-a4.

2. The first N floating-point values are assigned to floating-point registers of the
appropriate precision. The details depend on the selected floating-point
architecture (see Floating-point options on page 3-17).

3. Remaining values are pushed onto the stack in reverse order.

Note

A machine-level floating-point value is passed in a floating-point register or in memory,
never in integer registers.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-9

3.4.3 Result return

A procedure does not return a result.

A function may return:

• A one-word integer value in a1.

• A two to four-word integer value in a1-a2, a1-a3 or a1-a4.

• A floating-point value in f0 or d0.

• A compound floating-point value (such as complex) in f0-fN, or d0-dN. The
maximum value of N depends on the selected floating-point architecture (see
Floating-point options on page 3-17).

• A longer value must be returned indirectly, in memory.

Using the Procedure Call Standard

3-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.5 Stack limit checking

Select the software stack limit checking (/swst) option unless the maximum amount of
stack memory required by your complete program can be accurately calculated at the
design stage.

Select the no software stack limit checking (/noswst) option only if you can accurately
calculate, at the design stage, the maximum amount of stack memory that your complete
program requires.

It is possible for stack limit checking to be irrelevant. The code in a file may not require
stack limit checking, but be compatible with other code assembled either /swst or
/noswst. Use the software stack limit checking not applicable (/swstna) option in
this case. This is the default.

3.5.1 Rules for stack limit checked code

In the stack limit checked variants of the ATPCS:

• sl must point at least 256 bytes above the lowest usable address in the stack.

Note

If an interrupt handler can use the User mode stack, you must allow sufficient
space for it, between sl and the lowest usable address in the stack, in addition to
the 256 bytes.

• sl must not be altered by code compiled or assembled with stack limit checking
selected. (sl is altered by run-time support code).

• The value held in sp must always be greater than or equal to the value in sl.

3.5.2 Register usage with stack limit checking

Register r10 is the stack limit pointer, sl. You must not alter r10, or restore it, in routines
assembled or compiled with the stack checking option selected.

In all other respects the usage of registers is the same with or without stack limit
checking (see Register roles and names on page 3-4).

3.5.3 Stack checking in C and C++

If you select the software stack limit checking (/swst) option, the compilers generate
object code that performs stack checking.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-11

3.5.4 Stack checking in assembly language

If you select the software stack checking (/swst) option, it is your responsibility to
write code that performs stack checking.

A leaf routine is a routine that does not call any other subroutine.

There are three cases to consider:

• Leaf routine using less than 256 bytes of stack

• Nonleaf routine using less than 256 bytes of stack

• Routine using more than 256 bytes of stack on page 3-12.

For this purpose, leaf routines include routines in which every call is a tail call.

Leaf routine using less than 256 bytes of stack

A leaf routine that uses less than 256 bytes of stack does not need to check the stack
limit. This is a consequence of the rules above (see Rules for stack limit checked code
on page 3-10).

For this purpose, a leaf routine may be a combination of routines with a total stack usage
less than 256 bytes.

Nonleaf routine using less than 256 bytes of stack

A nonleaf routine that uses less than 256 bytes of stack can use a limit-checking
sequence such as the following:

 SUB sp, sp, #size ; ARM code version
 CMP sp, sl
 BLLO __ARM_stack_overflow

or in Thumb code:

 ADD sp, #-size ; Thumb code version
 CMP sp, sl
 BLO __Thumb_stack_overflow

Note

The names __ARM_stack_overflow and __Thumb_stack_overflow are
illustrative and do not correspond to any actual implementation.

Using the Procedure Call Standard

3-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Routine using more than 256 bytes of stack

In this case, a new value of sp must be proposed to the limit-checking code using a
sequence such as the following:

 SUB ip, sp, #size ; ARM code version
 CMP ip, sl ; ip is the intraprocedure
 ; call register
 BLLO __ARM_stack_overflow

or in Thumb code:

 LDR wr, #-size ; Thumb code version
 ADD wr, sp ; wr is the Thumb-state
 ; work register
 CMP wr, sl
 BLO __Thumb_stack_overflow

This is necessary to ensure that sp cannot become less than the lowest usable address in
the stack.

Note

The names __ARM_stack_overflow and __Thumb_stack_overflow are
illustrative and do not correspond to any actual implementation.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-13

3.6 Read-only position independence

A program is read-only position-independent (ROPI) if all its read-only segments are
position independent.

An ROPI segment is often position-independent code (PIC), but could be read-only
data, or a combination of PIC and read-only data.

Select the ROPI option to avoid committing yourself to having to load your code in a
particular location in memory. This is particularly useful for routines that are:

• loaded in response to run-time events

• loaded into memory with different combinations of other routines in different
circumstances.

3.6.1 Register usage with ROPI

The usage of registers is the same with or without ROPI (see Register roles and names
on page 3-4).

3.6.2 Writing code for ROPI

When you are writing code for ROPI:

• Every reference from code in an ROPI segment to a symbol in the same ROPI
segment must be pc-relative. ATPCS does not define any other base register for a
read-only segment. An address in an ROPI segment cannot be stored in an ROPI
segment.

• Every reference from code in an ROPI segment to a symbol in a different ROPI
segment must be pc-relative. The two segments must be fixed relative to each
other.

• Every other reference from an ROPI segment must be to either:

— an absolute address

— an sb-relative reference to writable data (see Read-write position
independence on page 3-14).

• A read-write word that addresses a symbol in an ROPI segment must be adjusted
whenever the ROPI segment is moved.

Using the Procedure Call Standard

3-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.7 Read-write position independence

A program is read-write position-independent (RWPI) if all its read-write segments are
position independent.

An RWPI segment is usually position-independent data (PID).

Select the RWPI option to avoid committing yourself to a particular location of data in
memory. This is particularly useful for data that must be multiply instantiated for
reentrant routines.

3.7.1 Reentrant routines

A reentrant routine can be threaded by several processes at the same time. Each process
has its own copy of the read-write segments of the routine. Each copy is addressed by
a different value of the static base register.

3.7.2 Register usage with RWPI

Register r9 is the static base, sb. It must point to the base address of the appropriate
static data segments whenever you call any externally visible routine.

You can use r9 for other purposes in a routine that does not use sb. If you do this you
must save the contents of sb on entry to your routine and restore it before exit. You must
also restore it before any call to an external routine.

In all other respects the usage of registers is the same with or without RWPI (see
Register roles and names on page 3-4).

3.7.3 Position-independent data addressing

An RWPI segment can be repositioned until it is first used. The address of a symbol in
an RWPI segment is calculated as follows:

1. The linker calculates a read-only offset from a fixed location in the segment. By
convention, the fixed location is the first byte of the lowest addressed RWPI
segment of the program.

2. At runtime, this is used as an offset added to the contents of the static base
register, sb.

After you have used an RWPI segment, you must re-initialize it before repositioning it.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-15

3.7.4 Writing assembly language for RWPI

Construct references from a read-only segment to the RWPI segment by adding a fixed
(read-only) offset to the value of sb.

Using the Procedure Call Standard

3-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.8 Interworking between ARM and Thumb states

Select the /interwork option when compiling or assembling code if:

• you want to call ARM routines from Thumb routines

• you want to call Thumb routines from ARM routines

• you want the linker to provide the code to handle the changes of state.

Select the/nointerwork option when compiling or assembling code if either:

• your system does not use Thumb

• you provide the assembler code to handle all changes of state.

/nointerwork is the default.

If you select the interworking option, you can call a routine in a different module
without considering which instruction set it uses. If necessary, the linker inserts an
interworking call veneer, or patches the call site. This works for compiled or assembled
code.

The linker cannot insert interworking call veneers, or patch the call site, for calls to
routines in the same file. If you include both ARM and Thumb code in the same
assembler source file, you must write the code to switch state as necessary. For example
code, see the CODE16 and CODE32 sections in the assembler chapter of ADS Tools
Guide.

You cannot include both ARM and Thumb code in the same C or C++ source file.

See Chapter 4 Interworking ARM and Thumb for detailed information.

3.8.1 Register usage with interworking

The usage of registers is the same with or without interworking (see Register roles and
names on page 3-4).

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-17

3.9 Floating-point options

The ATPCS supports two different floating-point hardware architectures and
instruction sets:

• the VFP architecture (see The VFP architecture on page 3-18).

• the FPA architecture (see The FPA architecture on page 3-20).

Code for one architecture cannot be used on the other architecture.

The ADS compilers and assembler have five floating-point options:

• -fpu VFP

• -fpu FPA

• -fpu softVFP

• -fpu softFPA

• -fpu none.

If your target system has floating-point hardware, you must choose either VFP or FPA.

If your target system does not have floating-point hardware:

• if you require compatibility with an FPA system, choose softFPA

• if the module you are compiling or assembling does not use floating-point
arithmetic, and you require compatibility with both FPA and VFP systems,
choose none

• otherwise, choose softVFP.

See also No floating-point hardware on page 3-21.

Using the Procedure Call Standard

3-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.9.1 The VFP architecture

The VFP architecture has sixteen double-precision registers, d0-d15. Each double-
precision register can be used as two single-precision registers. As single-precision
registers they are called s0-s31. d5 for example, is the same as s10 and s11.

The VFP architecture does not support extended precision.

Vector and scalar modes

The VFP architecture has two modes of operation:

• Scalar mode

• Vector mode.

The ATPCS applies only to scalar mode operation. On entry to and exit from any
publicly visible routine conforming to the ATPCS the vector length is 1, and the vector
stride is 1.

Register usage with VFP

You can use the first eight double-precision registers, d0-d7:

• to pass floating-point values into a routine

• to pass floating-point values out of a routine

• as scratch registers within a routine.

Each double-precision register can hold one double-precision value or two
single-precision values. Floating-point argument values are assigned to floating-point
registers by assigning each value in turn to the next free register of the appropriate type.

For example, in passing:

1.0 (double) 2.0 (double) 3.0 (single) 4.0 (double) 5.0 (single) 6.0 (single)

the assignment of parameter values to registers looks like:

If you use registers d8-d15 within a routine, you must save their values on entry and
restore them before exit. You can save them using a single FSTM instruction and restore
them using a single FLDM instruction. They are saved and restored as bit patterns,
without interpretation as single or double-precision numbers. N single-precision values
saved occupy N+1 words.

����������	

����������	

�� �� �� �� �� �� �� �� �� �� ���

� � � � � � � �� � � �

����������	 �� �� �� �� �� ��

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-19

Format of VFP values

Single-precision and double-precision values conform to the IEEE 754 standard
formats. Double-precision values are treated as true 64-bit values:

• in little-endian mode, the more significant word of a two-word double-precision
value, containing the exponent, has the higher address

• in big-endian mode, the more significant word has the lower address.

Note

Little-endian double-precision values are pure little-endian. This is different from FPA
architecture.

Big-endian double-precision values are the same, pure big-endian, in both architectures.

IEEE rounding modes and exception enable flags

The ATPCS does not specify any constraint on the state of these on entry to, or exit
from, conforming routines.

Using the Procedure Call Standard

3-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

3.9.2 The FPA architecture

The FPA architecture has eight floating-point registers, f0-f7. Each register can hold a
single-precison, double-precision, or extended-precision value.

Register usage with FPA

You can use the first four floating-point registers, f0-f3:

• to pass floating-point values into a routine

• to pass floating-point results out of a routine

• as scratch registers within a routine.

If you use floating-point registers f4-f7 within a routine, you must save their values on
entry and restore them before exit. You can save them using a single SFM instruction and
restore them using a single LFM instruction. Each value saved occupies three words.

Format of FPA values

Single-precision and double-precision values conform to the IEEE 754 standard
formats. The most significant word of a floating-point value, containing the exponent,
has the lowest memory address. This is the same whether the byte order within words
is big-endian or little-endian.

Note

Little-endian double-precision values are neither pure little-endian nor pure big-endian.

IEEE rounding modes and exception enable flags

The ATPCS does not specify any constraint on the state of these on entry to, or exit
from, conforming routines.

Using the Procedure Call Standard

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-21

3.9.3 No floating-point hardware

The only difference between softVFP and softFPA is the order of words in
double-precision values in little-endian mode (see Format of VFP values on page 3-19
and Format of FPA values on page 3-20).

If you specify -fpu none, you cannot use floating-point values.

Register usage with softVFP and softFPA

Each floating-point argument is converted to a bit pattern in one or two integer words
as if by storing to memory. The resulting integer values are passed as described in
Parameter passing on page 3-8.

A single-precision floating-point result is returned as a bit pattern in a1.

A double-precision floating-point result is returned in a1 and a2. a1 contains the word
corresponding to the lower-addressed word of the representation of the value in
memory.

Using the Procedure Call Standard

3-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-1

Chapter 4
Interworking ARM and Thumb

This chapter explains how to change between ARM state and Thumb state when writing
code for processors that implement the Thumb instruction set. It contains the following
sections:

• About interworking on page 4-2

• Basic assembly language interworking on page 4-5

• C and C++ interworking and veneers on page 4-10

• Assembly language interworking using veneers on page 4-14.

Interworking ARM and Thumb

4-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

4.1 About interworking

You can mix ARM and Thumb code as you wish, provided that the code conforms to
the requirements of the ARM/Thumb Procedure Call Standard. The ARM compilers
always create code that conforms to this standard. If you are writing ARM assembly
language modules you must ensure that your code conforms. See Chapter 3 Using the
Procedure Call Standard for detailed information.

The ARM linker detects when ARM and Thumb modules are being mixed and
generates small code sections called veneers. A call to a function in the other instruction
set is made through a veneer that changes the instruction set state. No veneer is needed
on return.

If you are linking several source files together, all your files must use compatible atpcs
options. If obviously incompatible options are detected, the linker will produce an error
message.

4.1.1 When to use interworking

When you write code for a Thumb-capable ARM processor, you will probably write
most of your application to run in Thumb state. This gives the best code density. With
8-bit or 16-bit wide memory, it also gives the best performance. However, you might
want parts of your application to run in ARM state for reasons such as:

Speed Some parts of an application might be speed critical. These sections
might be more efficient running in ARM state than in Thumb state. In
some circumstances, a single ARM instruction can do more than the
equivalent Thumb instruction.

Some systems include a small amount of fast 32-bit memory. ARM code
can be run from this without the overhead of fetching each instruction
from 8-bit or 16-bit memory.

Functionality
Thumb instructions are less flexible than their ARM equivalents. Some
operations are not possible in Thumb state. For example, you cannot
enable or disable interrupts. A state change is required in order to carry
out these operations.

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-3

Exception handling
The processor automatically enters ARM state when a processor
exception occurs. This means that the first part of an exception handler
must be coded with ARM instructions, even if it re-enters Thumb state to
carry out the main processing of the exception. At the end of such
processing, the processor must be returned to ARM state to return from
the handler to the main application.

Standalone Thumb programs
A Thumb-capable ARM processor always starts in ARM state. To run
simple Thumb assembly language programs under the debugger, add an
ARM header that carries out a state change to Thumb state and then calls
the main Thumb routine. See Example ARM header on page 4-7 for an
example.

4.1.2 Using the /interwork option

The option -apcs /interwork is available for all compilers and assemblers. If you
set this option:

• The compiler or assembler records an interworking attribute in the object file.

• The linker provides interworking veneers for subroutine entry.

• In assembly language, you must write function exit code that returns to the
instruction set state of the caller.

• In C or C++, the compiler creates function exit code that returns to the instruction
set state of the caller.

Use the /interwork option if your object file contains:

• Thumb subroutines that might need to return to ARM code

• ARM subroutines that might need to return to Thumb code.

Otherwise, you do not need to use the /interwork option. For example, your object
file may contain any of the following without requiring /interwork:

• Thumb code that may be interrupted by an exception. The exception forces the
processor into ARM state so no veneer is needed.

• Exception handling code that may handle exceptions from Thumb code. No
veneer is needed for the return.

• Thumb code that calls ARM subroutines in other files (the veneers belong to the
callee, not the caller).

• ARM code that calls Thumb subroutines in other files (the veneers belong to the
callee, not the caller).

Interworking ARM and Thumb

4-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

4.1.3 Detecting interworking calls

The linker generates an error if it detects a direct ARM/Thumb interworking call where
the called routine is not compiled for interworking. You must recompile the called
routine for interworking.

For example, Figure 4-1 shows the error that is produced if the ARM routine in
Example 4-2 on page 4-11 is compiled and linked without the -apcs /interwork
option.

Error: Invalid call from Thumb code in thumb.o(.text) to ARM symbol arm_function

 Figure 4-1 Interworking errors

These types of error indicate that an ARM-to-Thumb or Thumb-to-ARM interworking
call has been detected from the object module object to the routine symbol, but the
called routine has not been compiled for interworking. You must recompile the module
that contains the symbol and specify -apcs /interwork.

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5

4.2 Basic assembly language interworking

In an assembly language source file, you can have several areas (these correspond to
ELF sections). Each area can contain ARM instructions, Thumb instructions, or both.

If you use both instruction sets within the same section, it is your responsibility to
ensure that instruction set changes and processor state changes coincide in that section.
Otherwise, you can use the linker to provide interworking veneers. We recommend that
you do so in normal circumstances (see Assembly language interworking using veneers
on page 4-14).

The following instructions and directives perform the instruction set and processor state
changes:

• BX, see The Branch Exchange instruction

• CODE16 and CODE32, see Changing the assembler mode on page 4-7

• BLX, LDR, LDM and POP (ARM architecture v5 and above only), see ARM
architecture v5T on page 4-9.

This section describes these steps in more detail.

4.2.1 The Branch Exchange instruction

The BX instruction branches to the address contained in a specified register. The value
of bit 0 of the branch address determines whether execution continues in ARM state or
Thumb state. See ARM architecture v5T on page 4-9 for additional instructions
available with ARM architecture v5.

Bit 0 of an address can be used in this way because:

• all ARM instructions are word-aligned, so bits 0 and 1 of the address of any ARM
instruction are unused

• all Thumb instructions are halfword-aligned, so bit 0 of the address of any Thumb
instruction is unused.

Interworking ARM and Thumb

4-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Syntax

The syntax of BX is one of:

Thumb BX Rn

ARM BX{cond} Rn

where:

Rn is a register in the range r0 to r15 that contains the address to branch to.
The value of bit 0 in this register determines the processor state:

• if bit 0 is set, the instructions at the branch address are executed in
Thumb state

• if bit 0 is clear, the instructions at the branch address are executed
in ARM state.

cond is an optional condition code. Only the ARM version of BX can be
executed conditionally.

Usage

• You can also use BX for branches that do not change state. You can use this to
execute branches that are out of range of the normal branch instructions. Because
BX takes a 32-bit register operand it can branch anywhere in 32-bit memory. The
B and BL instructions are limited to:

— ±32MB in ARM state, for both conditional and unconditional B and BL
instructions (and the BLX label instruction in architecture v5)

— ±4MB in Thumb state, for BL instructions (and the BLX label instruction
in architecture v5)

— ±2KB in Thumb state, for the unconditional B instruction

— –252 to +258 bytes in Thumb state, for the conditional B instruction.

Note

The BX instruction is only implemented on ARM processors that are Thumb-capable. If
you use BX to execute long branches your code will fail on processors that are not
Thumb-capable. The result of executing a BX instruction on a processor that is not
Thumb-capable is unpredictable.

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-7

Changing the assembler mode

The ARM assembler can assemble both Thumb code and ARM code. By default, it
assembles ARM code unless it is invoked with the -16 option.

Because all Thumb-capable ARM processors start in ARM state, you must use the BX
instruction to branch and exchange to Thumb state, and then use the CODE16 directive
to instruct the assembler to assemble Thumb instructions. Use the corresponding
CODE32 directive to instruct the assembler to return to assembling ARM instructions.

Refer to the Assembler chapter in ADS Tools Guide for more information on these
directives.

Example ARM header

Example 4-1 on page 4-8 contains four sections of code. The first implements a short
header section of ARM code that changes the processor to Thumb state.

The header code uses:

• An ADR instruction to load the branch address and set the least significant bit. The
ADR instruction generates the address by loading r2 with the value pc+offset.
See ADS Tools Guide for more information on the ADR instruction.

• A BX instruction to branch to the Thumb code and change processor state.

The second section of the module, labelled ThumbProg, is prefixed by a CODE16
directive that instructs the assembler to treat the following code as Thumb code. The
Thumb code adds the contents of two registers together.

The processor is changed back to ARM state. The code again uses an ADR instruction
to get the address of the label, but this time the least significant bit is left clear. The BX
instruction changes the state.

The third section of the code simply adds together the contents of two registers.

The final section labeled stop uses the semihosting SWI to report normal application
exit. Refer to the ADS Debug Target Guide for more information on semihosting.

Note

The Thumb semihosting SWI is a different number from the ARM semihosting SWI
(0xAB rather than 0x123456).

Interworking ARM and Thumb

4-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Example 4-1

 AREA AddReg,CODE,READONLY ; Name this block of code.
 ENTRY ; Mark first instruction to call.
main
 ADR r0, ThumbProg + 1 ; Generate branch target address
 ; and set bit 0, hence arrive
 ; at target in Thumb state.
 BX r0 ; Branch exchange to ThumbProg.

 CODE16 ; Subsequent instructions are Thumb code.
ThumbProg
 MOV r2, #2 ; Load r2 with value 2.
 MOV r3, #3 ; Load r3 with value 3.
 ADD r2, r2, r3 ; r2 = r2 + r3
 ADR r0, ARMProg
 BX r0
 CODE32 ; Subsequent instructions are ARM code.
ARMProg
 MOV r4, #4
 MOV r5, #5
 ADD r4, r4, r5

stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x0123456 ; ARM semihosting SWI

 END ; Mark end of this file.

Building the example

To build and execute the example:

1. Enter the code using any text editor and save the file as addreg.s.

2. Type asm -g addreg.s at the command prompt to assemble the source file.

3. Type armlink addreg.o -o addreg to link the file.

4. Type armsd addreg to load the module into the command-line debugger.

5. Type step to step through the rest of the program one instruction at a time. After
each instruction, type reg to display the registers. Watch the processor enter
Thumb state. This is denoted by the T in the Current Program Status Register
(CPSR) changing from a lowercase t to an uppercase T.

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-9

4.2.2 ARM architecture v5T

There are additional interworking instructions available in the ARM v5T architecture
used by, for example, the ARM10:

BLX address The processor performs a pc-relative branch and changes state.
address must be within ±32MB of the current pc value in ARM
code or within ±4MB of the pc in Thumb code.

BLX register The processor branches to an address contained in the specified
register. The value of bit 0 determines the new processor state.

In ARM architecture v5 and above, LDR, LDM, and POP can also cause a change of
instruction set state if the pc is loaded.

For more information, see the ARM Architecture Reference Manual.

4.2.3 Data labels in Thumb code areas

You must use the DATA directive when you define data labels within a Thumb assembler
code area.

When the linker relocates a label in a Thumb code area, it assumes that the label
represents the address of a Thumb code routine. Consequently the linker sets bit 0 of the
label so that the processor is switched to Thumb state if the routine is called with a BX
instruction.

The linker cannot distinguish between code and data within a code area. If the label
represents a data item, rather than an address, the linker adds 1 to the value of the data
item.

The DATA directive marks a label as pointing to data within a code area and the linker
does not add 1 to its value. For example:

 AREA code, CODE
 CODE16
Thumb_fn ; ...
 MOV pc, lr

Thumb_Data DATA
 DCB 1, 3, 4, ...

The DATA directive must be on the same line as the symbol. Refer to the description of
the DATA directive in the assembler chapter of the ADS Tools Guide for more
information.

Interworking ARM and Thumb

4-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

4.3 C and C++ interworking and veneers

When you compile a C or C++ source file, the object file produced contains either ARM
code or Thumb code. It cannot contain both. Interworking between objects must use
veneers provided by the linker.

You can freely mix C and C++ code compiled for ARM and Thumb, but small code
segments called veneers are required between the ARM and Thumb code to carry out
state changes. The ARM linker generates these interworking veneers when it detects
interworking calls.

4.3.1 Compiling code for interworking

The -apcs /interwork compiler option enables all ARM and Thumb C and C++
compilers to compile modules containing routines that can be called by routines
compiled for the other processor state:

tcc -apcs /interwork
armcc -apcs /interwork
tcpp -apcs /interwork
armcpp -apcs /interwork

Modules that are compiled for interworking generate slightly larger code, typically 2%
larger for Thumb and less than 1% larger for ARM.

In a leaf function, that is a function whose body contains no function calls, the only
change in the code generated by the compiler is to replace MOV pc,lr with BX lr. The
MOV instruction does not cause the necessary state change.

In nonleaf functions the Thumb compiler must replace, for example, the single
instruction:

 POP {r4,r5,pc}

with the sequence:

 POP {r4,r5}
 POP {r3}
 BX r3

This has a small effect on performance. Compile all source modules for interworking,
unless you are sure they will never be used with interworking.

The -apcs /interwork option also sets the interwork attribute for the code area the
modules are compiled into. The linker detects this attribute and inserts the appropriate
veneer.

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-11

Note

ARM code compiled for interworking cannot be used on ARM processors that are not
Thumb-capable because these processors do not implement the BX instruction.

Use the armlink -info veneers or -info sizes,veneers option to find the
amount of space taken by the veneers.

C interworking example

The two modules in Example 4-2 can be built to produce an application where main()
is a Thumb routine that carries out an interworking call to an ARM subroutine. The
ARM subroutine call makes an interworking call to printf() in the Thumb library.

Example 4-2

 /**********************
 * thumb.c *
 **********************/
 #include <stdio.h>
 extern void arm_function(void);
 int main(void)
 {
 printf("Hello from Thumb World\n");
 arm_function();
 printf("And goodbye from Thumb World\n");
 return (0);
 }

 /**********************
 * arm.c *
 **********************/
 #include <stdio.h>
 void arm_function(void)
 {
 printf("Hello and Goodbye from ARM world\n");
 }

To compile and link these modules:

1. Type tcc -c -apcs /interwork -o thumb.o thumb.c at the system
prompt to compile the Thumb code for interworking.

Interworking ARM and Thumb

4-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

2. Type armcc -c -apcs /interwork -o arm.o arm.c to compile the ARM
code for interworking.

3. Type armlink -o hello arm.o thumb.o to link the object files.

Alternatively, type armlink -info veneers arm.o thumb.o to view the size
of the interworking veneers (Example 4-3).

Example 4-3

Adding veneers to the image

 Adding AT veneer (12 bytes) for call to ’_printf’ from arm.o(.text).
 Adding TA veneer (12 bytes) for call to ’arm_function’ from thumb.o(.text).
 Adding AT veneer (12 bytes) for call to ’__rt_lib_shutdown’ from
kernel.o(x$codeseg).
 Adding AT veneer (12 bytes) for call to ’_sys_exit’ from kernel.o(x$codeseg).
 Adding AT veneer (12 bytes) for call to ’__raise’ from rt_raise.o(x$codeseg).
 Adding AT veneer (12 bytes) for call to ‘_no_fp_display’ from
printf2.o(xfplprintf2).

6 Veneer(s) (total 72 bytes) added to the image.

4.3.2 Basic rules for interworking

The following rules apply to interworking within an application:

• You must use the -apcs /interwork command-line option to compile any C
or C++ modules that contain functions that might need to return to the other
instruction set.

• Never make indirect calls, such as calls using function pointers, to
non-interworking code from code in the other state.

• If any input object contains Thumb code, the linker selects the Thumb C/C++
libraries. These are built for interworking.

If you specify one of your own libraries explicitly on the linker command line you
must ensure that it is an appropriate interworking library.

Note

You must take great care when using function pointers in applications that contain both
ARM and Thumb code. The linker warns you about potential illegal calls, but it cannot
check them exactly. It is your responsibility to ensure that they are correct.

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-13

4.3.3 Using two copies of the same function

You can have two functions with the same name, one compiled for ARM and the other
for Thumb. However, we do not recommend this practice. In almost all cases there is
no significant performance increase over having a single version of the function.

Note

Both versions of the function must be compiled with the /interwork option as it is not
guaranteed that the Thumb version will only be called from Thumb state and the ARM
version will only be called from ARM state.

The linker allows duplicate definitions provided that each definition is of a different
type. That is, one definition defines a Thumb routine and the other defines an ARM
routine. The linker generates a warning message if there is a duplicate definition of a
symbol:

Both ARM & Thumb versions of symbol present in image

This is a warning to advise you in case you accidentally include two copies of the same
routine. If that is what you intended, you can ignore the warning.

Interworking ARM and Thumb

4-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

4.4 Assembly language interworking using veneers

The assembly language ARM/Thumb interworking method described in Basic
assembly language interworking on page 4-5 carried out all the necessary intermediate
processing. There was no requirement for the linker to insert interworking veneers, and
no requirement to assemble with the -apcs /interwork option that the linker uses to
decide whether to add an interworking veneer.

This section describes how you can make use of interworking veneers to:

• interwork between assembly language modules

• interwork between assembly language and C or C++ modules.

4.4.1 Assembly-only interworking using veneers

You can write assembly language ARM/Thumb interworking code to make use of
interworking veneers generated by the linker. To do this, you write:

• A caller routine just as any non-interworking routine, using a BL instruction to
make the call. A caller routine may be assembled /interwork or
/nointerwork.

• A callee routine using a BX instruction to return. A callee routine must be
assembled /interwork.

Example of assembly language interworking using veneers

Example 4-4 shows the code to set registers r0 to r2 to the values 1, 2, and 3
respectively. Registers r0 and r2 are set by the ARM code. Register r1 is set by the
Thumb code. Observe that:

• the code must be assembled with the option -apcs \interwork

• a BX lr instruction is used to return from the subroutine, instead of the usual MOV
pc,lr.

Example 4-4

 ; *****
 ; arm.s
 ; *****
 AREA Arm,CODE,READONLY ; Name this block of code.
 IMPORT ThumbProg
 ENTRY ; Mark 1st instruction to call.
ARMProg

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-15

 MOV r0,#1 ; Set r0 to show in ARM code.
 BL ThumbProg ; Call Thumb subroutine.
 MOV r2,#3 ; Set r2 to show returned to ARM.
 ; Terminate execution.
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
 END

 ; *******
 ; thumb.s
 ; *******
 AREA Thumb,CODE,READONLY
 ; Name this block of code.
 CODE16 ; Subsequent instructions are Thumb.
 EXPORT ThumbProg
ThumbProg
 MOV r1, #2 ; Set r1 to show reached Thumb code.
 BX lr ; Return to ARM subroutine.
 END ; Mark end of this file.

Follow these steps to build and link the modules, and examine the interworking veneers:

1. Type armasm arm.s to assemble the ARM code.

2. Type armasm -16 -apcs /interwork thumb.s to assemble the Thumb code.

3. Type armlink arm.o thumb.o -o count to link the two object files.

4. Type armsd count to load the code into the debugger.

5. Type list 0x8000 at the armsd command prompt to list the code. Example 4-5
on page 4-15 shows the output.

Example 4-5

armsd: list 0x8000
ArmProg
+0000 0x00008000: 0xe3a00001 : > mov r0,#1
+0004 0x00008004: 0xeb000005 : bl 0x8020 ; (ThumbProg + 0x4)
+0008 0x00008008: 0xe3a02003 . .. : mov r2,#3
+000c 0x0000800c: 0xe3a00018 : mov r0,#0x18
+0010 0x00008010: 0xe59f1000 : ldr r1,0x00008018 ; = #0x00020026
+0014 0x00008014: 0xef123456 : swi 0x123456
+0018 0x00008018: 0x00020026 &... : dcd 0x00020026 &...

Interworking ARM and Thumb

4-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ThumbProg
+0000 0x0000801c: 0x2102 .! : mov r1,#2
+0002 0x0000801e: 0x4770 pG : bx r14
+0004 0x00008020: 0xe59fc000 : ldr r12,0x00008028 ; = #ThumbProg+0x1
+0008 0x00008024: 0xe12fff1c ../. : bx r12
+000c 0x00008028: 0x0000801d : andeq r8,r0,r13,lsl r0
_edata
+0000 0x0000802c: 0xe800e800 : stmda r0,{r11,r13-pc}

You can see that the linker has added the required ARM-to-Thumb interworking
veneer. This is contained in locations 0x8020 to 0x8028. Location 0x8028
contains the address of the routine being branch-exchanged to, with bit 0 set.

4.4.2 C, C++, and assembly language interworking using veneers

C and C++ code compiled to run in one state can call assembly language code designed
to run in the other state, and vice versa. To do this, write the caller routine as any
non-interworking routine and, if calling from assembly language, use a BL instruction
to make the call (see Example 4-6). Then:

• if the callee routine is in C, compile it using -apcs /interwork

• if the callee routine is in assembly language, assemble with the -apcs
/interwork option and return using BX lr.

Note

Any assembly language code or user library code used in this manner must conform to
the ATPCS where appropriate.

Example 4-6

 /**********************
 * thumb.c *
 **********************/
 #include <stdio.h>
 extern int arm_function(int);
 int main(void)
 {
 int i = 1;
 printf("i = %d\n", i);
 printf("And now i = %d\n", arm_function(i));
 return (0);
 } ; *****

Interworking ARM and Thumb

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-17

 ; arm.s
 ; *****
 AREA Arm,CODE,READONLY
 ; Name this block of code.
 EXPORT arm_function
arm_function
 ADD r0,r0,#4 ; Add 4 to first parameter.
 BX LR ; Return
 END

Follow these steps to build and link the modules:

1. Type tcc -c -apcs /interwork thumb.c to compile the Thumb code.

2. Type armasm -apcs /interwork arm.s to assemble the ARM code.

3. Type armlink arm.o thumb.o -o add to link the two object files.

4. Type armsd add to load the code.

5. Type go to run the code.

6. Type list main to list the code generated for the main function.

7. Type list arm_function to list the code generated for the subroutine.

8. Type list arm_function$$Ven$TA to list the code generated for the Thumb
to ARM interworking veneer.

Interworking ARM and Thumb

4-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-1

Chapter 5
Mixed Language Programming

This chapter describes how to write mixed C, C++, and ARM assembly language code.
It also describes how to use the ARM inline assemblers from C and C++. It contains the
following sections:

• Using the inline assemblers on page 5-2

• Accessing C global variables from assembly code on page 5-14

• Using C header files from C++ on page 5-15

• Calling between C, C++, and ARM assembly language on page 5-17.

Mixed Language Programming

5-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

5.1 Using the inline assemblers

The inline assemblers built into the C and C++ compilers enable you to use most ARM
or Thumb assembly language instructions within a C or C++ program. You can use the
inline assembler to:

• use features of the target processor that cannot be accessed from C (the PSR for
example)

• achieve more efficient code.

The inline assembler supports very flexible interworking with C and C++. Any register
operand can be an arbitrary C or C++ expression. The inline assembler also expands
complex instructions and optimizes the assembly language code.

Note

Inline assembly language is subject to optimization by the compiler if optimization is
enabled either by default or with the -O1 or -O2 compiler options.

The armcc and armcpp inline assemblers implement, with two exceptions, the full ARM
instruction set including generic coprocessor instructions, halfword instructions and
long multiply. The tcc and tcpp inline assemblers implement, again with two
exceptions, the full Thumb instruction set. See Differences between the inline
assemblers and armasm on page 5-6 for information on BX, BLX and LDM.

The inline assembler is a high-level assembler. Some low-level features that are
available to the ARM assembler armasm, such as branching by writing to pc, are not
supported.

5.1.1 Invoking the inline assembler

The ARM C compilers support inline assembly language with the __asm specifier.

The ARM C++ compilers support the asm syntax proposed in the ANSI C++ Standard,
with the restriction that the string literal must be a single string. For example:

asm("instruction[;instruction]");

The asm syntax is supported by the C++ compilers when compiling both C and C++.
The asm statement must be inside a C or C++ function. Do not include comments in the
string literal. An asm statement can be used anywhere a C or C++ statement is expected.

In addition to the asm syntax, ARM C++ supports the C compiler __asm syntax.

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-3

The inline assembler is invoked with the assembler specifier. The specifier is followed
by a list of assembler instructions inside braces. For example:

__asm
{
 instruction [; instruction]
 ...
 [instruction]
}

If two instructions are on the same line, you must separate them with a semicolon. If an
instruction is on multiple lines, line continuation must be specified with the backslash
character (\). C or C++ comments can be used anywhere within an inline assembly
language block.

String copying example

Example 5-1 shows how to use labels and branches in a string copy routine.

This code is also in install_directory\examples\inline\strcopy.c.

The syntax of labels inside assembler blocks is the same as in C. Function calls that use
BL from inline assembly language must specify the input registers, the output registers,
and the corrupted registers. In this example, the inputs to my_strcpy() are r0 and r1,
there are no outputs, and the default ATPCS registers, r0-r3, r12, lr, and PSR, are
corrupted.

Example 5-1 String copy

#include <stdio.h>

void my_strcpy(char *src, const char *dst)
{
 int ch;
 __asm
 {
 loop:
#ifndef __thumb
 // ARM version
 LDRB ch, [src], #1
 STRB ch, [dst], #1
#else
 // Thumb version
 LDRB ch, [src]
 ADD src, #1
 STRB ch, [dst]

Mixed Language Programming

5-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 ADD dst, #1
#endif
 CMP ch, #0
 BNE loop
 }
}

int main(void)
{
 const char * a = "Hello world!";
 char b[20];

__asm
 {
 MOV R0, a
 MOV R1, b
 BL my_strcpy, {R0, R1}
 }
 printf("Original string: %s\n", a);
 printf("Copied string: %s\n", b);
 return 0;
}

5.1.2 ARM and Thumb instruction sets

The ARM and Thumb instruction sets are described in the ARM Architecture Reference
Manual. All instruction opcodes and register specifiers can be written in either
lowercase or uppercase.

Operand expressions

Any register or constant operand can be an arbitrary C or C++ expression so that
variables can be read or written. The expression must be integer assignable, that is, of
type char, short, or int. No sign extension is performed on char and short types.
You must perform sign extension explicitly for these types. The compiler might add
code to evaluate these expressions and allocate them to registers.

When an operand is used as a destination, the expression must be assignable (an lvalue).
When writing code that uses both physical registers and expressions, you must take care
not to use complex expressions that require too many registers to evaluate. The
compiler issues an error message if it detects conflicts during register allocation.

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-5

Physical registers

The inline assemblers allow restricted access to the physical registers. It is illegal to
write to pc. Only branches using B and BL are allowed. In addition, it is inadvisable to
intermix inline assembler instructions that use physical registers and complex C or C++
expressions.

The compiler uses r12 (ip) and, in tcc and tcpp, r3 for intermediate results, and r0-r3,
r12 (ip), r14 (lr) for function calls while evaluating C expressions, so these cannot be
used as physical registers at the same time.

Physical registers, like variables, must be set before they can be read. When physical
registers are used the compiler saves and restores C and C++ variables that might be
allocated to the same physical register. However, the compiler cannot restore sp, sl, fp,
or sb in calling standards where these registers have a defined role.

Constants

The constant expression specifier # is optional. If it is used, the expression following it
must be constant.

Instruction expansion

The constant in instructions with a constant operand is not limited to the values allowed
by the instruction. Instead, such an instruction is translated into a sequence of
instructions with the same effect. For example:

 ADD r0, r0, #1023

might be translated into:

 ADD r0, r0, #1024
 SUB r0, r0, #1

With the exception of coprocessor instructions, all ARM and Thumb instructions with
a constant operand support instruction expansion. In addition, the MUL instruction can
be expanded into a sequence of adds and shifts when the third operand is a constant.

The effect of updating the CPSR by an expanded instruction is:

• arithmetic instructions set the NZCV flags correctly.

• logical instructions:

— set the NZ flags correctly

— do not change the V flag

— corrupt the C flag.

Mixed Language Programming

5-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Labels

C and C++ labels can be used in inline assembler statements. C and C++ labels can be
branched to by branch instructions only in the form:

B{cond} label

You cannot branch to labels using BL.

Storage declarations

All storage can be declared in C or C++ and passed to the inline assembler using
variables. Therefore, the storage declarations that are supported by armasm are not
implemented.

SWI and BL instructions

SWIs and BL instructions must specify exactly the calling standard used. Three optional
register lists follow the normal instruction fields. The register lists specify:

• the registers that are the input parameters

• the registers that are output parameters after return

• the registers that are corrupted by the called function.

For example:

SWI{cond} swi_num, {input_regs}, {output_regs}, {corrupted_regs}
BL{cond} function, {input_regs}, {output_regs}, {corrupted_regs}

An omitted list is assumed to be empty, except that BL always corrupts ip, and lr. The
default corrupted list for BL is r0-r3.

The register lists have the same syntax as LDM and STM register lists. If the NZCV flags
are modified you must specify PSR in the corrupted register list.

5.1.3 Differences between the inline assemblers and armasm

There are a number of differences and restrictions between the assembly language
accepted by the inline assemblers and the assembly language accepted by the ARM
assembler. For the inline assemblers:

• You cannot get the address of the current instruction using dot notation (.) or
{PC}.

• The LDR Rn, =expression pseudo-instruction is not supported. Use MOV Rn,
expression instead (this can generate a load from a literal pool).

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-7

• Label expressions are not supported.

• The ADR and ADRL pseudo-instructions are not supported.

• The & operator cannot be used to denote hexadecimal constants. Use the 0x prefix
instead. For example:

__asm {AND x, y, 0xF00}

• The notation to specify the actual rotate of an 8-bit constant is not available in
inline assembly language. This means that where an 8-bit shifted constant is used,
the C flag should be regarded as corrupted if the NZCV flags are updated.

• Physical registers, such as r0-r3, ip, lr, and the NZCV flags in the CPSR must be
used with caution. If you use C or C++ expressions, these might be used as
temporary registers and NZCV flags might be corrupted by the compiler when
evaluating the expression.

• Do not use C variables with the same name as a physical register. When accessed
in an __asm block, the actual register will be used instead of the variable. (It is
possible to access the C variable by enclosing the name in parentheses, but this
behavior should not be relied upon.)

• LDM and STM instructions only allow physical registers to be specified in the
register list.

• You cannot write to pc. The BX and BLX instructions are not implemented.

• You should not modify the stack. This is not necessary because the compiler will
stack and restore any working registers as required automatically. It is not allowed
to explicitly stack and restore work registers.

• You can change processor modes, alter the ATPCS registers fp, sl, and sb, or alter
the state of coprocessors, but the compiler is unaware of the change. If you change
processor mode, you must not use C or C++ expressions until you change back to
the original mode.

Similarly, if you change the state of a floating-point coprocessor by executing
floating-point instructions, you must not use floating-point expressions until the
original state has been restored.

Mixed Language Programming

5-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

5.1.4 Usage

The following points apply to using inline assembly language:

• Comma is used as a separator in assembly language, so C expressions with the
comma operator must be enclosed in parentheses to distinguish them:

__asm {ADD x, y, (f(), z)}

• If you are using physical registers, you must ensure that the compiler does not
corrupt them when evaluating expressions. For example:

__asm
{
 MOV r0, x
 ADD y, r0, x / y // (x / y) overwrites r0
 // with the result.
}

Because the compiler uses a function call to evaluate x / y, it:

— corrupts r2, r3, ip, and lr

— updates the NZCV flags in the CPSR

— alters r0 and r1 with the dividend and modulo.

The value in r0 is lost. You can work around this by using a C variable instead of
r0:

 mov var,x
 add y, var, x / y

The compiler can detect the corruption in many cases, for example when it
requires a temporary register and the register is already in use:

__asm
{
 MOV ip, #3
 ADDS x, x, #0x12345678 // this instruction is expanded
 ORR x, x, ip
}

The compiler uses ip as a temporary register when it expands the ADD instruction,
and corrupts the value 3 in ip. An error message is issued.

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-9

• Do not use physical registers to address variables, even when it seems obvious
that a specific variable is mapped onto a specific register. If the compiler detects
this it either generates an error message or puts the variable into another register
to avoid conflicts:

int bad_f(int x) // x in r0
{
 __asm
 {
 ADD r0, r0, #1 // wrongly asserts that x is
 // still in r0
 }
 return x; // x in r0
}

This code returns x unaltered. The compiler assumes that x and r0 are two
different variables, despite the fact that x is allocated to r0 on both function entry
and function exit. As the assembly language code does not do anything useful, it
is optimized away. The instruction should be written as:

 ADD x, x, #1

• Do not save and restore physical registers that are used by an inline assembler.
The compiler will do this for you. If physical registers other than CPSR and SPSR
are read without being written to, an error message is issued. For example:

int f(int x)
{
 __asm
 {
 STMFD sp!, {r0} // save r0 - illegal: read
 // before write
 ADD r0, x, 1
 EOR x, r0, x
 LDMFD sp!, {r0} // restore r0 - not needed.
 }
 return x;
}

Mixed Language Programming

5-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

5.1.5 Examples

Example 5-2 to Example 5-5 demonstrates some of the ways that you can use inline
assembly language effectively.

Enabling and disabling interrupts

Interrupts are enabled or disabled by reading the CPSR flags and updating bit 7.
Example 5-2 shows how this can be done by using small functions that can be inlined.

This code is also in install_directory\examples\inline\irqs.c.

These functions work only in a privileged mode, because the control bits of the CPSR
and SPSR cannot be changed while in User mode.

Example 5-2 Interrupts

__inline void enable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

__inline void disable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 ORR tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

int main(void)
{
 disable_IRQ();
 enable_IRQ();
}

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-11

Dot product

Example 5-3 calculates the dot product of two integer arrays. It demonstrates how inline
assembly language can interwork with C or C++ expressions and data types that are not
directly supported by the inline assembler. The inline function mlal() is optimized to
a single SMLAL instruction. Use the -S -fs compiler option to view the assembly
language code generated by the compiler.

This code is also in install_directory\examples\inline\dotprod.c.

Example 5-3 Dot product

#include <stdio.h>
/* change word order if big-endian
#define lo64(a) (((unsigned*) &a)[0]) /* low 32 bits of a long long */
#define hi64(a) (((int*) &a)[1]) /* high 32 bits of a long long */

__inline __int64 mlal(__int64 sum, int a, int b)
{
#if !defined(__thumb) && defined(__TARGET_FEATURE_MULTIPLY)
 __asm
 {
 SMLAL lo64(sum), hi64(sum), a, b
 }
#else
 sum += (__int64) a * (__int64) b;
#endif
 return sum;
}

__int64 dotprod(int *a, int *b, unsigned n)
{
 __int64 sum = 0;
 do
 sum = mlal(sum, *a++, *b++);
 while (--n != 0);
 return sum;
}
int a[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int b[10] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
int main(void)
{
 printf("Dotproduct %lld (should be %d)\n", dotprod(a, b, 10), 220);
 return 0;
}

Mixed Language Programming

5-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Long multiplies

You can use the inline assembler to customize functions that use long long type.
Example 5-4 shows a simple long multiply routine in C.

Example 5-5 shows how you can use inline assembly language to generate different
code for the same routine. You can use the inline assembler to write the high word and
the low word of the long long separately.

The inline assembly language code depends on the word ordering of long long types,
because it assumes that the low 32 bits are at offset 0. Change the code if compiling for
big-endian.

This code is also in install_directory\examples\inline\smull.c.

Example 5-4 Multiply in C

Writing the multiply routine in C:

// long multiply routine in C
long long smull(int x, int y)
{
 return (long long) x * (long long) y;
}

The compiler generates the following code:

 MOV a3,a2
 MOV a2,a1
 SMULL ip,a2,a3,a1
 MOV a1,ip
 MOV pc,lr

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-13

Example 5-5 Multiply in inline assembly language

Writing the same routine using inline assembly language:

long long smull(int x, int y)
{
 long long res;
 __asm { SMULL ((int*)&res)[0], ((int*)&res)[1], x, y }
 return res;
}

The compiler generates the following code:

 MOV a3,a1
 SMULL a1,a2,a3,a2
 MOV pc,lr

Mixed Language Programming

5-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

5.2 Accessing C global variables from assembly code

Global variables can only be accessed indirectly, through their address. To access a
global variable, use the IMPORT directive to import the global and then load the address
into a register. You can access the variable with load and store instructions, depending
on its type.

For unsigned variables use:

• LDRB/STRB for char

• LDRH/STRH for short (LDRB/STRB for Architecture 3)

• LDR/STR for int.

For signed variables, use the equivalent signed instruction, such as LDRSB and LDRSH.

Small structures of less than eight words can be accessed as a whole using the LDM and
STM instructions. Individual members of structures can be accessed by a load or store
instruction of the appropriate type. You must know the offset of a member from the start
of the structure in order to access it.

Example 5-6 loads the address of the integer global globvar into r1, loads the value
contained in that address into r0, adds 2 to it, then stores the new value back into
globvar.

Example 5-6 Address of global

 AREA globals,CODE,READONLY

 EXPORT asmsubroutine
 IMPORT globvar

asmsubroutine
 LDR r1, =globvar ; read address of globvar into
 ; r1 from literal pool
 LDR r0, [r1]
 ADD r0, r0, #2
 STR r0, [r1]
 MOV pc, lr
 END

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-15

5.3 Using C header files from C++

This section describes how to use C header files from your C++ code. C header files
must be wrapped in extern "C" directives before they are called from C++.

5.3.1 Including system C header files

To include standard system C header files, such as stdio.h, you do not have to do
anything special. The standard C header files already contain the appropriate extern
"C" directives. For example:

// C++ code

#include <stdio.h>
int main()
{
 //...
 return 0;
}

The C++ standard specifies that the functionality of the C header files is available
through C++ specific header files. These files are installed in
install_directory\include, together with the standard C header files, and can be
referenced in the usual way. For example:

// C++ code

#include <cstdio>
int main()
{
 // ...
 return 0;
}

In ARM C++, these headers simply #include the C headers.

Note

Both the C and C++ standard header files are available as precompiled headers in the
compilers in-memory file system. Refer to C compilers in the ADS Tools Guide for
more information.

Mixed Language Programming

5-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

5.3.2 Including your own C header files

To include your own C header files, you must wrap the #include directive in an
extern "C" statement. You can do this in two ways:

• When the file is #included. This is shown in Example 5-7.

• By adding the extern "C" statement to the header file. This is shown in
Example 5-8.

Example 5-7 Directive before include file

// C++ code

extern "C"{
#include "my-header1.h"
#include "my-header2.h"
}

int main()
{
 // ...
 return 0;
}

Example 5-8 Directive in file header

/* C header file */

#ifdef __cplusplus /* Insert start of extern C construct */
extern "C" {
#endif

/* Body of header file */

#ifdef __cplusplus /* Insert end of extern C construct */
} /* The C header file can now be */
#endif /* included in either C or C++ code. */

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-17

5.4 Calling between C, C++, and ARM assembly language

This section provides examples that can help you to call C and assembly language code
from C++, and to call C++ code from C and assembly language. It also describes calling
conventions and data types.

You can mix calls between C and C++ and assembly language routines provided you
follow the appropriate procedure ATPCS call standard. For more information on the
ATPCS, see Chapter 3 Using the Procedure Call Standard.

Note

The information in this section is implementation dependent and might change in future
toolkit releases.

5.4.1 General rules for calling between languages

The following general rules apply to calling between C, C++, and assembly language.

You should not rely on the following C++ implementation details. These
implementation details are subject to change in future releases of ARM C++:

• the way names are mangled

• the way the implicit this parameter is passed

• the way virtual functions are called

• the representation of references

• the layout of C++ class types that have base classes or virtual member functions

• the passing of class objects that are not plain old data (POD) structures.

The following general rules apply to mixed language programming:

• Use C calling conventions.

• In C++, non-member functions can be declared as extern "C" to specify that
they have C linkage. In this release of ADS, having C linkage means that the
symbol defining the function is not mangled. C linkage can be used to implement
a function in one language and call it from another.

Note

Functions that are declared extern "C" cannot be overloaded.

• Assembly language modules must conform to the appropriate ARM/Thumb
Procedure Calls Standard for the memory model used by the application.

Mixed Language Programming

5-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

The following rules apply to calling C++ functions from C and assembly language:

• To call a global (non-member) C++ function, declare it extern "C" to give it C
linkage.

• Member functions (both static and non-static) always have mangled names.

• C++ inline functions cannot be called from C unless you ensure that the C++
compiler generates an out-of-line copy of the function. For example, taking the
address of the function results in an out-of-line copy.

• Non-static member functions receive the implicit this parameter as a first
argument in r0, or as a second argument in r1 if the function returns a non int-like
structure. Static member functions do not receive an implicit this parameter.

5.4.2 Information specific to C++

The following applies specifically to C++.

C++ calling conventions

ARM C++ uses the same calling conventions as ARM C with the following exceptions:

• When an object of type struct or class is passed to a function and the object
has an explicit copy constructor, the object will be copied by the calling code or
by the subroutine (callee). If the constructor is overloaded the caller makes the
copy. If the constructor is not overloaded, the callee makes the copy.

• Non-static member functions are called with the implicit this parameter as the
first argument, or as the second argument if the called function returns a non
int-like struct.

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-19

C++ data types

ARM C++ uses the same data types as ARM C with the following exceptions and
additions:

• C++ objects of type struct or class have the same layout as would be expected
from the ARM C compiler if they have no base classes or virtual functions. If such
a struct has neither a user-defined copy assignment operator or a user-defined
destructor, it is a plain old data (POD) structure.

• References are represented as pointers.

• Pointers to data members and pointers to member functions occupy four bytes.
They have the same null pointer representation as normal pointers.

• No distinction is made between pointers to C functions and pointers to C++
(non-member) functions.

Symbol name mangling

ARM C++ mangles external names of functions and static data members in a manner
similar to that described in section 7.2c of Ellis, M.A. and Stroustrup, B., The Annotated
C++ Reference Manual (1990). The linker unmangles symbols in messages.

C names must be declared as extern "C" in C++ programs. This is done already for
the ARM ANSI C headers. Refer to Using C header files from C++ on page 5-15 for
more information.

5.4.3 Examples

The following sections contain code examples that demonstrate:

• Calling assembly language from C on page 5-20

• Calling C from assembly language on page 5-21

• Calling C from C++ on page 5-22

• Calling assembly language from C++ on page 5-23

• Calling C++ from C on page 5-24

• Calling C++ from assembly language on page 5-25

• Calling C++ from C or assembly language on page 5-27

• Passing a reference between C and C++ on page 5-26

 The examples assume a non software-stack checking ATPCS variant.

Mixed Language Programming

5-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Calling assembly language from C

Example 5-9 and Example 5-10 show a C program that uses a call to an assembly
language subroutine to copy one string over the top of another string.

Example 5-9 Calling assembly language from C

#include <stdio.h>
extern void strcopy(char *d, const char *s);
int main()
{ const char *srcstr = "First string - source ";
 char dststr[] = "Second string - destination ";
/* dststr is an array since we’re going to change it */
 printf("Before copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 strcopy(dststr,srcstr);
 printf("After copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 return (0);
}

Example 5-10 Assembly language string copy subroutine

 AREA SCopy, CODE, READONLY
 EXPORT strcopy
strcopy ; r0 points to destination string.
 ; r1 points to source string.
 LDRB r2, [r1],#1 ; Load byte and update address.
 STRB r2, [r0],#1 ; Store byte and update address.
 CMP r2, #0 ; Check for zero terminator.
 BNE strcopy ; Keep going if not.
 MOV pc,lr ; Return.
 END

Example 5-9 is located in install_directory\examples\asm as strtest.c and
scopy.s. Follow these steps to build the example from the command line:

1. Type armasm -g scopy.s to build the assembly language source.

2. Type armcc -c -g strtest.c to build the C source.

3. Type armlink strtest.o scopy.o -o strtest to link the object files

4. Type armsd -e strtest execute the example.

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-21

Calling C from assembly language

Example 5-11 and Example 5-12 show how to call C from assembly language.

Example 5-11 Defining the function in C

int g(int a, int b, int c, int d, int e)
{
 return a + b + c + d +e;
}

Example 5-12 Assembly language call

 ; int f(int i) { return g(i, 2*i, 3*i, 4*i, 5*i); }

 EXPORT f
 AREA f, CODE, READONLY
 IMPORT g
 STR lr, [sp, #-4]! ; preserve lr
 ADD r1, r0, r0 ; compute 2*i (2nd param)
 ADD r2, r1, r0 ; compute 3*i (3rd param)
 ADD r3, r1, r2 ; compute 5*i
 STR r3, [sp, #-4]! ; 5th param on stack
 ADD r3, r1, r1 ; compute 4*i (4th param)
 BL g ; branch to C function
 ADD sp, sp, #4 ; remove 5th param
 LDR pc, [sp], #4 ; return
 END

Mixed Language Programming

5-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Calling C from C++

Example 5-13 and Example 5-14 show how to call C from C++.

Example 5-13 Calling a C function from C++

struct S { // has no base classes
 // or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cfunc(S *);
// declare the C function to be called from C++
int f(){
 S s(2); // initialize ’s’
 cfunc(&s); // call ’cfunc’ so it can change ’s’
 return s.i * 3;
}

Example 5-14 Defining the function in C

struct S {
 int i;
};
void cfunc(struct S *p) {
/* the definition of the C function to be called from C++ */
 p->i += 5;
}

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-23

Calling assembly language from C++

Example 5-15 and Example 5-16 show how to call assembly language from C.

Example 5-15 Calling assembly language from C++

struct S { // has no base classes
 // or virtual functions
 S(int s) : i(s) { }
 int i;
};

extern "C" void asmfunc(S *); // declare the Asm function
 // to be called
int f() {
 S s(2); // initialize ’s’
 asmfunc(&s); // call ’asmfunc’ so it
 // can change ’s’
 return s.i * 3;
}

Example 5-16 Defining the assembly language function

 AREA Asm, CODE
 EXPORT asmfunc
asmfunc ; the definition of the Asm
 LDR r1, [r0] ; function to be called from C++
 ADD r1, r1, #5
 STR r1, [r0]
 MOV pc, lr
 END

Mixed Language Programming

5-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Calling C++ from C

Example 5-17 and Example 5-18 show how to call C++ from C.

Example 5-17 Defining the function to be called in C++

struct S { // has no base classes or virtual functions
 S(int s) : i(s) { }
 int i;
};

extern "C" void cppfunc(S *p) {
// Definition of the C++ function to be called from C.
// The function is written in C++, only the linkage is C
 p->i += 5; //
}

Example 5-18 Declaring and calling the function in C

struct S {
 int i;
};

extern void cppfunc(struct S *p);
/* Declaration of the C++ function to be called from C */

int f(void) {
 struct S s;
 s.i = 2; /* initialize ’s’ */
 cppfunc(&s); /* call ’cppfunc’ so it */
 /* can change ’s’ */
 return s.i * 3;
}

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-25

Calling C++ from assembly language

Example 5-19 and Example 5-20 show how to call C++ from assembly language.

Example 5-19 Defining the function to be called in C++

struct S { // has no base classes or virtual functions
 S(int s) : i(s) { }
 int i;
};
extern "C" void cppfunc(S * p) {
// Definition of the C++ function to be called from ASM.
// The body is C++, only the linkage is C
 p->i += 5;
}

In ARM assembly language, import the name of the C++ function and use a Branch
with link instruction to call it:

Example 5-20 Defining assembly language function

 AREA Asm, CODE
 IMPORT cppfunc ; import the name of the C++
 ; function to be called from Asm

 EXPORT f
f
 STMDB sp!,{lr}
 MOV r0,#2
 STR r0,[sp,#-4]! ; initialize struct
 MOV r0,sp ; argument is pointer to struct
 BL cppfunc ; call ’cppfunc’ so it can change
 ; the struct
 LDR r0, [sp], #4
 ADD r0, r0, r0,LSL #1
 LDMIA sp!,{pc}
 END

Mixed Language Programming

5-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Passing a reference between C and C++

Example 5-21 and Example 5-22 show how to pass a reference between C and C++.

Example 5-21 C++ function

extern "C" int cfunc(const int&);
// Declaration of the C function to be called from C++

extern "C" int cppfunc(const int& r) {
// Definition of the C++ to be called from C.
 return 7 * r;
}

int f() {
 int i = 3;
 return cfunc(i); // passes a pointer to ’i’
}

Example 5-22 Defining the C function

extern int cppfunc(const int*);
/* declaration of the C++ to be called from C */

int cfunc(const int* p) {
/* definition of the C function to be called from C++ */
 int k = *p + 4;
 return cppfunc(&k);
}

Mixed Language Programming

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-27

Calling C++ from C or assembly language

The code in Example 5-23, Example 5-24 and Example 5-25 demonstrates how to call
a non-static, non-virtual C++ member function from C or assembly language. Use the
assembler output from the compiler to locate the mangled name of the function.

Example 5-23 Calling a C++ member function

struct T {
 T(int i) : t(i) { }
 int t;
 int f(int i);
};

int T::f(int i) { return i + t; }
// Definition of the C++ function to be called from C.

extern "C" int cfunc(T*);
// declaration of the C function to be called from C++

int f() {
 T t(5); // create an object of type T
 return cfunc(&t);
}

Example 5-24 Defining the C function

struct T;

extern int f__1TFi(struct T*, int);
 /* the mangled name of the C++ */
 /* function to be called */

int cfunc(struct T* t) {
/* Definition of the C function to be called from C++. */
 return 3 * f__1TFi(t, 2); /* like ’3 * t->f(2)’ */
}

Mixed Language Programming

5-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Example 5-25 Implementing the function in assembly language

 EXPORT cfunc
 AREA cfunc, CODE
 IMPORT f__1TFi
 STMDB sp!,{lr} ; r0 already contains the object pointer
 MOV r1, #2
 BL f__1TFi
 ADD r0, r0, r0, LSL #1 ; multiply by 3
 LDMIA sp!,{pc}
 END

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-1

Chapter 6
Handling Processor Exceptions

This chapter describes how to handle the various types of exception supported by ARM
processors. It contains the following sections:

• Overview on page 6-2

• Entering and leaving an exception on page 6-5

• Installing an exception handler on page 6-9

• SWI handlers on page 6-14

• Interrupt handlers on page 6-22

• Reset handlers on page 6-32

• Undefined Instruction handlers on page 6-33

• Prefetch Abort handler on page 6-34

• Data Abort handler on page 6-35

• Chaining exception handlers on page 6-37

• Handling exceptions on Thumb-capable processors on page 6-39

• System mode on page 6-44.

Handling Processor Exceptions

6-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.1 Overview

During the normal flow of execution through a program, the program counter increases
sequentially through the address space, with branches to nearby labels or branch and
links to subroutines.

Processor exceptions occur when this normal flow of execution is diverted, to allow the
processor to handle events generated by internal or external sources. Examples of such
events are:

• externally generated interrupts

• an attempt by the processor to execute an undefined instruction

• accessing privileged operating system functions.

It is necessary to preserve the previous processor status when handling such exceptions,
so that execution of the program that was running when the exception occurred can
resume when the appropriate exception routine has completed.

Table 6-1 shows the seven different types of exception recognized by ARM processors.

 Table 6-1 Exception types

Exception Description

Reset Occurs when the processor reset pin is asserted. This exception is
only expected to occur for signalling power-up, or for resetting as if
the processor has just powered up. A soft reset can be done by
branching to the reset vector (0x0000).

Undefined
Instruction

Occurs if neither the processor, or any attached coprocessor,
recognizes the currently executing instruction.

Software Interrupt
(SWI)

This is a user-defined synchronous interrupt instruction.It allows a
program running in User mode, for example, to request privileged
operations that run in Supervisor mode, such as an RTOS function.

Prefetch Abort Occurs when the processor attempts to execute an instruction that
has prefetched from an illegal address. An illegal address is one that
the memory management subsystem has determined is inaccessible
to the processor in its current mode.

Data Abort Occurs when a data transfer instruction attempts to load or store
data at an illegal address.

IRQ Occurs when the processor external interrupt request pin is asserted
(LOW) and the I bit in the CPSR is clear.

FIQ Occurs when the processor external fast interrupt request pin is
asserted (LOW) and the F bit in the CPSR is clear.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-3

6.1.1 The vector table

Processor exception handling is controlled by a vector table. The vector table is a
reserved area of 32 bytes, usually at the bottom of the memory map. It has one word of
space allocated to each exception type, and one word that is currently reserved.

This is not enough space to contain the full code for a handler, so the vector entry for
each exception type typically contains a branch instruction or load pc instruction to
continue execution with the appropriate handler.

6.1.2 Use of modes and registers by exceptions

Typically, an application runs in User mode, but servicing exceptions requires
privileged (that is, non-User mode) operation. An exception changes the processor
mode, and this in turn means that each exception handler has access to a certain subset
of the banked registers:

• its own r13 or Stack Pointer (sp_mode)

• its own r14 or Link Register (lr_mode)

• its own Saved Program Status Register (spsr_ mode).

In the case of a FIQ, each exception handler has access to five more general purpose
registers (r8_FIQ to r12_FIQ).

Each exception handler must ensure that other registers are restored to their original
contents upon exit. You can do this by saving the contents of any registers the handler
needs to use onto its stack and restoring them before returning. If you are using Angel
or ARMulator, the required stacks are set up for you. Otherwise, you must set them up
yourself. See Chapter 7 Writing Code for ROM for more information.

Note

As supplied, the assembler does not predeclare symbolic register names of the form
register_mode. To use this form, you must declare the appropriate symbolic names
with the RN assembler directive. For example, lr_FIQ RN r14 declares the symbolic
register name lr_FIQ for r14. See the assembler chapter in ADS Tools Guide for more
information on the RN directive.

6.1.3 Exception priorities

When several exceptions occur simultaneously, they are serviced in a fixed order of
priority. Each exception is handled in turn before execution of the user program
continues. It is not possible for all exceptions to occur concurrently. For example, the
Undefined Instruction and SWI exceptions are mutually exclusive because they are
both triggered by executing an instruction.

Handling Processor Exceptions

6-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Table 6-2 shows the exceptions, their corresponding processor modes and their
handling priorities.

Because the Data Abort exception has a higher priority than the FIQ exception, the Data
Abort is actually registered before the FIQ is handled. The Data Abort handler is
entered, but control is then passed immediately to the FIQ handler. When the FIQ has
been handled, control returns to the Data Abort handler. This means that the data
transfer error does not escape detection as it would if the FIQ were handled first.

 Table 6-2 Exception priorities

Vector address Exception type Exception mode Priority (1=high, 6=low)

0x0 Reset Supervisor (SVC) 1

0x4 Undefined Instruction Undef 6

0x8 Software Interrupt (SWI) Supervisor (SVC) 6

0xC Prefetch Abort Abort 5

0x10 Data Abort Abort 2

0x14 Reserved Not applicable Not applicable

0x18 Interrupt (IRQ) Interrupt (IRQ) 4

0x1C Fast Interrupt (FIQ) Fast Interrupt (FIQ) 3

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-5

6.2 Entering and leaving an exception

This section describes the processor response to an exception, and how to return to the
place where an exception occurred after the exception has been handled. The method
for returning is different depending on the exception type.

6.2.1 The processor response to an exception

When an exception is generated, the processor takes the following actions:

1. Copies the Current Program Status Register (CPSR) into the Saved Program
Status Register (SPSR) for the mode in which the exception is to be handled. This
saves the current mode, interrupt mask, and condition flags.

2. Changes the appropriate CPSR mode bits in order to:

• Change to the appropriate mode, and map in the appropriate banked
registers for that mode.

• Disable interrupts. IRQs are disabled when any exception occurs. FIQs are
disabled when a FIQ occurs, and on reset.

3. Sets lr_mode to the return address, as defined in The return address and return
instruction on page 6-7.

4. Sets the program counter to the vector address for the exception. This forces a
branch to the appropriate exception handler.

Note

If the application is running on a Thumb-capable processor, the processor response is
slightly different. See Handling exceptions on Thumb-capable processors on page 6-39
for more details.

Handling Processor Exceptions

6-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.2.2 Returning from an exception handler

The method used to return from an exception depends on whether the exception handler
uses stack operations or not. In both cases, to return execution to the place where the
exception occurred an exception handler must:

• restore the CPSR from spsr_mode

• restore the program counter using the return address stored in lr_mode.

For a simple return that does not require the destination mode registers to be restored
from the stack, the exception handler carries out these two operations by performing a
data processing instruction with:

• the S flag set

• the program counter as the destination register.

The return instruction required depends on the type of exception. See The return
address and return instruction on page 6-7 for instructions on how to return from each
exception type.

Note

You do not need to return from the reset handler because the reset handler should
execute your main code directly.

If the exception handler entry code uses the stack to store registers that must be
preserved while it handles the exception, it must return using a load multiple instruction
with the ^ qualifier. For example, an exception handler can return in one instruction
using:

 LDMFD sp!,{r0-r12,pc}^

if it saves the following onto the stack:

• all the work registers in use when the handler is invoked

• the link register, modified to produce the same effect as the data processing
instructions described below.

The ^ qualifier specifies that the CPSR is restored from the SPSR. It must be used only
from a privileged mode. See Implementing stacks with LDM and STM on page 2-42 for
more general information on stack operations.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-7

6.2.3 The return address and return instruction

The actual location pointed to by the program counter when an exception is taken
depends on the exception type. The return address may not necessarily be the next
instruction pointed to by the program counter. This section details the instructions to
return correctly from handling code for each type of exception.

Note

See The return address on page 6-41 for details of the return address on Thumb-capable
processors when an exception occurs in Thumb state.

Returning from SWI and Undefined Instruction handlers

The SWI and Undefined Instruction exceptions are generated by the instruction itself,
so the program counter is not updated when the exception is taken. Therefore, storing
(pc – 4) in lr_ mode makes lr_mode point to the next instruction to be executed.
Restoring the program counter from the lr with:

 MOVS pc, lr

returns control from the handler.

The handler entry and exit code to stack the return address and pop it on return is:

 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

Returning from FIQ and IRQ handlers

After executing each instruction, the processor checks to see whether the interrupt pins
are LOW and whether the interrupt disable bits in the CPSR are clear. As a result, IRQ
or FIQ exceptions are generated only after the program counter has been updated.
Storing (pc – 4) in lr_mode causes lr_mode to point two instructions beyond where the
exception occurred. When the handler has finished, execution must continue from the
instruction prior to the one pointed to by lr_mode. The address to continue from is one
word (four bytes) less than that in lr_mode, so the return instruction is:

 SUBS pc, lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

 SUB lr,lr,#4
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

Handling Processor Exceptions

6-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Returning from Prefetch Abort handlers

If the processor attempts to fetch an instruction from an illegal address, the instruction
is flagged as invalid. Instructions already in the pipeline continue to execute until the
invalid instruction is reached, at which point a Prefetch Abort is generated.

The exception handler invokes the MMU to load the appropriate virtual memory
locations into physical memory. It must then return to the address that caused the
exception and reload the instruction. The instruction should now load and execute
correctly.

Because the program counter is not updated at the time the prefetch abort is issued,
lr_ABT points to the instruction following the one that caused the exception. The
handler must return to lr_ABT – 4 with:

 SUBS pc,lr, #4

The handler entry and exit code to stack the return address and pop it on return is:

 SUB lr,lr,#4
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

Returning from Data Abort handlers

When a load or store instruction tries to access memory, the program counter has been
updated. A stored value of (pc – 4) in lr_ABT points to the second instruction beyond
the address where the exception was generated. When the MMU has loaded the
appropriate address into physical memory, the handler should return to the original,
aborted instruction so that a second attempt can be made to execute it. The return
address is therefore two words (eight bytes) less than that in lr_ABT, making the return
instruction:

 SUBS pc, lr, #8

The handler entry and exit code to stack the return address and pop it on return is:

 SUB lr,lr,#8
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-9

6.3 Installing an exception handler

Any new exception handler must be installed in the vector table. When installation is
complete, the new handler executes whenever the corresponding exception occurs.

Exception handlers can be installed in two ways:

Branch instruction
This is the simplest way to reach the exception handler. Each entry in the
vector table contains a branch to the required handler routine. However,
this method does have a limitation. Because the branch instruction only
has a range of 32MB relative to the pc, with some memory organizations
the branch may be unable to reach the handler.

Load pc instruction
With this method, the program counter is forced directly to the handler
address by:

1. storing the absolute address of the handler in a suitable memory
location (within 4KB of the vector address)

2. placing an instruction in the vector that loads the program counter
with the contents of the chosen memory location.

6.3.1 Installing the handlers at reset

If your application does not rely on the debugger or debug monitor to start program
execution, you can load the vector table directly from your assembly language reset (or
startup) code.

If your ROM is at location 0x0 in memory, you can simply have a branch statement for
each vector at the start of your code. This could also include the FIQ handler if it is
running directly from 0x1c (see Interrupt handlers on page 6-22).

Example 6-1 shows code that sets up the vectors if they are located in ROM at address
zero. You can substitute branch statements for the loads.

Example 6-1

Vector_Init_Block
 LDR PC, Reset_Addr
 LDR PC, Undefined_Addr
 LDR PC, SWI_Addr
 LDR PC, Prefetch_Addr

Handling Processor Exceptions

6-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 LDR PC, Abort_Addr
 NOP ;Reserved vector
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr

Reset_Addr DCD Start_Boot
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
 DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

If there is RAM at location zero, the vectors (plus the FIQ handler if required) must be
copied down from an area in ROM into the RAM. In this case, you must use load pc
instructions, and copy the storage locations, to make the code relocatable.

Example 6-2 copies down the vectors given in Example 6-1 to the vector table in RAM.

Example 6-2

 MOV r8, #0
 ADR r9, Vector_Init_Block
 LDMIA r9!,{r0-r7} ;Copy the vectors (8 words)
 STMIA r8!,{r0-r7}
 LDMIA r9!,{r0-r7} ;Copy the DCD’ed addresses
 STMIA r8!,{r0-r7} ;(8 words again)

Alternatively, you can use the scatter loading mechanism to install the vector table (see
Chapter 7 Writing Code for ROM).

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-11

6.3.2 Installing the handlers from C

Sometimes during development work it is necessary to install exception handlers into
the vectors directly from the main application. As a result, the required instruction
encoding must be written to the appropriate vector address. This can be done for both
the branch and the load pc method of reaching the handler.

Branch method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to allow for prefetching.

4. Shift the result to the right by two to give a word offset, rather than a byte offset.

5. Test that the top eight bits of this are clear, to ensure that the result is only 24 bits
long (because the offset for the branch is limited to this).

6. Logically OR this with 0xea000000 (the opcode for the Branch instruction) to
produce the value to be placed in the vector.

Example 6-3 shows a C function that implements this algorithm. It takes the following
arguments:

• the address of the handler

• the address of the vector in which the handler is to be to installed.

The function can install the handler and return the original contents of the vector. This
result can be used to create a chain of handlers for a particular exception. See Chaining
exception handlers on page 6-37 for further details.

Example 6-3

unsigned Install_Handler (unsigned routine, unsigned *vector)
/* Updates contents of ’vector’ to contain branch instruction */
/* to reach ’routine’ from ’vector’. Function return value is */
/* original contents of ’vector’.*/
/* NB: ’Routine’ must be within range of 32MB from ’vector’.*/
{ unsigned vec, oldvec;
 vec = ((routine - (unsigned)vector - 0x8)>>2);
 if (vec & 0xff000000)
 {

Handling Processor Exceptions

6-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 printf ("Installation of Handler failed");
 exit (1);
 }
 vec = 0xea000000 | vec;
 oldvec = *vector;
 *vector = vec;
 return (oldvec);
}

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
Install_Handler ((unsigned)IRQHandler, irqvec);

In this case, the returned, original contents of the IRQ vector are discarded.

Load pc method

The required instruction can be constructed as follows:

1. Take the address of the exception handler.

2. Subtract the address of the corresponding vector.

3. Subtract 0x8 to allow for the pipeline.

4. Logically OR this with 0xe59ff000 (the opcode for LDR pc, [pc,#offset])
to produce the value to be placed in the vector.

5. Put the address of the handler into the storage location.

Example 6-4 shows a C routine that implements this method.

Example 6-4

unsigned Install_Handler (unsigned location, unsigned *vector)

/* Updates contents of ’vector’ to contain LDR pc, [pc, #offset] */
/* instruction to cause long branch to address in ‘location’. */
/* Function return value is original contents of ’vector’. */

{ unsigned vec, oldvec;

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-13

 vec = ((unsigned)location - (unsigned)vector - 0x8) | 0xe59ff000
 oldvec = *vector;
 *vector = vec;
 return (oldvec);
}

The following code calls this to install an IRQ handler:

unsigned *irqvec = (unsigned *)0x18;
unsigned *irqaddr = (unsigned *)0x38;
 /* For example */
*irqaddr = (unsigned)IRQHandler;
Install_Handler (irqaddr,irqvec);

Again in this example the returned, original contents of the IRQ vector are discarded,
but they could be used to create a chain of handlers. See Chaining exception handlers
on page 6-37 for more information.

Note

If you are using a processor with separate instruction and data caches, such as
StrongARM, or ARM940T, you must ensure that cache coherence problems do not
prevent the new contents of the vectors from being used.

The data cache (or at least the entries containing the modified vectors) must be cleaned
to ensure the new vector contents are written to main memory. You must then flush the
instruction cache to ensure that the new vector contents are read from main memory.

For details of cache clean and flush operations, see the datasheet for your target
processor.

Handling Processor Exceptions

6-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.4 SWI handlers

When the SWI handler is entered, it must establish which SWI is being called. This
information is usually stored in bits 0-23 of the instruction itself, as shown in
Figure 6-1.

 Figure 6-1 ARM SWI instruction

The top-level SWI handler typically accesses the link register and loads the SWI
instruction from memory, and therefore has to be written in assembly language. The
individual routines that implement each SWI handler can be written in C if required.

The handler must first load the SWI instruction that caused the exception into a register.
At this point, lr_SVC holds the address of the instruction that follows the SWI
instruction, so the SWI is loaded into the register (in this case r0) using:

 LDR r0, [lr,#-4]

The handler can then examine the comment field bits, to determine the required
operation. The SWI number is extracted by clearing the top eight bits of the opcode:

 BIC r0, r0, #0xff000000

Example 6-5 shows how you can put these instructions together to form a top-level SWI
handler.

See Determining the processor state on page 6-42 for an example of a handler that deals
with both ARM-state and Thumb-state SWI instructions.

Example 6-5

 AREA TopLevelSwi, CODE, READONLY ; Name this block of code.
 EXPORT SWI_Handler
SWI_Handler
 STMFD sp!,{r0-r12,lr} ; Store registers.
 LDR r0,[lr,#-4] ; Calculate address of
 ; SWI instruction and
 ; load it into r0.

�� �� �� �� �� �� �� �

���� ��!���!���	����	� � � �

����	���"�	
�

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-15

 BIC r0,r0,#0xff000000 ; Mask off top 8 bits of
 ; instruction to give SWI number.
 ;
 ; Use value in r0 to determine which SWI routine to execute.
 ;
 LDMFD sp!, {r0-r12,pc}^ ; Restore registers and
 ; return.
 END ; Mark end of this file.

6.4.1 SWI handlers in assembly language

The easiest way to call the handler for the requested SWI number is to use a jump table.
If r0 contains the SWI number, the code in Example 6-6 can be inserted into the
top-level handler given in Example 6-5, following on from the BIC instruction.

Example 6-6: SWI jump table

 CMP r0,#MaxSWI ; Range check
 LDRLS pc, [pc,r0,LSL #2]
 B SWIOutOfRange
SWIJumpTable
 DCD SWInum0
 DCD SWInum1
 ; DCD for each of other SWI routines
SWInum0 ; SWI number 0 code
 B EndofSWI
SWInum1 ; SWI number 1 code
 B EndofSWI
 ; Rest of SWI handling code
 ;
EndofSWI
 ; Return execution to top level
 ; SWI handler so as to restore
 ; registers and return to program.

6.4.2 SWI handlers in C and assembly language

Although the top-level header must always be written in ARM assembly language, the
routines that handle each SWI can be written in either assembly language or in C. See
Using SWIs in Supervisor mode on page 6-18 for a description of restrictions.

Handling Processor Exceptions

6-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

The top-level header uses a BL (Branch with Link) instruction to jump to the appropriate
C function. Because the SWI number is loaded into r0 by the assembly routine, this is
passed to the C function as the first parameter (in accordance with the ARM Procedure
Call Standard). The function can use this value in, for example, a switch() statement.

You can add the following line to the SWI_Handler routine in Example 6-5:

 BL C_SWI_Handler ; Call C routine to handle the SWI

Example 6-7 shows how the C function can be implemented.

Example 6-7

void C_SWI_handler (unsigned number)
{ switch (number)
 {case 0 : /* SWI number 0 code */
 break;
 case 1 : /* SWI number 1 code */
 break;
 :
 :
 default : /* Unknown SWI - report error */
 }
}

The supervisor stack space may be limited, so avoid using functions that require a large
amount of stack space.

You can pass values in and out of a SWI handler written in C, provided that the top-level
handler passes the stack pointer value into the C function as the second parameter (in
r1):

 MOV r1, sp ; Second parameter to C routine...
 ; ...is pointer to register values.
 BL C_SWI_Handler ; Call C routine to handle the SWI

and the C function is updated to access it:

void C_SWI_handler(unsigned number, unsigned *reg)

The C function can now access the values contained in the registers at the time the SWI
instruction was encountered in the main application code (see Figure 6-2). It can read
from them:

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-17

 value_in_reg_0 = reg [0];
 value_in_reg_1 = reg [1];
 value_in_reg_2 = reg [2];
 value_in_reg_3 = reg [3];

and also write back to them:

 reg [0] = updated_value_0;
 reg [1] = updated_value_1;
 reg [2] = updated_value_2;
 reg [3] = updated_value_3;

This causes the updated value to be written into the appropriate stack position, and then
restored into the register by the top-level handler.

 Figure 6-2 Accessing the supervisor stack

������

��

��

�	

�

��������������

������
������

������

Handling Processor Exceptions

6-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.4.3 Using SWIs in Supervisor mode

When a SWI instruction is executed:

1. The processor enters Supervisor mode

2. The CPSR is stored into spsr_SVC

3. The return address is stored in lr_SVC (see The processor response to an
exception on page 6-5).

If the processor is already in Supervisor mode, lr_SVC and spsr_SVC are corrupted.

If you call a SWI while in Supervisor mode you must store lr_SVC and spsr_SVC to
ensure that the original values of the link register and the SPSR are not lost. For
example, if the handler routine for a particular SWI number calls another SWI, you
must ensure that the handler routine stores both lr_SVC and spsr_SVC on the stack.
This ensures that each invocation of the handler saves the information needed to return
to the instruction following the SWI that invoked it. Example 6-8 shows how to do this.

Example 6-8 SWI Handler

 STMFD sp!,{r0-r3,r12,lr} ; Store registers.
 LDR r0,[lr,#-4] ; Calculate address of SWI instruction...
 ; ...and load it into r0.
 BIC r0,r0,#0xff000000 ; Mask off top 8 bits of
 ; instruction to give SWI number.
 MOV r1, sp ; Second parameter to C routine...
 ; ...is pointer to register values.
 MRS r2, spsr ; Move the spsr into a general purpose register.
 STMFD sp!, {r2} ; Store spsr onto stack. This is
 ; only really needed in case of
 ; nested SWIs.
 BL C_SWI_Handler ; Call C routine to handle the SWI.
 LDMFD sp!, {r2} ; Restore spsr from stack into r2...
 MSR spsr, r2 ; ... and restore it into spsr.
 LDMFD sp!, {r0-r3,r12,pc}^ ; Restore registers and return.
 END ; Mark end of this file.

Nested SWIs in C and C++

You can write nested SWIs in C or C++. Code generated by the ARM compilers stores
and reloads lr_SVC as necessary.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-19

6.4.4 Calling SWIs from an application

The easiest way to call SWIs from your application code is to set up any required
register values and call the relevant SWI in assembly language. For example:

 MOV r0, #65 ; load r0 with the value 65
 SWI 0x0 ; Call SWI 0x0 with parameter value in r0

The SWI instruction can be conditionally executed, as can all ARM instructions.

Calling a SWI from C is more complicated because it is necessary to map a function call
onto each SWI with the __swi compiler directive. This allows a SWI to be compiled
inline, without additional calling overhead, provided that:

• any arguments are passed in r0-r3 only

• any results are returned in r0-r3 only.

The parameters are passed to the SWI as if the SWI were a real function call. However,
if there are between two and four return values, you must tell the compiler that the return
values are being returned in a structure, and use the __value_in_regs directive. This
is because a struct-valued function is usually treated as if it were a void function whose
first argument is the address where the result structure should be placed.

Example 6-9 shows a SWI handler that provides SWI numbers 0x0 and 0x1. SWI 0x0
takes four integer parameters and returns a single result. SWI 0x1 takes a single
parameter and returns four results.

Example 6-9

struct four
{ int a, b, c, d;
};

__swi (0x0) int calc_one (int,int,int,int);
__swi (0x1) __value_in_regs struct four calc_four (int);
/* You can call the SWIs in the following manner */
void func (void)
{ struct four result;
 int single, res1, res2, res3, res4;
 single = calc_one (val1, val2, val3, val4);
 result = calc_four (val5);
 res1 = result.a;
 res2 = result.b;
 res3 = result.c;
 res4 = result.d;
}

Handling Processor Exceptions

6-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.4.5 Calling SWIs dynamically from an application

In some circumstances it may be necessary to call a SWI whose number is not known
until runtime. This situation can occur, for example, when there are a number of related
operations that can be performed on an object, and each operation has its own SWI. In
such a case, the methods described above are not appropriate.

There are several ways of dealing with this, for example, you can:

• Construct the SWI instruction from the SWI number, store it somewhere, then
execute it.

• Use a generic SWI that takes, as an extra argument, a code for the actual operation
to be performed on its arguments. The generic SWI decodes the operation and
performs it.

The second mechanism can be implemented in assembly language by passing the
required operation number in a register, typically r0 or r12. You can then rewrite the
SWI handler to act on the value in the appropriate register. Because some value has to
be passed to the SWI in the comment field, it would be possible for a combination of
these two methods to be used.

For example, an operating system might make use of only a single SWI instruction and
employ a register to pass the number of the required operation. This leaves the rest of
the SWI space available for application-specific SWIs. You can use this method if the
overhead of extracting the SWI number from the instruction is too great in a particular
application. This is how the ARM (0x123456) and Thumb (0xAB) semihosted SWIs
are implemented.

A mechanism is included in the compiler to support the use of r12 to pass the value of
the required operation. Under the ARM Procedure Call Standard, r12 is the ip register
and has a dedicated role only during function call. At other times, you can use it as a
scratch register. The arguments to the generic SWI are passed in registers r0-r3 and
values are optionally returned in r0-r3 as described earlier. The operation number
passed in r12 could be, but need not be, the number of the SWI to be called by the
generic SWI.

Example 6-10 shows a C fragment that uses a generic, or indirect SWI.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-21

Example 6-10

__swi_indirect(0x80)
 unsigned SWI_ManipulateObject(unsigned operationNumber,
 unsigned object,unsigned parameter);

unsigned DoSelectedManipulation(unsigned object,
 unsigned parameter, unsigned operation)
{ return SWI_ManipulateObject(operation, object, parameter);
}

This produces the following code:

DoSelectedManipulation
 STR lr,[sp,#-4]!
 MOV ip,a3
 SWI 0x80
 LDR pc,[sp],#4
 EXPORT DoSelectedManipulation

It is also possible to pass the SWI number in r0 from C using the __swi mechanism.
For example, if SWI 0x0 is used as the generic SWI and operation 0 is a character read
and operation 1 a character write, you can set up the following:

__swi (0) char __ReadCharacter (unsigned op);
__swi (0) void __WriteCharacter (unsigned op, char c);

These can be used in a more reader-friendly fashion by defining the following:

#define ReadCharacter () __ReadCharacter (0);
#define WriteCharacter (c) __WriteCharacter (1, c);

However, if you use r0 in this way, only three registers are available for passing
parameters to the SWI. Usually, if you need to pass more parameters to a subroutine in
addition to r0-r3, you can do this using the stack. However, stacked parameters are not
easily accessible to a SWI handler, because they typically exist on the User mode stack
rather than the supervisor stack employed by the SWI handler.

Alternatively, one of the registers (typically r1) can be used to point to a block of
memory storing the other parameters.

Handling Processor Exceptions

6-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.5 Interrupt handlers

The ARM processor has two levels of external interrupt, FIQ and IRQ, both of which
are level-sensitive active LOW signals into the core. For an interrupt to be taken, the
appropriate disable bit in the CPSR must be clear.

FIQs have higher priority than IRQs in two ways:

• FIQs are serviced first when multiple interrupts occur.

• Servicing a FIQ causes IRQs to be disabled, preventing them from being serviced
until after the FIQ handler has re-enabled them. This is usually done by restoring
the CPSR from the SPSR at the end of the handler.

The FIQ vector is the last entry in the vector table (at address 0x1c) so that the FIQ
handler can be placed directly at the vector location and run sequentially from that
address. This removes the need for a branch and its associated delays, and also means
that if the system has a cache, the vector table and FIQ handler may all be locked down
in one block within it. This is important because FIQs are designed to service interrupts
as quickly as possible. The five extra FIQ mode banked registers enable status to be held
between calls to the handler, again increasing execution speed.

Note

An interrupt handler should contain code to clear the source of the interrupt.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-23

6.5.1 Simple interrupt handlers in C

You can write simple C interrupt handlers by using the __irq function declaration
keyword. You can use the __irq keyword both for simple one-level interrupt handlers,
and interrupt handlers that call subroutines. However, you cannot use the __irq
keyword for reentrant interrupt handlers, because it does not store all the required state.
In this context, reentrant means that the handler re-enables interrupts, and may itself be
interrupted. See Reentrant interrupt handlers on page 6-25 for more information.

The __irq keyword:

• preserves all APCS corruptible registers

• preserves all other registers (excluding the floating-point registers) used by the
function

• exits the function by setting the program counter to (lr – 4) and restoring the
CPSR to its original value.

If the function calls a subroutine, __irq preserves the link register for the interrupt
mode in addition to preserving the other corruptible registers. See Calling subroutines
from interrupt handlers on page 6-23 for more information.

Note

C interrupt handlers cannot be produced in this way using tcc. The __irq keyword is
faulted by tcc because tcc can only produce Thumb code, and the processor is always
switched to ARM state when an interrupt, or any other exception, occurs.

However, the subroutine called by an __irq function can be compiled for Thumb, with
interworking enabled. See Chapter 4 Interworking ARM and Thumb for more
information on interworking.

Calling subroutines from interrupt handlers

If you call subroutines from your top-level interrupt handler, the __irq keyword also
restores the value of lr_IRQ from the stack so that it can be used by a SUBS instruction
to return to the correct address after the interrupt has been handled.

Example 6-11 shows how this works. The top level interrupt handler reads the value of
a memory-mapped interrupt controller base address at 0x80000000. If the value of the
address is 1, the top-level handler branches to a handler written in C.

Handling Processor Exceptions

6-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Example 6-11

__irq void IRQHandler (void)
{
 volatile unsigned int *base = (unsigned int *) 0x80000000;

 if (*base == 1) // which interrupt was it?
 {
 C_int_handler(); // process the interrupt
 }
 *(base+1) = 0; // clear the interrupt
}

Compiled with armcc, Example 6-11 produces the following code:

IRQHandler
 STMDB sp!,{a1-v1,ip,lr}
 MOV v1,#0x80000000
 LDR a1,[v1,#0]
 CMP a1,#1
 BLEQ C_int_handler
 MOV a1,#0
 STR a1,[v1,#4]
 LDMIA sp!,{a1-v1,ip,lr}
 SUBS pc,lr,#4

 EXPORT IRQHandler

Compare this to the result of not using the __irq keyword:

IRQHandler
 STMDB sp!,{v1,lr}
 MOV v1,#0x80000000
 LDR a1,[v1,#0]
 CMP a1,#1
 BLEQ C_int_handler
 MOV a1,#0
 STR a1,[v1,#4]
 LDMIA sp!,{v1,pc}

 EXPORT IRQHandler

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-25

6.5.2 Reentrant interrupt handlers

Note

The following method works for both IRQ and FIQ interrupts. However, because FIQ
interrupts are meant to be serviced as quickly as possible there will normally be only
one interrupt source, so it may not be necessary to allow for reentrancy.

If an interrupt handler re-enables interrupts, then calls a subroutine, and another
interrupt occurs, the return address of the subroutine (stored in lr_IRQ) is corrupted
when the second IRQ is taken. Using the __irq keyword in C does not store all the state
information required for reentrant interrupt handlers, so you must write your top level
interrupt handler in assembly language.

A reentrant interrupt handler must save the necessary IRQ state, switch processor
modes, and save the state for the new processor mode before branching to a nested
subroutine or C function.

In ARM architecture v4 or later you can switch to System mode. System mode uses the
User mode registers, and allows privileged access that may be required by your
exception handler. See System mode on page 6-44 for more information. In ARM
architectures prior to ARM architecture v4 you must switch to Supervisor mode instead.

The steps needed to safely re-enable interrupts in an IRQ handler are:

1. Construct return address and save on the IRQ stack.

2. Save the work registers and spsr_IRQ.

3. Clear the source of the interrupt.

4. Switch to System mode and re-enable interrupts.

5. Save User mode link register and non callee-saved registers.

6. Call the C interrupt handler function.

7. When the C interrupt handler returns, restore User mode registers and disable
interrupts.

8. Switch to IRQ mode, disabling interrupts.

9. Restore work registers and spsr_IRQ.

10. Return from the IRQ.

Example 6-12 shows how this works for System mode. Registers r12 and r14 are used
as temporary work registers after lr_IRQ is pushed on the stack.

Handling Processor Exceptions

6-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Example 6-12

 AREA INTERRUPT, CODE, READONLY
 IMPORT C_irq_handler
IRQ
 SUB lr, lr, #4 ; construct the return address
 STMFD sp!, {lr} ; and push the adjusted lr_IRQ
 MRS r14, SPSR ; copy spsr_IRQ to r14
 STMFD sp!, {r12, r14} ; save work regs and spsr_IRQ

 ; Add instructions to clear the interrupt here
 ; then re-enable interrupts.

 MSR CPSR_c, #0x1F ; switch to SYS mode, FIQ and IRQ
 ; enabled. USR mode registers
 ; are now current.
 STMFD sp!, {r0-r3, lr} ; save lr_USR and non-callee
 ; saved registers
 BL C_irq_handler ; branch to C IRQ handler.
 LDMFD sp!, {r0-r3, lr} ; restore registers
 MSR CPSR_c, #0x92 ; switch to IRQ mode and disable
 ; IRQs. FIQ is still enabled.

 LDMFD sp!, {r12, r14} ; restore work regs and spsr_IRQ
 MSR SPSR_cf, r14
 LDMFD sp!, {pc}^ ; return from IRQ.
 END

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-27

6.5.3 Example interrupt handlers in assembly language

Interrupt handlers are often written in assembly language to ensure that they execute
quickly. The following sections give some examples:

• Single-channel DMA transfer

• Dual-channel DMA transfer on page 6-28

• Interrupt prioritization on page 6-29

• Context switch on page 6-31.

Single-channel DMA transfer

Example 6-13 shows an interrupt handler that performs interrupt driven I/O to memory
transfers (soft DMA). The code is an FIQ handler. It uses the banked FIQ registers to
maintain state between interrupts. This code is best situated at location 0x1c.

In the example code:

r8 Points to the base address of the I/O device that data is read from.

IOData Is the offset from the base address to the 32-bit data register that is read.
Reading this register clears the interrupt.

r9 Points to the memory location to where that data is being transferred.

r10 Points to the last address to transfer to.

The entire sequence for handling a normal transfer is four instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 6-13

 LDR r11, [r8, #IOData] ; Load port data from the IO
 ; device.
 STR r11, [r9], #4 ; Store it to memory: update
 ; the pointer.
 CMP r9, r10 ; Reached the end ?
 SUBLES pc, lr, #4 ; No, so return.
 ; Insert transfer complete
 ; code here.

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the load instruction and the store instruction.

Handling Processor Exceptions

6-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Dual-channel DMA transfer

Example 6-14 is similar to Example 6-13, except that there are two channels being
handled (which may be the input and output side of the same channel). The code is an
FIQ handler. It uses the banked FIQ registers to maintain state between interrupts. It is
best situated at location 0x1c.

In the example code:

r8 Points to the base address of the I/O device from which data is
read.

IOStat Is the offset from the base address to a register indicating which
of two ports caused the interrupt.

IOPort1Active Is a bit mask indicating if the first port caused the interrupt
(otherwise it is assumed that the second port caused the interrupt).

IOPort1, IOPort2 Are offsets to the two data registers to be read. Reading a data
register clears the interrupt for the corresponding port.

r9 Points to the memory location to which data from the first port is
being transferred.

r10 Points to the memory location to which data from the second port
is being transferred.

r11, r12 Point to the last address to transfer to (r11 for the first port, r12 for
the second).

The entire sequence to handle a normal transfer takes nine instructions. Code situated
after the conditional return is used to signal that the transfer is complete.

Example 6-14

 LDR r13, [r8, #IOStat] ; Load status register to find which port
 ; caused the interrupt.
 TST r13, #IOPort1Active
 LDREQ r13, [r8, #IOPort1] ; Load port 1 data.
 LDRNE r13, [r8, #IOPort2] ; Load port 2 data.
 STREQ r13, [r9], #4 ; Store to buffer 1.
 STRNE r13, [r10], #4 ; Store to buffer 2.
 CMP r9, r11 ; Reached the end?
 CMPLE r10, r12 ; On either channel?
 SUBNES pc, lr, #4 ; Return
 ; Insert transfer complete code here.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-29

Byte transfers can be made by replacing the load instructions with load byte
instructions. Transfers from memory to an I/O device are made by swapping the
addressing modes between the conditional load instructions and the conditional store
instructions.

Interrupt prioritization

Example 6-15 dispatches up to 32 interrupt sources to their appropriate handler
routines. Because it is designed for use with the normal interrupt vector (IRQ), it should
be branched to from location 0x18.

External hardware is used to prioritize the interrupt and present the high-priority active
interrupt in an I/O register.

In the example code:

IntBase Holds the base address of the interrupt controller.

IntLevel Holds the offset of the register containing the highest-priority active
interrupt.

r13 Is assumed to point to a small full descending stack.

Interrupts are enabled after ten instructions, including the branch to this code.

The specific handler for each interrupt is entered after a further two instructions (with
all registers preserved on the stack).

In addition, the last three instructions of each handler are executed with interrupts
turned off again, so that the SPSR can be safely recovered from the stack.

Note

Application Note 30: Software Prioritization of Interrupts describes multiple-source
prioritization of interrupts using software, as opposed to using hardware as described
here.

Example 6-15

 ; first save the critical state
 SUB lr, lr, #4 ; Adjust the return address
 ; before we save it.
 STMFD sp!, {lr} ; Stack return address
 MRS r14, SPSR ; get the SPSR ...
 STMFD sp!, {r12, r14} ; ... and stack that plus a
 ; working register too.

Handling Processor Exceptions

6-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 ; Now get the priority level of the
 ; highest priority active interrupt.
 MOV r12, #IntBase ; Get the interrupt controller’s
 ; base address.
 LDR r12, [r12, #IntLevel] ; Get the interrupt level (0 to 31).

 ; Now read-modify-write the CPSR to enable interrupts.

 MRS r14, CPSR ; Read the status register.
 BIC r14, r14, #0x80 ; Clear the I bit
 ; (use 0x40 for the F bit).
 MSR CPSR_c, r14 ; Write it back to re-enable
 ; interrupts and
 LDR PC, [PC, r12, LSL #2] ; jump to the correct handler.
 ; PC base address points to this
 ; instruction + 8
 NOP ; pad so the PC indexes this table.

 ; Table of handler start addresses
 DCD Priority0Handler
 DCD Priority1Handler
 DCD Priority2Handler
; ...
 Priority0Handler
 STMFD sp!, {r0 - r11} ; Save other working registers.
 ; Insert handler code here.
; ...
 LDMFD sp!, {r0 - r11} ; Restore working registers (not r12).

 ; Now read-modify-write the CPSR to disable interrupts.
 MRS r12, CPSR ; Read the status register.
 ORR r12, r12, #0x80 ; Set the I bit
 ; (use 0x40 for the F bit).
 MSR CPSR_c, r12 ; Write it back to disable interrupts.

 ; Now that interrupt disabled, can safely restore SPSR then return.
 LDMFD sp!, {r12, r14} ; Restore r12 and get SPSR.
 MSR SPSR_csxf, r14 ; Restore status register from r14.
 LDMFD sp!, {pc}^ ; Return from handler.
Priority1Handler
; ...

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-31

Context switch

Example 6-16 performs a context switch on the User mode process. The code is based
around a list of pointers to Process Control Blocks (PCBs) of processes that are ready
to run.

Figure 6-3 shows the layout of the PCBs that the example expects.

 Figure 6-3 PCB layout

The pointer to the PCB of the next process to run is pointed to by r12, and the end of
the list has a zero pointer. Register r13 is a pointer to the PCB, and is preserved between
time slices, so that on entry it points to the PCB of the currently running process.

Example 6-16

 STMIA r13, {r0 - r14}^ ; Dump user registers above r13.
 MRS r0, SPSR ; Pick up the user status
 STMDB r13, {r0, lr} ; and dump with return address below.
 LDR r13, [r12], #4 ; Load next process info pointer.
 CMP r13, #0 ; If it is zero, it is invalid
 LDMNEDB r13, {r0, lr} ; Pick up status and return address.
 MSRNE SPSR_cxsf, r0 ; Restore the status.
 LDMNEIA r13, {r0 - r14}^ ; Get the rest of the registers
 NOP
 SUBNES pc, lr, #4 ; and return and restore CPSR.
 ; Insert "no next process code" here.

��
��
��
��
��
��
��
�	
�

��

���

��
�	

�		
�	�
�	�
�	�

����������

�������������������

Handling Processor Exceptions

6-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.6 Reset handlers

The operations carried out by the Reset handler depend on the system for which the
software is being developed. For example, it may:

• Set up exception vectors. See Installing an exception handler on page 6-9 for
details.

• Initialize stacks and registers.

• Initialize the memory system, if using an MMU.

• Initialize any critical I/O devices.

• Enable interrupts.

• Change processor mode and/or state.

• Initialize variables required by C and call the main application.

See Chapter 7 Writing Code for ROM for more information.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-33

6.7 Undefined Instruction handlers

Instructions that are not recognized by the processor are offered to any coprocessors
attached to the system. If the instruction remains unrecognized, an Undefined
Instruction exception is generated. It could be the case that the instruction is intended
for a coprocessor, but that the relevant coprocessor, for example a Floating Point
Accelerator, is not attached to the system. However, a software emulator for such a
coprocessor might be available.

Such an emulator should:

1. Attach itself to the Undefined Instruction vector and store the old contents.

2. Examine the undefined instruction to see if it should be emulated. This is similar
to the way in which a SWI handler extracts the number of a SWI, but rather than
extracting the bottom 24 bits, the emulator must extract bits 27-24.

These bits determine whether the instruction is a coprocessor operation in the
following way:

• If bits 27 to 24 = b1110 or b110x, the instruction is a coprocessor
instruction.

• If bits 8-11 show that this coprocessor emulator should handle the
instruction, the emulator should process the instruction and return to the
user program.

3. Otherwise the emulator should pass the exception onto the original handler (or the
next emulator in the chain) using the vector stored when the emulator was
installed.

When a chain of emulators is exhausted, no further processing of the instruction can
take place, so the Undefined Instruction handler should report an error and quit. See
Chaining exception handlers on page 6-37 for more information.

Note

The Thumb instruction set does not have coprocessor instructions, so there should be
no need for the Undefined Instruction handler to emulate such instructions.

Handling Processor Exceptions

6-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.8 Prefetch Abort handler

If the system has no MMU, the Prefetch Abort handler can simply report the error and
quit. Otherwise the address that caused the abort must be restored into physical memory.
lr_ABT points to the instruction at the address following the one that caused the abort,
so the address to be restored is at lr_ABT - 4. The virtual memory fault for that
address can be dealt with and the instruction fetch retried. The handler should therefore
return to the same instruction rather than the following one, for example:

 SUBS pc,lr,#4

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-35

6.9 Data Abort handler

If there is no MMU, the Data Abort handler should simply report the error and quit. If
there is an MMU, the handler should deal with the virtual memory fault.

The instruction that caused the abort is at lr_ABT - 8 because lr_ABT points two
instructions beyond the instruction that caused the abort.

Three types of instruction can cause this abort:

Single Register Load or Store (LDR or STR)
The response depends on the processor type:

• If the abort takes place on an ARM6-based processor:

— If the processor is in early abort mode and writeback was
requested, the address register will not have been updated.

— If the processor is in late abort mode and writeback was
requested, the address register will have been updated. The
change must be undone.

• If the abort takes place on an ARM7-based processor, including the
ARM7TDMI, the address register will have been updated and the
change must be undone.

• If the abort takes place on an ARM9, ARM10, or
StrongARM-based processor, the address is restored by the
processor to the value it had before the instruction started. No
further action is required to undo the change.

Swap (SWP) There is no address register update involved with this instruction.

Load Multiple or Store Multiple (LDM or STM)
The response depends on the processor type:

• If the abort takes place on an ARM6-based processor or
ARM7-based processor, and writeback is enabled, the base register
will have been updated as if the whole transfer had taken place.

In the case of an LDM with the base register in the register list, the
processor replaces the overwritten value with the modified base
value so that recovery is possible. The original base address can
then be recalculated using the number of registers involved.

• If the abort takes place on an ARM9, ARM10, or
StrongARM-based processor and writeback is enabled, the base
register will be restored to the value it had before the instruction
started.

Handling Processor Exceptions

6-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

In each of the three cases the MMU can load the required virtual memory into physical
memory. The MMU Fault Address Register (FAR) contains the address that caused the
abort. When this is done, the handler can return and try to execute the instruction again.

You can find example Data Abort handler code in
install_directory/examples/databort.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-37

6.10 Chaining exception handlers

In some situations there can be several different sources of a particular exception. For
example:

• Angel uses an Undefined Instruction to implement breakpoints. However,
Undefined Instruction exceptions also occur when a coprocessor instruction is
executed, and no coprocessor is present.

• Angel uses a SWI for various purposes, such as entering Supervisor mode from
User mode, and supporting semihosting requests during development. However,
an RTOS or an application may also wish to implement some SWIs.

In such situations there are two approaches that can be taken to extend the exception
handling code:

• A single extended handler

• Several chained handlers.

6.10.1 A single extended handler

In some circumstances it is possible to extend the code in the exception handler to work
out what the source of the exception was, and then directly call the appropriate code. In
this case, you are modifying the source code for the exception handler.

Angel has been written to make this approach simple. Angel decodes SWIs and
Undefined Instructions, and the Angel exception handlers can be extended to deal with
non-Angel SWIs and Undefined Instructions.

However, this approach is only useful if all the sources of an exception are known when
the single exception handler is written.

6.10.2 Several chained handlers

Some circumstances require more than a single handler. Consider the situation in which
a standard Angel debugger is executing, and a standalone user application (or RTOS)
which wants to support some additional SWIs is then downloaded. The newly loaded
application may well have its own entirely independent exception handler that it wants
to install, but which cannot simply replace the Angel handler.

In this case the address of the old handler must be noted so that the new handler is able
to call the old handler if it discovers that the source of the exception is not a source it
can deal with. For example, an RTOS SWI handler would call the Angel SWI handler
on discovering that the SWI was not an RTOS SWI, so that the Angel SWI handler gets
a chance to process it.

Handling Processor Exceptions

6-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

This approach can be extended to any number of levels to build a chain of handlers.
Although code that takes this approach allows each handler to be entirely independent,
it is less efficient than code that uses a single handler, or at least it becomes less efficient
the further down the chain of handlers it has to go.

Both routines given in Installing the handlers from C on page 6-11 return the old
contents of the vector. This value can be decoded to give:

The offset for a branch instruction
This can be used to calculate the location of the original handler and
allow a new branch instruction to be constructed and stored at a suitable
place in memory. If the replacement handler fails to handle the exception,
it can branch to the constructed branch instruction, which in turn will
branch to the original handler.

The location used to store the address of the original handler
If the application handler failed to handle the exception, it would then
need to load the program counter from that location.

In most cases, such calculations may not be necessary because information on the debug
monitor or RTOS handlers should be available to you. If so, the instructions required to
chain in the next handler can be hard-coded into the application. The last section of the
handler must check that the cause of the exception has been handled. If it has, the
handler can return to the application. If not, it must call the next handler in the chain.

Note

When chaining in a handler before a debug monitor handler, you must remove the chain
when the monitor is removed from the system, then directly install the application
handler.

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-39

6.11 Handling exceptions on Thumb-capable processors

This section describes the additional considerations you must take into account when
writing exception handlers suitable for use on Thumb-capable processors.

Thumb-capable processors use the same basic exception handling mechanism as
processors that are not Thumb-capable. An exception causes the next instruction to be
fetched from the appropriate vector table entry.

Note

This section applies only to Thumb-capable ARM processors.

The same vector table is used for both Thumb-state and ARM-state exceptions. An
initial step that switches to ARM state is added to the exception handling procedure
described in The processor response to an exception on page 6-5.

6.11.1 Thumb processor response to an exception

When an exception is generated, the processor takes the following actions:

1. Copies cpsr into spsr_mode.

2. Switches to ARM state.

3. Sets the CPSR mode bits.

4. Stores the return address in lr_mode. See The return address on page 6-41 for
further details.

5. Sets the program counter to the vector address for the exception. The switch from
Thumb state to ARM state in step 1 ensures that the ARM instruction installed at
this vector address (either a branch or a pc-relative load) is correctly fetched,
decoded, and executed. This forces a branch to a top-level veneer that you must
write in ARM code.

Handling Processor Exceptions

6-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Handling the exception

Your top-level veneer routine should save the processor status and any required
registers on the stack. You then have two options for writing the exception handler:

• Write the whole exception handler in ARM code.

• Perform a BX (Branch and eXchange) to a Thumb code routine that handles the
exception. The routine must return to an ARM code veneer in order to return from
the exception, because the Thumb instruction set does not have the instructions
required to restore cpsr from spsr.

This second strategy is shown in Figure 6-4. See Chapter 4 Interworking ARM and
Thumb for details of how to combine ARM and Thumb code in this way.

 Figure 6-4 Handling an exception in Thumb state

��������	
	
����������

������	
	
�
�

��

��������	
	
���	
��
��������

���������
���������

���������������
�������� �������

���������
���������

���������
�����������

!�� ������
�"�������

������#���
��$�����������

����������#���
��$�����������

%���&�������

%"��������

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-41

6.11.2 The return address

If an exception occurs in ARM state, the value stored in lr_mode is (pc – 4) as described
in The return address and return instruction on page 6-7. However, if the exception
occurs in Thumb state, the processor automatically stores a different value for each of
the exception types. This adjustment is required because Thumb instructions take up
only a halfword, rather than the full word that ARM instructions occupy.

If this correction were not made by the processor, the handler would have to determine
the original state of the processor, and use a different instruction to return to Thumb
code rather than ARM code. By making this adjustment, however, the processor allows
the handler to have a single return instruction that will return correctly, regardless of the
processor state (ARM or Thumb) at the time the exception occurred.

The following sections give a summary of the values to which the processor sets
lr_mode if an exception occurs when the processor is in Thumb state.

SWI and Undefined Instruction handlers

The handler's return instruction (MOVS pc,lr) changes the program counter to the
address of the next instruction to execute. This is at (pc – 2), so the value stored by the
processor in lr_mode is (pc – 2).

FIQ and IRQ handlers

The handler's return instruction (SUBS pc,lr,#4) changes the program counter to the
address of the next instruction to execute. Because the program counter is updated
before the exception is taken, the next instruction is at (pc – 4). The value stored by the
processor in lr_mode is therefore pc.

Prefetch Abort handlers

The handler's return instruction (SUBS pc,lr,#4) changes the program counter to the
address of the aborted instruction. Because the program counter is not updated before
the exception is taken, the aborted instruction is at (pc – 4). The value stored by the
processor in lr_mode is therefore pc.

Data Abort handlers

The handler's return instruction (SUBS pc,lr,#8) changes the program counter to the
address of the aborted instruction. Because the program counter is updated before the
exception is taken, the aborted instruction is at (pc – 6). The value stored by the
processor in lr_mode is therefore (pc + 2).

Handling Processor Exceptions

6-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.11.3 Determining the processor state

An exception handler may need to determine whether the processor was in ARM or
Thumb state when the exception occurred. SWI handlers, especially, may need to read
the processor state. This is done by examining the SPSR T-bit. This bit is set for Thumb
state and clear for ARM state.

Both ARM and Thumb instruction sets have the SWI instruction. When calling SWIs
from Thumb state, you must consider three things:

• the address of the instruction is at (lr – 2), rather than (lr – 4)

• the instruction itself is 16-bit, and so requires a halfword load (see Figure 6-5)

• the SWI number is held in 8 bits instead of the 24 bits in ARM state.

 Figure 6-5 Thumb SWI instruction

Example 6-17 shows ARM code that handles a SWI from both sources. Consider the
following points:

• Each of the do_swi_x routines could carry out a switch to Thumb state and back
again to improve code density if required.

• You could replace the jump table by a call to a C function containing a switch()
statement to implement the SWIs.

• It is possible for a SWI number to be handled differently depending upon the state
it is called from.

• The range of SWI numbers accessible from Thumb state can be increased by
calling SWIs dynamically (as described in SWI handlers on page 6-14).

Example 6-17

T_bit EQU 0x20 ; Thumb bit of CPSR/SPSR, that is, bit 5.
 :
 :
SWIHandler
 STMFD sp!, {r0-r3,r12,lr} ; Store the registers.

�� �� �� �� �� �� � � � �

����	���"�	
�

�!���!���	����	� � �� � ���

Handling Processor Exceptions

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-43

 MRS r0, spsr ; Move SPSR into general purpose
 ; register.
 TST r0, #T_bit ; Test if bit 5 is set.
 LDRNEH r0,[lr,#-2] ; T_bit set so load halfword (Thumb)
 BICNE r0,r0,#0xff00 ; and clear top 8 bits of halfword
 ; (LDRH clears top 16 bits of word).
 LDREQ r0,[lr,#-4] ; T_bit clear so load word (ARM)
 BICEQ r0,r0,#0xff000000 ; and clear top 8 bits of word.

 CMP r0, #MaxSWI ; Rangecheck
 LDRLS pc, [pc, r0, LSL#2] ; Jump to the appropriate routine.
 B SWIOutOfRange
switable
 DCD do_swi_1
 DCD do_swi_2
 :
 :
do_swi_1
 ; Handle the SWI.
 LDMFD sp!, {r0-r3,r12,pc}^ ; Restore the registers and return.
do_swi_2
 :

Handling Processor Exceptions

6-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

6.12 System mode

The ARM Architecture defines a User mode that has 15 general purpose registers, a pc,
and a CPSR. In addition to this mode there are five privileged processor modes, each of
which have an SPSR and a number of registers that replace some of the 15 User mode
general purpose registers.

Note

This section only applies to processors that implement ARM architectures v4, v4T and
later.

When a processor exception occurs, the current program counter is copied into the link
register for the exception mode, and the CPSR is copied into the SPSR for the exception
mode. The CPSR is then altered in an exception-dependent way, and the program
counter is set to an exception-defined address to start the exception handler.

The ARM subroutine call instruction (BL) copies the return address into r14 before
changing the program counter, so the subroutine return instruction moves r14 to pc (MOV
pc,lr).

Together these actions imply that ARM modes that handle exceptions must ensure that
another exception of the same type cannot occur if they call subroutines, because the
subroutine return address will be overwritten with the exception return address.

(In earlier versions of the ARM architecture, this problem has been solved by either
carefully avoiding subroutine calls in exception code, or changing from the privileged
mode to User mode. The first solution is often too restrictive, and the second means the
task may not have the privileged access it needs to run correctly.)

ARM architecture v4 and later provide a processor mode called system mode, to
overcome this problem. System mode is a privileged processor mode that shares the
User mode registers. Privileged mode tasks can run in this mode, and exceptions no
longer overwrite the link register.

Note

System mode cannot be entered by an exception. The exception handlers modify the
CPSR to enter System mode. See Reentrant interrupt handlers on page 6-25 for an
example.

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-1

Chapter 7
Writing Code for ROM

This chapter describes how to build ROM images, typically for embedded applications.
There are also suggestions on how to avoid the most common errors in writing code for
ROM.

This chapter contains the following sections:

• About writing code for ROM on page 7-2

• Memory map considerations on page 7-3

• Initializing the system on page 7-6

• The reference C example using semihosting on page 7-11

• Loading the ROM image at address 0 on page 7-14

• Using a simple scatter-loading file on page 7-23

• Using both scatter-loading and remapping on page 7-26

• A semihosted application with interrupt handling on page 7-30

• An embeddable application with interrupt handling on page 7-35

• Using scatter loading with memory-mapped I/O on page 7-37

• Troubleshooting on page 7-44.

• Measuring code and data size on page 7-46.

Writing Code for ROM

7-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.1 About writing code for ROM

This chapter describes how to write code for ROM, and shows different methods for
simple and complex images. Sample initialization code is given, as well as information
on initializing data, stack pointers, interrupts, and so on.

This chapter contains examples of using scatter loading to build complex images. For
detailed reference information on the linker and scatter loading, refer to ADS Tools
Guide.

The reference example in install_directory\ROM\embed can be built in four
different configurations in increasing levels of complexity:

• As a simple semihosted application that links with the C libraries. This example
uses the semihosting SWI functions of the C libraries for I/O. See The reference
C example using semihosting on page 7-11.

• As an application that links with the C libraries and can be embedded into ROM.
This example does not use the semihosting SWI functions, but instead uses a
retargeting layer for I/O. See Loading the ROM image at address 0 on page 7-14.

• As an application that uses scatter loading and runs under the ARMulator or can
be embedded into ROM. The example displays the linker-generated scatter
symbols on the screen. See Using a simple scatter-loading file on page 7-23.

• As an application that uses scatter loading and memory remapping to move RAM
to 0x0 after initialization. See Using both scatter-loading and remapping on
page 7-26.

A C++ example is supplied in install_directory\ROM\embed_cpp.

The ARM Reference Peripheral Specification (RPS) example in
install_directory\ROM\rps_irq can also be built in four different
configurations. Two of these configurations are described in detail:

• As a simple semihosted application that links with the C libraries. This example
uses the semihosting SWI functions of the C libraries for I/O. See The reference
C example using semihosting on page 7-11.

• As an application that uses scatter loading and runs under the ARMulator or can
be embedded into ROM. This example does not use the semihosting SWI
functions, but instead uses a retargeting layer for I/O. See Using a simple
scatter-loading file on page 7-23.

CodeWarrior projects are available for the examples as embed.mcp, embed_cpp.mcp,
and rps_irq.mcp.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-3

7.2 Memory map considerations

A major consideration in the design of an embedded ARM application is the layout of
the memory map, in particular the memory that is situated at address 0x0. Following
reset, the processor starts to fetch instructions from 0x0, so there must be some
executable code accessible from that address. In an embedded system, this requires
ROM to be present, at least initially, at address 0x0.

7.2.1 ROM at 0x0

The simplest layout is to locate the application in ROM at address 0 in the memory map
(see Figure 7-1). The application can then branch to the real entry point when it
executes its first instruction (at the reset vector at address 0x0).

 Figure 7-1 Example of a system with ROM at 0x0

However, there are disadvantages with this layout. ROM is typically narrow (8 or 16
bits) and slow (requires more wait states to access it) compared to RAM. This slows
down the handling of processor exceptions (especially interrupts) through the vector
table. Also, if the vector table is in ROM, it cannot be modified by the code.

For more information on exception handling, see Chapter 6 Handling Processor
Exceptions.

#$�%

�$�%

$&%
����������

����������

����������

����������

Writing Code for ROM

7-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.2.2 RAM at 0x0

RAM is normally faster and wider than ROM. For this reason, it is better for the vector
table and interrupt handlers if the memory at 0x0 is RAM.

However, if RAM is located at address 0x0 on power-up, there is not a valid instruction
in the reset vector entry. Therefore, you must allow ROM to be located at 0x0 at
power-up (so there is a valid reset vector), but to also allow RAM to be located at 0x0
during normal execution. The changeover from the reset to the normal memory map is
normally caused by writing to a memory-mapped register (see Figure 7-2).

For example, on reset, an aliased copy of ROM is present at 0x0, but RAM is remapped
to zero when code writes to the RPS REMAP register. For more information, refer to
the ARM Reference Peripheral Specification.

 Figure 7-2 Example of a system with RAM at 0x0

#$�%

$&%

$&%����������

����������

����������

����������

#$�%

�$�%

$&%��
���	����
����	����'��������
�(��(��	���	���	�

$)�)*
����+����

,�	��	�-

.��	�/���	����
$0��$)%�0
�	1���	�

$&%

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-5

Implementing RAM at 0x0

A sample sequence of events for implementing RAM at 0x0 is:

1. Power on to fetch the RESET vector at 0x0 (from the aliased copy of ROM).

2. Execute the RESET vector:

LDR PC, =0x0F000004

This causes a jump to the real address of the next ROM instruction. This
assembles to a position-independent instruction

LDR PC, [PC, offset]

3. Write to the REMAP register and set REMAP = 1.

4. Complete the rest of the initialization code as described in Initializing the system
on page 7-6.

System decoder

ROM can be aliased to address 0x0 by the system memory decoder. A simple memory
decoder might implement this as:

case ADDR(31:24) is
 when "0x00"
 if REMAP = "0" then
 select ROM
 else
 select SRAM
 when "0x0F"
 select ROM
 when

Writing Code for ROM

7-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.3 Initializing the system

There are two initialization stages:

1. Initializing the execution environment, for example exception vectors, stacks,
I/O.

2. Initializing the application, C variables for example.

For a hosted application, the execution environment was initialized when the OS starts
(initialization is done by, for example, Angel, an RTOS, or ARMulator). The
application is then entered automatically through the main() function. The C library
code at __main initializes the application.

For an embedded application without an operating system, the code in ROM must
provide a way for the application to initialize itself and start executing.

No automatic initialization takes place on reset, so the application entry point must
perform some initialization before it can call any C code.

Typically, the initialization code, located at address zero after reset, should:

• mark the entry point for the initialization code

• set up exception vectors

• initialize the memory system

• initialize the stack pointer registers

• initialize any critical I/O devices

• initialize any RAM variables required by the interrupt system

• enable interrupts (if handled by the initialization code)

• change processor mode if necessary

• change processor state if necessary.

After the environment has been initialized, the sequence continues with the application
initialization and should enter the C code.

These items are described in more detail below. See Example 7-2 on page 7-17 and
Example 7-3 on page 7-18 for code examples.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-7

7.3.1 Initializing the execution environment

There are some aspects of the execution environment that must be initialized before the
application starts. If the application is hosted by an operating system, the initialization
will be done by the application loader. If the application runs standalone, the C library
can perform the initialization of the environment and call the application entry point at
main().

The state of ARM processor cores after reset is:

• SVC mode

• interrupts disabled

• ARM state.

Identifying the entry point

An executable image must have an entry point. An embedded rommable image usually
has an entry point at 0x0. An entry point can be defined in the initialization code by
using the assembler directive ENTRY. It is possible to have multiple entry points in an
embedded application. When there are multiple entry points, one of the points must be
specified as the initial entry point by using -entry. See also the section on linker
selection of entry points in the ADS Tools Guide.

If you have created a C program that includes a main() function, there is also an entry
point within the C library initialization code. See also the library chapter in ADS Tools
Guide for more information on creating applications that use the library.

Setting up exception vectors

Your initialization code must set up the required exception vectors, as follows:

• If the ROM is located at address 0, the vectors consist of a sequence of hard-coded
instructions to branch to the handler for each exception.

• If the ROM is located elsewhere, the vectors must be dynamically initialized by
the initialization code (See Using both scatter-loading and remapping on
page 7-26).

See Example 7-3 for a listing of typical initialization code.

Writing Code for ROM

7-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Initializing the memory system

If your system has a Memory Management or Protection Unit, you must make sure that
it is initialized:

• before interrupts are enabled

• before any code is called that might rely on RAM being accessible at a particular
address, either explicitly, or implicitly through the use of stack.

Initializing the stack pointers

The initialization code initializes the stack pointer registers. You might have to initialize
some or all of the following stack pointers, depending on the interrupts and exceptions
you use:

sp_SVC This must always be initialized.

sp_IRQ This must be initialized if IRQ interrupts are used. It must be initialized
before interrupts are enabled.

sp_FIQ This must be initialized if FIQ interrupts are used. It must be initialized
before interrupts are enabled.

sp_ABT This must be initialized for Data and Prefetch Abort handling.

sp_UND This must be initialized for Undefined Instruction handling.

Generally, sp_ABT and sp_UND are not used in a simple embedded system. However,
you might want to initialize them for debugging purposes.

You can set up the stack pointer sp_USR when you change to User mode to start
executing the application.

Initializing any critical I/O devices

Critical I/O devices are any devices that you must initialize before you enable
interrupts. Typically, you must initialize these devices at this point. If you do not, they
might cause spurious interrupts when interrupts are enabled.

Initializing RAM variables required by the interrupt system

If your interrupt system has buffer pointers to read data into memory buffers, the
pointers must be initialized before interrupts are enabled.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-9

Enabling interrupts

The initialization code can now enable interrupts if necessary, by clearing the interrupt
disable bits in the CPSR. This is the earliest point that it is safe to enable interrupts.

Changing processor mode

At this stage the processor is still in Supervisor mode. If your application runs in User
mode, change to User mode and initialize the User mode sp register, sp_USR.

Changing processor state

All ARM cores, including Thumb-capable processors, start up in ARM state on reset.
The initialization code (at least the reset handler) will be ARM code. If the application
is compiled for Thumb, main() is Thumb code. The linker can add ARM to Thumb
interworking veneers automatically to change state between the ARM initilization code
and the Thumb application. You can also write initialization code to manually switch
from ARM to Thumb state using:

 ORR lr, pc, #1
 BX lr

For more details on changing between ARM and Thumb state, see Chapter 4
Interworking ARM and Thumb.

7.3.2 Initializing the application

An application is initialized by:

• initializing the non-zero writable data by copying the initializing values to the
writable data region

• setting to zero the ZI writable data region.

After memory initialization, control is passed to the entry point of the application in, for
example, C library code.

Writing Code for ROM

7-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Initializing memory required by C code

The initial values for any initialized variables (RW) must be copied from ROM to RAM.
All other ZI variables must be initialized to zero. The library initialization code called
at __main performs the copying and initialization.

Note

The linker assigns memory addresses for RO code, RW data, and ZI data. If a
scatter-load file is not used, the linker uses one of the default scatter load formats.
Scatter loading examples are given in Using a simple scatter-loading file on page 7-23
and Using both scatter-loading and remapping on page 7-26.

Using the main function

When the compiler compiles a function called main(), it generates a reference to the
symbol __main to force the linker to include the basic C run-time system from the
ANSI C library.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-11

7.4 The reference C example using semihosting

This example shows an application that uses the semihosting SWIs. printf() for
example, is compiled as a call to a C library function that uses semihosting SWIs to
display information on the debugger console. The application consists of a single C file.

The code for main.c is in install_directory\Examples\ROM\embed directory,
and is included in Example 7-1 on page 7-13 for reference.

To build the example from the CodeWarrior IDE:

1. Use the CodeWarrior project embed.mcp

2. Select Target=Semihosted.

To build the example from the command line, execute build_a.bat or follow the
steps below:

1. Compile the C file main.c with one of the following commands:

armcc -g -O1 -c main.c (if compiling for ARM)

tcc -g -O1 -c main.c (if compiling for Thumb)

where:

-O1 specifies the level of optimization.

-g tells the compiler to add debug tables.

-c tells the compiler to compile only (not to link).

2. Link the image using, all on one line, the following command:

armlink main.o -o embed.axf

where:

-o specifies the output file as embed.axf.

3. Use ARMulator to test the image or download the image to a development board
using Multi-ICE or Angel.

Writing Code for ROM

7-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.4.1 Memory map

Figure 7-3 shows RAM starting at address 0x08000 (see Figure 7-3).

 Figure 7-3 Memory map for reference example

By default, the linker sets the start of code at address 0x8000. The RW data is placed
immediately above the program code and the ZI data above the RW data.

By default, the stack pointer sp is initialized to 0x80000000 for ARMulator or
0x80000 (the top of memory as indicated by the value of the debugger internal variable
$top_of_memory) for remote targets.

��������

��������

0��1���
,$&2$3-

�����

4	�

56�����

$3�����

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-13

7.4.2 Sample code

The C code fragment in Example 7-1 shows the use of semihosting SWIs to output text.
See the main.c source code for the definitions of demo_malloc(), demo_sscanf(),
demo_printf(), demo_float_print(), and demo_sprintf().

The code selected by the #ifdef EMBEDDED will be used in Loading the ROM image
at address 0 on page 7-14 and other examples.

Example 7-1 extract from main.c

/* Copyright (C) ARM Limited, 1999. All rights reserved. */

int main(void)
{
 printf("C Library Example\n");

#ifdef EMBEDDED
/* ensure no C library functions that uses semi-hosting SWIs are linked */
 __use_no_semihosting_swi();
#endif
 demo_printf();
 demo_sprintf();
 demo_float_print();
 demo_malloc();
 demo_sscanf();
 return 0;
}

Writing Code for ROM

7-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.5 Loading the ROM image at address 0

This example shows how to convert the code in The reference C example using
semihosting on page 7-11 into a minimal application that can be embedded in ROM
using a retargeting layer. In a real system, more initialization code would be required.

The code for retarget.c and serial.c is in
install_directory\Examples\ROM\embed directory, and is included in Sample
code on page 7-17 for reference.

To build the example from the CodeWarrior IDE:

1. Use the CodeWarrior project embed.mcp

2. Select Target=Embedded.

To build the example from the command line, execute build_b.bat or follow the
steps below:

1. Assemble the initialization code:

armasm -g vectors.s
armasm -g init.s

2. Compile the main example and the new retargeting files retarget.c and,
optionally, serial.c with the following commands:

armcc -c -g -O1 main.c -DEMBEDDED
armcc -c -g -O1 retarget.c
armcc -c -g -O1 serial.c -I..\include

where:

-D tells the compiler to define the symbol EMBEDDED.

-I tells the compiler where to find the include files.

3. Link the image using the following command (all on one line):

armlink vectors.o init.o main.o retarget.o serial.o
 -ro-base 0x0 -rw-base 0x00040000
 -first vectors.o(Vect) -entry 0x0
 -o embed.axf -info totals -map -list list.txt

where:

-ro-base 0x0

This option tells the linker that the read-only or code segment will be
placed at 0x00000000 in the address map.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-15

-rw-base 0x00040000

This option tells the linker that the read-write or data segment will be
placed at 0x00040000 in the address map. This is the base of the RAM
in this example.

-first vectors.o(Vect)

This option tells the linker to place this input section first in the image.
On UNIX systems you might have to put a backslash \ before each
parenthesis.

-entry This option defines the reset vector as the unique entry point.

-o This option specifies the output file.

-info totals

This option tell the linker to print information on the code and data
sizes of each object file along with the totals for each type of code or
data. The output generated is shown in Output from list option on
page 7-16.

-map This option tells the linker to print an input section map or listing
showing where each code or data section will be placed in the address
space.

4. Run the fromELF utility to produce a plain binary version of the image:

fromelf embed.axf -bin -o embed.bin

where:

-bin specifies a binary output image with no header.

5. Use ARMulator to test the image or download and execute the ROM image to the
development board.

• For armsd use:

getfile embed.bin 0x0
readsyms embed.axf

• For ADW & ADU, select:

File→ Get File and specify embed.bin with load address 0x0.

File→ Load symbols only and specify embed.axf.

• For AXD select:

File → Load Memory From File and specify embed.bin with load
address 0x0.

File → Load Debug Symbols and specify embed.axf.

Writing Code for ROM

7-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.5.1 Memory map

Figure 7-4 shows:

• ROM is address 0 as specified by -ro-base. See Figure 7-4.

• RAM is at 0x040000, as specified by -rw-base, to hold the stack, heap, and
data.

• The stack pointer is initialized to 0x80000 in init.s.

• The heap base is initialized to 0x060000 by __user_initial_stackheap()
in retarget.c.

 Figure 7-4 Memory map for ROM at address 0

7.5.2 Output from list option

The file list.txt shows the map (segment listing) for the sample code:

==
Image component sizes
Code RO Data RW Data ZI Data Debug
 1224 64 8 12 14024 Object Totals
 23044 728 0 64 8652 Library Totals
==
 Code RO Data RW Data ZI Data Debug
 24268 792 8 76 22676 Grand Totals
==
 Total RO Size(Code + RO Data) 25060 (24.47KB)
 Total RW Size(RW Data + ZI Data) 84 (0.08KB)

$�%

$&%

��������

��������

���������	
��������

���������	�����������

0��1���
,$&2$3-

�����

4	�

56�����

$3�����

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-17

 Total ROM Size(Code + RO Data + RW Data) 25068 (24.48KB)
 Total input debug size 19448 (18.99KB)
 Total output debug size 17716 (17.30KB)
 Image debug size reduction 8.91 percent
===

7.5.3 Sample code

The code in Example 7-2 contains example exception vectors and exception handlers.
For this application, ROM is fixed at 0x0 and the exception table is hard-coded at 0x0.
For Using a simple scatter-loading file on page 7-23, ROM/RAM remapping occurs
and the vectors are copied from ROM to RAM.

Example 7-2 vectors.s

;;; Copyright ARM Ltd 1999. All rights reserved.
 AREA Vect, CODE, READONLY
; *****************
; Exception Vectors
; Note: LDR PC instructions are used here because branch (B) instructions
; could not simply be copied (the branch offsets would be wrong). Also,
; a branch instruction might not reach if the ROM is at an address >32MB).
 LDR PC, Reset_Addr
 LDR PC, Undefined_Addr
 LDR PC, SWI_Addr
 LDR PC, Prefetch_Addr
 LDR PC, Abort_Addr
 NOP ; Reserved vector
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr
 IMPORT Reset_Handler ; In init.s
Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
DCD 0 ; Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler
; ************************
; Exception Handlers
; The following dummy handlers do not do anything useful in this example.
; They are set up here for completeness.
Undefined_Handler
 B Undefined_Handler
SWI_Handler

Writing Code for ROM

7-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 B SWI_Handler
Prefetch_Handler
 B Prefetch_Handler
Abort_Handler
 B Abort_Handler
IRQ_Handler
 B IRQ_Handler
FIQ_Handler
 B FIQ_Handler
 END

The code in Example 7-3 performs ROM/RAM remapping (if required), initializes
stack pointers and interrupts for each mode, and finally branches to __main in the C
library (__main eventually calls main()). On reset, the ARM core starts up in
Supervisor (SVC) mode, in ARM state, with IRQ and FIQ disabled.

Example 7-3 init.s

;;; Copyright ARM Ltd 1999. All rights reserved.
 AREA Init, CODE, READONLY

; --- Standard definitions of mode bits and interrupt (I & F) flags in PSRs
Mode_USR EQU 0x10
Mode_FIQ EQU 0x11
Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13
Mode_ABT EQU 0x17
Mode_UNDEF EQU 0x1B
Mode_SYS EQU 0x1F ; available on ARM Arch v4 and later
I_Bit EQU 0x80 ; when I bit is set, IRQ is disabled
F_Bit EQU 0x40 ; when F bit is set, FIQ is disabled

; --- System memory locations
RAM_Limit EQU 0x00080000 ; For 512KByte ARM Development Board
 ; For 2MByte, change to 0x200000
SVC_Stack EQU RAM_Limit ; 256 byte SVC stack at top of memory
IRQ_Stack EQU RAM_Limit-256 ; followed by IRQ stack
; add FIQ_Stack, ABT_Stack, UNDEF_Stack here if you need them
USR_Stack EQU IRQ_Stack-256 ; followed by USR stack
ROM_Start EQU 0x04000000 ; Base address of ROM after remapping
Instruct_2 EQU ROM_Start + 4 ; Address of second instruction in ROM
ResetBase EQU 0x0B000000 ; RPS Remap and Pause Controller
ClearResetMap EQU ResetBase + 0x20 ; Offset of remap control from base
 ENTRY

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-19

; --- Perform ROM/RAM remapping, if required
IF :DEF: ROM_RAM_REMAP

; On reset, an aliased copy of ROM is at 0x0.
; Continue execution from ’real’ ROM rather than aliased copy
 LDR pc, =Instruct_2
; Remap by writing to ClearResetMap in the RPS Remap and Pause Controller
 MOV r0, #0
 LDR r1, =ClearResetMap
 STRB r0, [r1]
; RAM is now at 0x0.
; The exception vectors (in vectors.s) must be copied from ROM to the RAM
; The copying is done later by the C library code inside __main
ENDIF

 EXPORT Reset_Handler

Reset_Handler
; --- Initialize stack pointer registers
; Enter SVC mode and set up the SVC stack pointer
 MSR CPSR_c, #Mode_SVC:OR:I_Bit:OR:F_Bit ; No interrupts
 LDR SP, =SVC_Stack
; Enter IRQ mode and set up the IRQ stack pointer
 MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; No interrupts
 LDR SP, =IRQ_Stack
; Set up other stack pointers if necessary
; ...
; --- Initialize memory system
; ...
; --- Initialize critical IO devices
; ...
; --- Initialize interrupt system variables here
; ...
; --- Enable interrupts if required
; This is the earliest point at which interrupts may be safely enabled.
 MSR CPSR_c, #Mode_SVC:OR:F_Bit ; Enable IRQ
; --- Now change to user mode and set up user mode stack.
 MSR CPSR_c, #Mode_USR:OR:I_Bit:OR:F_Bit ; No interrupts
 LDR SP, =USR_Stack
 IMPORT __main
; --- Now enter the C code
; note use B not BL, because an application will never return this way
 B __main
 END

Writing Code for ROM

7-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

The code in Example 7-4 implements a retarget layer for low-level I/O. Typically, this
would contain your own target-dependent implementations of fputc(), ferror(),
and so on. This example provides implementations of fputc(), ferror(),
_sys_exit(), _ttywrch(), and __user_initial_stackheap().

Semihosting SWIs are used to display text onto the console of the host debugger. This
mechanism is portable across ARMulator, Angel, Multi-ICE and EmbeddedICE.
serial.c is an alternative option that outputs characters from the serial port of an
ARM Development (PID) Board. To use serial.c, add #define
USE_SERIAL_PORT to the code or compile with -DUSE_SERIAL_PORT.

Example 7-4 retarget.c

/*Copyright (C) ARM Limited, 1999. All rights reserved. */
#include <stdio.h>
/* #define USE_SERIAL_PORT */
#ifdef __thumb
/* Thumb Semihosting SWI */
#define SemiSWI 0xAB
#else
/* ARM Semihosting SWI */
#define SemiSWI 0x123456
#endif

/* Write a character */
__swi(SemiSWI) void _WriteC(unsigned op, char *c);
#define WriteC(c) _WriteC (0x3,c)

/* Exit */
__swi(SemiSWI) void _Exit(unsigned op, unsigned except);
#define Exit() _Exit (0x18,0x20026)

struct __FILE { int handle; /* Add whatever you need here */};
FILE __stdout;

extern void sendchar(char *ch); /* in serial.c */

int fputc(int ch, FILE *f)
{
 char tempch=ch;
 /* Place your implementation of fputc here, for example write a character */
 /* to a UART, or to the debugger console with SWI WriteC */
#ifdef USE_SERIAL_PORT
 sendchar(&tempch);
#else
 WriteC(&tempch);

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-21

#endif
 return ch;
}

int ferror(FILE *f)
{ /* Your implementation of ferror */
 return EOF;
}

void _sys_exit(int return_code)
{
 Exit(); /* for debugging */
label: goto label; /* endless loop */
}

void _ttywrch(int ch)
{
char tempch = ch;
#ifdef USE_SERIAL_PORT
 sendchar(&tempch);
#else
 WriteC(&tempch);
#endif
}

__value_in_regs struct R0_R3
 {unsigned heap_base, stack_base, heap_limit, stack_limit;}
 __user_initial_stackheap(unsigned int R0, unsigned int SP, unsigned int R2,
 unsigned int SL)
{
 struct R0_R3 config;
 config.heap_base = 0x00060000;
 config.stack_base = SP;
/*
To place heap_base directly above the ZI area, use:
 extern unsigned int Image$$ZI$$Limit;
 config.heap_base = (unsigned int)&Image$$ZI$$Limit;
 (or &Image$$region_name$$ZI$$Limit for scatterloaded images)

To specify the limits for the heap & stack, use e.g:
 config.heap_limit = SL;
 config.stack_limit = SL;
*/
 return config;
}

Writing Code for ROM

7-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

The code in Example 7-5 implements a simple polled RS232 serial driver for the ARM
Development (PID) Board. It outputs single characters on Serial Port A at 9600 Baud,
8 bit, no parity, 1 stop bit. Initialize the port with init_serial_A() before calling
sendchar().

Example 7-5 serial.c

/* Copyright (C) ARM Limited, 1999. All rights reserved. */
#include "pid7t.h"
#include "nisa.h"
#include "st16c552.h"

void init_serial_A(void)
{
 SerA_FCR = FCR_Fifo_Enable | / Enable Tx and Rx FIFO Operation */
 FCR_Rx_Fifo_Reset | /* Clear Rx FIFO and FIFO Counters */
 FCR_Tx_Fifo_Reset ; /* Clear Tx FIFO and FIFO Counters */

 SerA_MCR = 0; / Switch Off loopback mode */
 SerA_LCR = LCR_Divisor_Latch ; / Enable Baud Divisor Latch */
 SerA_DLL = DLL_9600_Baud ; / Set Divisor LSB value for 9600 baud */
 SerA_DLM = DLM_9600_Baud; / Set Divisor MSB value for 9600 baud */
 SerA_LCR = LCR_8_Bit_Word_1; / Set for 8-bit word length - 1 stop bit */
}

void sendchar(char *ch)
{
 while (!(*SerA_LSR & LSR_Tx_Hold_Empty)) /* Wait until Port A Tx FIFO
 {} is empty */
 *SerA_THR = *ch; /* Transmit next character */
}

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-23

7.6 Using a simple scatter-loading file

Scatter loading provides a more flexible mechanism for mapping code and data onto
your memory map than the armlink -ro-base and -rw-base options. These options
are described in detail in the ADS Tools Guide.

This section shows a scatter-loaded version of the application in Loading the ROM
image at address 0 on page 7-14.

The scatter-loading description file, scat_c.scf, for this example is in
install_directory\Examples\rom\embed.

7.6.1 Memory map

Figure 7-5 shows:

• ROM is fixed at 0x0 and is not remapped (see Figure 7-5)

• RAM is at 0x00040000 to hold the data, stack and heap.

 Figure 7-5 Memory map for simple scatter loading

$3�����

56�����

7����8�	/)'	�������8�	/

%�������	%�������	

$3�����

8	�����9��������	
$&%

�����

��������

��������

��������

4	�
$�%

$3�����

��������

8	�����9��������	

Writing Code for ROM

7-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.6.2 Scatter-loading description file

The scatter-loading description file shown in Example 7-6 defines:

• one load region, ROM, at 0x0.

• two execution regions:

— ROM (at 0x0) contains all the read-only code, including the library code.
The exception vector table in vectors.o is placed first in this region. All
other read-only code (*) is placed after vectors.o.

— RAM (at 0x00040000) contains the RW and ZI data regions for the
application.

Example 7-6 scat_c.txt

ROM 0x0
{
 ROM 0x0
 {
 vectors.o (Vect, +First)
 * (+RO)
 }
 RAM 0x00040000
 {
 * (+RW,+ZI)
 }
}

7.6.3 Sample code

The C code for main.c is identical with the previous examples. This demonstrates how
to use one code source to compile and link for different targets.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-25

7.6.4 Building the example

To build the example, either:

• load the supplied embed project into the CodeWarrior IDE and select
Target=EmbeddedScatter.

• use the build_c.bat batch file or a makefile containing the following (the
indented lines are a continuation of the single line above):

armasm -g vectors.s
armasm -g init.s
armcc -g -01 -c main.c -DEMBEDDED
armcc -g -01 -c retarget.c
armcc -g -01 -c serial.c -I..\include
armlink vectors.o init.o main.o retarget.o serial.o
 -scatter scat_c.scf -o embed.axf
 -entry 0x0 -info totals -info unused
fromelf embed.axf -bin -o embed.bin

This creates:

• an ELF debug image (embed.axf) for loading into a debugger (AXD, ADW,
ADU, or armsd)

• a binary ROM image (embed.bin) suitable for downloading into the memory of
an ARM development board.

The use of serial.c is optional. Keep this line if you wish the output to be sent over
the serial port of the development board.

Writing Code for ROM

7-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.7 Using both scatter-loading and remapping

This section shows how to convert the application in Using a simple scatter-loading file
on page 7-23 into a more complex scatter-loading application. This example uses
memory remapping to exchange the ROM and RAM regions after the application has
started. The example also shows how to use two separate RAM areas (SSRAM and
SRAM).

The code for this example is in install_directory\Examples\rom\embed.

7.7.1 Memory map

Figure 7-6 shows:

• FLASH is at 0x04000000. An aliased copy of the FLASH appears at 0x0 on
reset.

• After remapping, fast SSRAM is at 0x00000000 to hold the exception vectors
and any exception handlers.

• After remapping, SRAM is at 0x00002000 for the storage of program variables.

 Figure 7-6 Memory map for remapping

�8	�����

6�����
�:	�
$3�����

56�����

����������

����������

��
�

0��1�������	
,$&�2�$3-

$	��	�
�"�	��$)�)*

�������������	��������	

0��1�������	
�,$&�2�$3- �����

�����

����������

����������

����������

4	�

0��1�������	
,$&�2�$3-

�
���	����(
�"����	���

��������������������
���
�

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-27

7.7.2 Scatter-loading description file

The scatter-loading description file shown in Example 7-7 defines one load region
(FLASH) and three execution regions:

• FLASH (at 0x04000000) of size 0x80000

• 32-bit SSRAM (at 0x00000000)

• 16-bit SRAM (at 0x00002000).

Example 7-7 scat_d.txt

FLASH 0x04000000 0x080000
{
 FLASH 0x04000000
 {
 init.o (Init, +First)
 * (+RO)
 }
 SSRAM 0x0000
 {
 vectors.o (Vect, +First)
 }
 SRAM 0x2000
 {
 * (+RW,+ZI)
 }
}

The program code and data is placed in Flash that resides at 0x04000000. On reset, an
aliased copy of Flash is remapped by hardware to address 0x0. Program execution starts
at AREA Init in init.s. The +First option is used to place this code first in the
image. After reset the first few instructions of init.s remap 32-bit RAM to address
0x0. The ARM Development (PID) Board remaps its Flash in this way.

Most of the RO code will execute from Flash. The RO execution address is the same as
its load address (0x04000000), so it does not have to be moved.

SSRAM might be fast on-chip 32-bit RAM. Fast RAM is typically used for the stack
and code that must be executed quickly. The exception vectors (AREA Vect in
vectors.s) get relocated from Flash to 32-bit SSRAM at address 0x0 for speed. The
Vect code is placed first in the region.

Writing Code for ROM

7-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

SRAM might be slower off-chip 16-bit DRAM. Slower RAM is typically used for less
frequently accessed RW variables and ZI data. The RW data will get relocated from
Flash to 16-bit RAM at 0x2000 The ZI data will be created in 16-bit RAM above the
RW data.

7.7.3 Initialization code

Example 7-8 illustrates the use of initialization code (init.s) to perform ROM/RAM
remapping. The portion of the initialization code that handles remapping is also listed:

Example 7-8 ROM/RAM remapping

; --- Perform ROM/RAM remapping, if required
IF :DEF: ROM_RAM_REMAP

; On reset, an aliased copy of ROM is at 0x0.
; Continue execution from ’real’ ROM rather than aliased copy
 LDR pc, =Instruct_2
; Remap by writing to ClearResetMap in the RPS Remap and Pause Controller
 MOV r0, #0
 LDR r1, =ClearResetMap
 STRB r0, [r1]
; RAM is now at 0x0.
; The exception vectors (in vectors.s) must be copied from ROM to the RAM
; The copying is done later by the C library code inside __main
ENDIF

The initialization code in the C library copies the RO and RW execution regions from
their load addresses to their execution addresses before creating any zero-initialized
areas.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-29

7.7.4 Building the example

To build the example, either:

• load the supplied scatter project into the CodeWarrior IDE

• use the build_d.bat batch file or a makefile containing the following (the
indented lines are a continuation of the single line above):

armasm -g vectors.s
armasm -g -PD "ROM_RAM_REMAP SETL {TRUE}" init.s
armcc -c -g -O1 main.c -DEMBEDDED -DROM_RAM_REMAP
armcc -c -g -O1 retarget.c
armlink vectors.o init.o main.o retarget.o
 -scatter scat_d.scf -o embed.axf
 -info totals -entry 0x04000000
 -info unused
fromelf embed.axf -bin -o embed.bin

This creates:

• an ELF debug image (embed.axd) for loading into an ARM debugger

• a binary ROM image (embed.bin) suitable for downloading into the RAM or
Flash memory of the ARM development boards.

The readme.txt file contains additional details of how the image can be downloaded
to the Flash memory of an ARM Development Board and debugged there.

7.7.5 Additional examples of remapping

The install_directory\Examples\rom\ledflash directory contains a simple
interrupt-driven LED flasher that runs on an ARM development board. It is derived
from the LED example given in the PID7T Example Code Suite, but modified to use
ROM/RAM remapping and scatter loading.

To build the example, a batch-file (build.bat) and CodeWarrior project file
(ledflash.mcp) are provided. Full instructions for downloading the code to Flash are
available in the directory.

See also Using scatter loading with memory-mapped I/O on page 7-37.

Writing Code for ROM

7-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.8 A semihosted application with interrupt handling

This section illustrates an Reference Peripheral Specification (RPS) based
interrupt-driven timer, suitable for embedded applications. The main() function
initializes and starts two RPS timers.

When a timer expires, an interrupt is generated. The interrupt is handled in
int_handler.c. The code simply sets a flag and clears the interrupt. The interrupt
flags are checked below in a endless loop. If a flag is set, a message is displayed and the
flag is then cleared.

7.8.1 Memory map

There are no memory specification options in the linker command options and the
default values are used. The code region starts at 0x00008000. The RW data region and
the ZI data region are placed sequentially after the code region. The stack top is
0x80000.

7.8.2 Building the example

To build the example, either:

• load the supplied rps_irq.mcp project into the CodeWarrior IDE

• use a batch file or makefile containing the following:

armcc -c -g -O1 main.c -I..\include
armcc -c -g -O1 int_handler.c -I..\include
armlink main.o int_handler.o -o rps_irq.axf -info totals

7.8.3 Sample code

The code in Example 7-9 is compiled and linked on its own and executed in the
semi-hosting environment and Install_Handler is called to install the interrupt
vector. The code in Example 7-10 demonstrates an interrupt handler. The example can
also be built as an embedded application with no semihosting (see An embeddable
application with interrupt handling on page 7-35).

Example 7-9 Sample main.c code for rps_irq

/*
 * Copyright (C) ARM Limited, 1999. All rights reserved.
 */
#include <stdio.h>
#include <stdlib.h>

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-31

#include "stand.h"

int IntCT1 = 0;
int IntCT2 = 0;
int Count = 0;
#ifndef EMBEDDED
 extern IRQ_Handler(void);
 unsigned *irqvec = (unsigned *)0x18;
 unsigned Install_Handler (unsigned routine, unsigned *vector)
/* Updates contents of ’vector’ to contain branch instruction */
/* to reach ’routine’ from ’vector’. Function return value is */
/* original contents of ’vector’. */
/* NB: ’Routine’ must be within range of 32MB from ’vector’. */
{ unsigned vec, oldvec;
 vec = ((routine - (unsigned)vector - 0x8)>>2);
 if (vec & 0xff000000)
 {
 printf ("Installation of Handler failed");
 exit(1);
 }
 vec = 0xea000000 | vec;
 oldvec = *vector;
 *vector = vec;
 return (oldvec);
}
#endif

/*
Enabling and disabling interrupts
Interrupts are enabled or disabled by reading the cpsr flags and updating bit 7.
These functions work only in a privileged mode, because the control bits of the
cpsr and spsr cannot be changed while in User mode.
*/

__inline void enable_IRQ(void)
{
 int tmp;
 __asm
 {
 MRS tmp, CPSR
 BIC tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}

__inline void disable_IRQ(void)
{

Writing Code for ROM

7-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 int tmp;
 __asm
 {
 MRS tmp, CPSR
 ORR tmp, tmp, #0x80
 MSR CPSR_c, tmp
 }
}
#ifdef EMBEDDED
 extern void init_serial_A(void);
#endif

int main(void)
{
#ifdef EMBEDDED
 __use_no_semihosting_swi(); /* ensure no functions that use semi-hosting SWIs
 are linked in from the C library */
 init_serial_A(); /* initialize serial A port */
#endif

 printf("RPS Timer Interrupt Example\n");
 printf("To execute this example under ARMulator, "
 printf("you MUST modify armul.cnf with:\n");
 printf("TimerEnabled=TRUE\n");
 printf("IntCEnabled=TRUE\n\n");

#ifdef EMBEDDED
 #ifdef ROM_RAM_REMAP
 printf("Embedded (ROM/RAM remap, no SWIs) version\n");
 #else
 printf("Embedded (ROM at 0x0, no SWIs) version\n");
 #endif
#else
 Install_Handler ((unsigned)IRQ_Handler, irqvec);

 printf("Normal (RAM at 0x8000, semi-hosting) version\n\n");
#endif

 printf("Initializing...\n");

 enable_IRQ();

 IRQEnableClear = ~0; / Clear/disable all interrupts */

 Timer1Control = 0; / Disable counters by clearing the control bytes */
 *Timer2Control = 0;

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-33

 Timer1Clear = 0 ; / Clear counter/timer interrupts by writing to */
 Timer2Clear = 0 ; / the clear register - any data will work */

 Timer1Load = FAST_LOAD; / Load counter values */
 *Timer2Load = MED_FAST_LOAD;

 Timer1Control = (TimerEnable | / Enable the Timer */
 TimerPeriodic | /* Periodic Timer producing interrupt */
 TimerPrescale8); /* Set Maximum Prescale - 8 bits */

 Timer2Control = (TimerEnable | / Enable the Timer */
 TimerPeriodic | /* Periodic Timer producing interrupt */
 TimerPrescale8); /* Set Maximum Prescale - 8 bits */

 IRQEnableSet = IRQTimer1 | IRQTimer2 ; / Enable the timer interrupts */

 printf("Running...\n");

 IntCT1 = 0; /* Clear CT 1 Flag */
 IntCT2 = 0; /* Clear CT 2 Flag */
 Count = 0;

 while (Count < 20)
 {
 if (IntCT1 != 0) /* Timer 1 Interrupt occurred */
 {
 Count++;
 printf("IntCT1\n");
 IntCT1 = 0; /* Reset the Timer 1 Interrupt Flag */
 }
 if (IntCT2 != 0) /* Timer 2 Interrupt occurred */
 {
 Count++;
 printf("IntCT2\n");
 IntCT2 = 0; /* Reset the Timer 2 Interrupt Flag */
 }
 }

 disable_IRQ();
}

Writing Code for ROM

7-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Example 7-10 Sample int_handler.c code

/*
 * Copyright (C) ARM Limited, 1999. All rights reserved.
 */
#include "stand.h"
/**
* IRQ_Handler *
* This function handles IRQ interrupts. In this example, these may come from *
* Timer 1 or Timer 2 *
* This handler simply clears the interrupt and sets corresponding flags. *
* These flags are then checked by the main application. *
**/

void __irq IRQ_Handler(void)
{
 unsigned status;

 status = *IRQStatus;
 /* Deal with source of interrupt */

 if (status & IRQTimer1)
 {
 Timer1Clear = 0;/ clear the interrupt */
 IntCT1++; /* set the flag */
 }
 else
 if (status & IRQTimer2)
 {
 Timer2Clear = 0;/ clear the interrupt */
 IntCT2++; /* set the flag */
 }
}

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-35

7.9 An embeddable application with interrupt handling

This section describes how to convert the application in A semihosted application with
interrupt handling on page 7-30 into an embeddable application. Converting the
application requires four additional files:

vectors.s This file contains exception vectors and exception handlers. For this
example ROM is fixed at 0x0.

init.s This file performs ROM/RAM remapping (if required), initializes stack
pointers and interrupts for each mode, and branches to __main in the C
library. The C library code at __main eventually calls main().

ROM/RAM remapping is not used in this example. A sample scatter load
description for remapping is available in
install_directory\Examples\ROM\rps_irq.

retarget.c This file implements a retarget layer for low-level I/O. Typically, this
would contain your own target-dependent implementations. This
example provides implementations of fputc(), ferror(),
_sys_exit(), _ttywrch() and __user_initial_stackheap().

The #define USE_SERIAL_PORT selects code to output characters
from the serial port of an ARM Development (PID) Board.

serial.c This file implements a simple polled RS232 serial driver for the ARM
Development (PID) Board. It outputs single characters on Serial Port A
at 9600 Baud, 8 bit, no parity, 1 stop bit.

To ensure that no semi-hosting SWI-using function is linked in from the C library,
__use_no_semihosting_swi() is called from main().

7.9.1 Memory map

The scatter-loading descriptor file defines one load region, ROM, and two execution
regions, ROM and RAM (the memory map is the same as displayed in Figure 7-5). The
entire program is placed in ROM. The RO code will execute from ROM. The execution
address of ROM is the same as its load address (0x0), so it does not have to be moved.

The exception vector table vectors.s must appear at 0x0, so the +First command
is used to place it first in the image. The RW data is relocated from ROM to RAM at
0x00040000. The ZI data is initialized in RAM above the RW data.

Writing Code for ROM

7-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.9.2 Building the example

To build the example, use the build_c.bat batch file, the CodeWarrior IDE project
file rps_irq.mcp with a target of EmbedScatter, or a makefile containing the
following (the indented lines are a continuation of the single line above):

armasm -g vectors.s
armasm -g init.s
armcc -c -g -O1 main.c -DEMBEDDED -I..\include
armcc -c -g -O1 retarget.c
armcc -c -g -O1 serial.c -I..\include
armcc -c -g -O1 int_handler.c -I..\include
armlink vectors.o init.o main.o retarget.o serial.o
 int_handler.o -scatter scat_c.scf -o rps_irq.axf
 -entry 0x0 -info totals
fromelf rps_irq.axf -bin -o rps_irq.bin

7.9.3 Scatter-loading description file

The scatter file is equivalent to linking with armlink -ro-base 0x0 -rw-base
0x00040000.

ROM 0x0
{
 ROM 0x0
 {
 vectors.o (Vect, +First)
 * (+RO)
 }
 RAM 0x00040000
 {
 * (+RW,+ZI)
 }
}

7.9.4 Sample code

The retargetting code is the same as the code used in Loading the ROM image at address
0 on page 7-14. The source is available in
install_directory\Examples\ROM\rps_irq.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-37

7.10 Using scatter loading with memory-mapped I/O

In most ARM embedded systems, peripherals are located at specific addresses in
memory. You often need to access a memory-mapped register in a peripheral by using
a C variable. In your code, you will need to consider not only the size and address of the
register, but also its alignment in memory.

7.10.1 Using pointers to access I/O

The simplest way to implement memory-mapped variables is to use pointers to fixed
addresses. If the memory is changeable by external factors, for example by some
hardware, it must be labelled as volatile. Consider a simple example:

 volatile unsigned *port = (unsigned int *) 0x40000000;

The data on the port can be accessed by:

 port = value; / write to port */
 value = *port; /* read from port */

The use of volatile ensures that the compiler always carries out the memory
accesses, rather than optimizing them out. If the access was in a loop and the variable
was not volatile, only one read of the memory address would be done.

This approach can be used to access 8, 16 or 32 bit registers, but you must declare the
variable with the appropriate type for its size, int for 32-bit registers, short for 16-bit,
and char for 8-bit. The compiler will then generate the correct single load/store
instructions, LDR/STR, LDRH/STRH, or LDRB/STRB.

You must also ensure that the memory-mapped registers lie on appropriate address
boundaries. Alignment must be either all word-aligned or on their natural size
boundaries. The natural size of 16-bit registers is on half-word addresses. ARM
recommends that all registers, whatever their size, be aligned on word boundaries, see
Alignment of registers on page 7-39.

Writing Code for ROM

7-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

You can use #define to simplify your code. For example, the source code in Example
7-11 produces the interleaved code in Example 7-12.

Example 7-11

#define PORTBASE 0x40000000 /* Counter/Timer Base */
#define PortLoad ((volatile unsigned int *) PORTBASE) /* 32 bits */
#define PortValue ((volatile unsigned short *)(PORTBASE + 0x04)) /* 16 bits */
#define PortClear ((volatile unsigned char *)(PORTBASE + 0x08)) /* 8 bits */

void init_regs(void)
{
 unsigned int int_val;
 unsigned short short_val;
 unsigned char char_val;
 *PortLoad = (unsigned int) 0xF00FF00F;
 int_val = *PortLoad;
 *PortValue = (unsigned short) 0x0000;
 short_val = *PortValue;
 *PortClear = (unsigned char) 0x1F;
 char_val = *PortClear;
}

Example 7-12 Output fragment from compiler using -S and -fs

;;;11 *PortLoad = (unsigned int) 0xF00FF00F;
 init_regs PROC
000000 e59f1024 LDR a2,|L1.44|
000004 e3a00440 MOV a1,#0x40000000
000008 e5801000 STR a2,[a1,#0]
;;;12 int_val = *PortLoad;
00000c e5901000 LDR a2,[a1,#0]
;;;13 *PortValue = (unsigned short) 0x0000;
000010 e3a01000 MOV a2,#0
000014 e1c010b4 STRH a2,[a1,#4]
;;;14 short_val = *PortValue;
000018 e1d010b4 LDRH a2,[a1,#4]
;;;15 *PortClear = (unsigned char) 0x1F;
00001c e3a0101f MOV a2,#0x1f
000020 e5c01008 STRB a2,[a1,#8]
;;;16 char_val = *PortClear;
000024 e5d00008 LDRB a1,[a1,#8]
;;;17 }

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-39

000028 e1a0f00e MOV pc,lr
 |L1.44|
00002c f00ff00f DCD 0xf00ff00f
 ENDP
;;;18

ARM recommends word alignment of peripheral registers even if they are 16-bit or
8-bit peripherals. In a little-endian system, the peripheral databus can connect directly
to the least significant bits of the ARM databus and there is no need to multiplex (or
duplicate) the peripheral databus onto high bits of the ARM databus. In a big-endian
system, the peripheral databus can connect directly to the most significant bits of the
ARM databus and there is no need to multiplex (or duplicate) the peripheral databus
onto low bits of the ARM databus.

The AMBA APB bridge uses this technique to simplify the bridge design. The result is
that only word-aligned addresses should be used (whether byte, halfword or word
transfer), and a read will read garbage on any bits that are not connected to the
peripheral.

If a 32-bit word is read from a 16-bit peripheral, the top 16 bits of the register value must
be cleared before use. For example, to access some 16-bit peripheral registers on 16-bit
alignment, you might write:

 volatile unsigned short u16_IORegs[20];

For little-endian systems, this works if your peripheral controller can route the
peripheral databus to the high part (D31..D16) of the ARM databus as well as the low
part (D15..D0) depending upon the address that you are accessing. You should check if
this multiplexing logic exists in your design (the standard ARM APB bridge does not
support this).

7.10.2 Alignment of registers

If you wish to map 16-bit registers on 32-bit alignment as recommended, then you could
use a short or int array.

Using an array of shorts

If you use shorts, you can access registers at even numbered addresses by declaring.

volatile unsigned short u16_IORegs[40];

The array element number is double the register number. For example to access register
4 you could use:

Writing Code for ROM

7-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 x = u16_IORegs[8];
 u16_IORegs[8] = newval;

Using an array of ints

Access the registers as 32-bit by declaring:

volatile unsigned int u32_IORegs[20];

A peripheral controller such as the AMBA APB bridge will read garbage into the top
bits of the ARM register from the signals that are not connected to the peripheral (D31
to D16 for a little-endian system). So, when such a peripheral is read, it must be cast to
an unsigned short to get the compiler to discard the upper 16 bits. For example,
access r4 using:

 x = (unsigned short) u32_IORegs[4];
 u32_IORegs[4] = newval;

Using a struct

The advantages of using a struct over an array are:

• descriptive names can be used (more maintainable and legible)

• different register widths can be accommodated.

Padding should be made explicit rather than relying on automatic padding added by the
compiler, for example:

 struct PortRegs {
 unsigned short ctrlreg; /* offset 0 */
 unsigned short dummy1;
 unsigned short datareg; /* offset 4 */
 unsigned short dummy2;
 unsigned int data32reg; /* offset 8 */
 } iospace;

 x = iospace.ctrlreg;
 iospace.ctrlreg = newval;

Note

Peripheral locations should not be accessed using __packed structs (where unaligned
members are allowed and there is no internal padding), or using C bitfields. This is
because it is not possible to control the number and type of memory access that is being
performed by the compiler.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-41

The result is code that is non-portable, has undesirable side effects, and will not work
as intended. The recommended way of accessing peripherals is through explicit use of
architecturally-defined types such as int, short, char on their natural alignment.

7.10.3 Mapping variables to specific addresses

Memory mapped registers can be accessed from C in two efficient ways:

• by forcing an array or struct variable to a specific address

• by using a pointer to an array or struct.

Forcing a struct or array to a specific address

The variable should be declared it in a file on its own. When it is compiled, the object
code for this file will only contain data. This data can be placed at a specified address
using the ARM scatter-loading mechanism. This is the recommended method for
placing regions at required locations in the memory map.

Create a file, for example iovar.c that contains a declaration of the variable, array, or
struct. For example:

volatile unsigned short u16_IORegs[20];

or

struct{
 volatile unsigned reg1;
 volatile unsigned reg2;
} mem_mapped_reg;

Create a scatter load description file, called for example scatter.txt, containing the
following:

ALL 0x8000 ; one load region ALL at 0x8000
{
 ALL 0x8000 ; by default, everything goes into this region
 {
 * (+RO,+RW,+ZI)
 }
}

IO 0x40000000 ; region for variables
{
 IO 0x40000000 UNINIT ; register variables go here

Writing Code for ROM

7-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

 ; initial zeros are not written
 {
 iovar.o (+ZI) ; a single module is selected by name
 }
}

The scatter load file must be specified to the linker using the -scatter scatter.txt
command-line option. The UNINIT keyword in the description file indicates that the ZI
region will not be initialized with zeros when the application is reset. If you want the
peripheral registers to have zero written to them on reset, omit the UNINIT keyword.
The scatter load file creates two different regions in your image (ALL and IO). The
zero-init area from iovar.o (containing your array) goes into the IO area located at
0x40000000. All code (RO) and data areas (RW and ZI) from other object files go into
the ALL region that starts at 0x8000.

If you have more than one group of variables (more than one set of memory mapped
registers) you must define each group of variables as a separate execution region (they
could, however, all lie within a single load region). Each group of variables must be
defined in a separate module.

The benefits of using a scatter description file are:

• All the (target-specific) absolute addresses chosen for your devices, code and data
are located in one file and maintenance is simplified.

• If you decide to change your memory map (for example if peripherals are moved),
you do not have to rebuild your entire project but only to re-link the existing
objects.

For a description of scatter loading, see the linker chapter in the ADS Tools Guide

Using a pointer to struct/array

 struct PortRegs {
 unsigned short ctrlreg; /* offset 0 */
 unsigned short dummy1;
 unsigned short datareg; /* offset 4 */
 unsigned short dummy2;
 unsigned int data32reg; /* offset 8 */
 };
 volatile struct PortRegs *iospace =
 (struct PortRegs *)0x40000000;
 x = iospace->ctrlreg;
 iospace->ctrlreg = newval;

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-43

The pointer could be either local or global. If you want the pointer to be global in order
to avoid the base pointer being reloaded after function calls, make iospace a constant
pointer to the struct by changing its definition to:

 volatile struct PortRegs * const iospace =
 (struct PortRegs *)0x40000000;

7.10.4 Code efficiency

The ARM compiler will normally use a base register plus the immediate offset field
available in the load/store instruction to compile struct member or specific array
element access.

The ARM instruction set, LDR/STR word/byte have a 4Kbyte range, but LDRH/STRH has
a smaller immediate offset of 256bytes.

The Thumb instruction set is much more restricted in addressing range than the ARM
instructions. The Thumb LDR/STR has a range of 32 words, LDRH/STRH has a range of
32 halfwords, LDRB/STRB has a range of 32 bytes. You must group related peripheral
registers near to each other if possible. The compiler will generally do a good job of
minimizing the number of instructions required to access the array elements or structure
members by using base registers.

There is a choice between one big C struct/array for the whole I/O space and smaller
per-peripheral structs. There is not much difference in efficiency. The big struct might
be a benefit if you are using ARM code where a base pointer can have a 4Kbyte range
(for word/byte access) and the entire I/O space is less than 4Kbyte. Smaller structs for
each peripheral are more maintainable.

Writing Code for ROM

7-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.11 Troubleshooting

This section provides solutions to the following common problems:

• Linker error __semihosting_swi_guard on page 7-44

• Replacing the Write0() SWI call on page 7-44

• Setting $top_of_memory on page 7-44.

7.11.1 Linker error __semihosting_swi_guard

The linker reports __semihosting_swi_guard as being multiply defined.

Cause

The linker loaded the semihosting implementation of a function from the ANSI C
library. If you have called the guard function use_no_semihosting_swi() and have
also called a library function that uses semihosting, you will get this error.

Solution

This problem can be fixed in one of the following ways:

• If the semihosted functions are used only when building an application version of
your ROM image for debugging purposes, comment them out with an #ifdef
when building a ROM image.

• Redefine the semihosted functions with your own implementation. The new
functions will be used instead of the C library versions.

7.11.2 Replacing the Write0() SWI call

Users of EmbeddedICE 2.04 or earlier might find problems with the semihosting SWI
SYS_WRITE0, used by the examples in this chapter to print to the debugger console. You
should upgrade your EmbeddedICE to the latest ICE agent, currently 2.07, or upgrade
to Multi-ICE to remedy this problem.

7.11.3 Setting $top_of_memory

The debugger internal variable $top_of_memory tells Multi-ICE and EmbeddedICE
where the highest writable address is in the memory map of a remote target. This
address is used to place the stack and heap. The default value for $top_of_memory is
0x80000, to match the (unexpanded) ARM Development (PID) Board.

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-45

Different boards may have different memory maps, so $top_of_memory must be
changed to one plus the address of the top of the RAM for your board. This must be
done before running an application, otherwise you may experience data aborts or
crashes.

For the ARM Development (PID) Board with extra DRAM modules fitted, you should
change $top_of_memory appropriately.

For the ARM Evaluation Board (AEB), reset the board after connecting Multi-ICE and
then set $top_of_memory to 0x20000. To avoid damaging the AEB, do not attempt
to connect and disconnect Multi-ICE without first removing power to the AEB board.

$top_of_memory only applies to Multi-ICE and EmbeddedICE. It does not apply to
Angel. (The top of memory for Angel is hard-coded in the porting).

Writing Code for ROM

7-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

7.12 Measuring code and data size

To measure code size, do not look at the linked image size or object module size, as
these include symbolic information that is not part of the binary data. Instead, use one
of the following armlink options:

-info sizes This option gives a breakdown of the code and data sizes of each
object file or library member making up an image.

-info totals This option gives a summary of the total code and data sizes of all
object files and all library members making up an image

7.12.1 Interpreting size information

The information provided by the -info sizes and -info totals options can be
broken down into:

• code (or read-only) segments

• data (or read-write) segments

• debug data.

Code (or read-only) segments

code size Size of code, excluding any data that has been placed in the code
segment.

RO data Size of read-only data included in the code segment by the compiler.

Typically, this data contains the addresses of variables that are accessed
by the code, plus any floating-point immediate values or immediate
values that are too big to load directly into a register. It does not include
inline strings (these are listed separately).

Writing Code for ROM

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. 7-47

Data (or read-write) segments

RW data Size of read-write data. This is data that is read-write and also has an
initializing value. Read-write data occupies the displayed amount of
RAM at runtime, but also requires the same amount of ROM to hold the
initializing values that are copied into RAM on image startup.

ZI data Size of read-write data that is zero-initialized at image startup.

Typically this contains arrays that are not initialized in the C source code.
Zero-initialized data requires the displayed amount of RAM at runtime
but does not require any space in ROM.

Debug data

debug data Reports the size of any debugging data if the files are compiled with the
-g option.

Note

There are totals for the debug data, even though the code has not been compiled for
source-level debugging, because the compiler automatically adds information to an AIF
file to allow stack backtrace debugging.

7.12.2 Calculating ROM and RAM requirements

The linker calculates the ROM and RAM requirements for code and data as follows:

ROM Code size + RO data + RW data

RAM RW Data + ZI data

In addition you must allow some RAM for stacks and heaps.

In more complex systems, you may require part (or all) of the code segment to be
downloaded from ROM into RAM at runtime. This increases the system RAM
requirements but could be necessary if, for example, RAM access times are faster than
ROM access times and the execution speed of the system is critical.

Writing Code for ROM

7-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-1

Glossary

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

ANSI American National Standards Institute. An organization that specifies standards for,
among other things, computer software.

Angel Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

Glossary-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM Debugger for
UNIX

ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Debugger for
Windows

ARM Debugger for Windows (ADW) and ARM Debugger for UNIX (ADU) are two
versions of the same ARM debugger software, running under Windows or UNIX
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Developer Suite A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtendable
Debugger

The ARM eXtendable Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger providing
high-level debugging support for languages such as C, and low-level support for
assembly language. It is a command-line debugger that runs on all supported platforms.

ATPCS ARM and Thumb Procedure Call Standard defines how registers and the stack will be
used for subroutine calls.

AXD See ARM eXtendable Debugger.

Big-Endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte.

Canonical Frame
Address

In DWARF 2, this is an address on the stack specifying where the call frame of an
interrupted function is located.

CFA See Canonical Frame Address.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

Debugger An application that monitors and controls the execution of a second application.
Usually used to find errors in the application program flow.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-3

DWARF Debug With Arbitrary Record Format

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable Linkable Format

Environment The actual hardware and operating system that an application will run on.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Flash memory Non-volatile memory that is often used to hold application code.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer.

ICE In Circuit Emulator.

IDE Integrated Development Environment (Code Warrior).

Image An executable file which has been loaded onto a processor for execution.

A binary execution file loaded onto a processor and given a thread of execution. An
image may have multiple threads. An image is related to the processor on which its
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.

See also Output sections

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

See also Output sections

Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Glossary-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

Local An object that is only accessible to the subroutine that created it.

Load view The address of regions and sections when the image has been loaded into memory but
has not yet started execution.

Memory management
unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

Output section Is a contiguous sequence of input sections that have the same RO, RW, or ZI attributes.
The sections are grouped together in larger fragments called regions. The regions will
be grouped together into the final executable image.

See also Region

PCS Procedure Call Standard.

See also ATPCS

PIC Position Independent Code.

See also ROPI

PID Position Independent Data or the ARM Platform-Independent Development card.

See also RWPI

PIE A platform-independent evaluator card designed and supplied by ARM Ltd.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on exectution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

Reentrancy The ability of a subroutine to have more that one instance of the code active. Each
instance of the subroutine call has its own copy of any required static data.

Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.

ARM DUI 0056B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-5

Regions In an Image, a region is a contiguous sequence of one to three output sections (RO, RW,
and ZI).

Retargeting The process of moving code designed for one execution environment to a new
execution environment.

ROPI Read Only Position Independent. Code and read-only data addresses can be changed at
run-time.

RTOS Real Time Operating System.

RWPI Read Write Position Independent. Read/write data addresses can be changed at
run-time.

Scatter loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application code.
Symbols which have global scope are always accessible. Symbols with local or private
scope are only accessible to code in the same subroutine or object.

Section A block of software code or data for an Image.

See also Input sections

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.

Target The actual target processor, (real or simulated), on which the application is running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Thread A context of execution on a processor. A thread is always related to a processor and may
or may not be associated with an image.

Veneer A small block of code used with subroutine calls when there is a requirement to change
processor state or branch to an address that cannot be reached in the current processor
state.

Watchpoint A location within the image which will be monitored and which will cause execution to
break when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Glossary-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056B

ARM DUI 0056A Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
Absolute maps 2-51
Activation records 3-6
ADD instruction 2-58
Addresses

loading into registers 2-30
ADR pseudo-instruction 2-30, 2-58
ADR Thumb pseudo-instruction 2-30
ADRL pseudo-instruction 2-30, 2-58
ALIGN directive 2-56
Alignment 2-56
ALU status flags 2-19
:AND: operator 2-56
ANSI C 5-19

header files 5-19
AREA directive 2-13, 2-15
AREA directive (literal pools) 2-27
ARM architecture v5T

interworking ARM and Thumb 4-9
Assembler

inline, armasm differences 5-6
inline, see Inline assemblers

mode changing 4-7
Assembly language

Absolute maps 2-51
alignment 2-56
areas 2-15
base register 2-52
block copy 2-44
Boolean constants 2-14
calling from C 5-20
case rules 2-12
code size 2-61
comments 2-13
condition code suffixes 2-20
conditional execution 2-19
constants 2-14
data structures 2-51
directives See Directives, assembly
entry point 2-16
examples 2-2, 2-15, 2-17, 2-21,

2-28, 2-31, 2-35, 2-37, 2-44,
2-61, 2-63

examples (Thumb) 2-18, 2-23,
2-38, 2-46

execution speed 2-61
immediate constants (ARM) 2-25
inline, armasm differences 5-6
instructions See Instructions,

assembly
interrupt handlers 6-27
interworking ARM and Thumb 4-5,

4-14
interworking using veneers 4-14
jump tables 2-32
labels 2-13
line format 2-12
line length 2-12
literal pools 2-27
loading addresses 2-30
loading constants 2-24
local labels 2-13
macros 2-48
maintenance 2-56
maps 2-51
multiple register transfers 2-39

see also STM, LDM
nesting subroutines 2-43

Index

Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056A

numeric constants 2-14
padding 2-56
pc 2-5, 2-10, 2-13, 2-40, 2-43, 2-46
program-relative 2-13
program-relative maps 2-54
pseudo-instructions See

Pseudo-instructions, assembly
register-based

maps 2-53
register-relative address 2-13
relative maps 2-52
speed 2-61
stacks 2-42
string constants 2-14
subroutines 2-17
symbols 2-58
Thumb block copy 2-46

ASSERT directive 2-55, 2-65
ATPCS 3-1

activation records 3-6
conformance criteria 3-3
floating-point options 3-17
frame pointers 3-4
interworking ARM and Thumb

3-16, 4-2
leaf routine 3-11
local variables 3-4
memory state 3-3
nonvariadic routines 3-8
parameter passing 3-4, 3-8
process 3-3
processes 3-14
read-only position independence

3-13
read-write position independence

3-14
reentrant routines 3-14
register names 3-5
register roles 3-4
ROPI 3-13
RWPI 3-14
stack limit checking 3-10
stack terminology 3-6
static base register 3-14
swstna 3-10
threads 3-3, 3-14
variadic routines 3-8
variants 3-2
veneers 3-16

ATPCS options
/interwork 4-3

B
B instruction (Thumb) 2-19
Banked registers 6-3
Barrel shifter 2-8, 2-19
Barrel shifter (Thumb) 2-11
Base classes

in mixed languages 5-19
:BASE: operator 2-58
Base register 2-52
Bit 0, use in BX instruction 4-6
BL instruction 2-17, 5-6
BL instruction (Thumb) 2-19
Block copy, assembly language 2-44
Block copy, (Thumb) 2-46
Boolean constants, assembly language

2-14
Branch instructions 2-6
Branch instructions (Thumb) 2-9
BX instruction 2-18, 4-5, 5-7

bit 0 usage 4-6
long range branching 4-6
non-Thumb processors 4-6
without state change 4-6

C
C

calling
from assembler 5-17
from C++ 5-17

calling assembler 5-20
global variables from assembly

language 5-14
Interworking ARM and Thumb

4-10
linkage 5-17
using header files from C++ 5-15

Calling
assembler from C++ 5-17
C from assembly language 5-17
C from C++ 5-17, 5-19
C++ from assembly language 5-17
indirect calls 4-12

interworking examples 4-11
interworking veneers 4-10
language conventions 5-17

Calling SWIs 6-19
Case rules, assembly 2-12
Chaining exception handlers 6-37
Code

density and interworking 4-2
size 2-21, 2-61

Code size
measuring 7-46

CODE16 directive 2-18
CODE32 directive 2-18
Comments

assembly language 2-13
inline assemblers 5-3

Condition code suffixes 2-20
Conditional execution (Thumb) 2-10,

2-11
Conditional execution, assembly 2-19,

2-21
Constants, assembly 2-14
Constants, inline assemblers 5-5
Contents iii
Context switch 6-31
Coprocessors

Undefined Instruction handlers
6-33

CPSR 2-5, 2-19, 6-5
Current program status register See

CPSR
C++

asm 5-2
calling

from assembler 5-17
from C 5-17

calling conventions 5-18
data types in mixed languages 5-19
string literal 5-2

D
Data Abort

exception 6-2
handler 6-35, 6-41
LDM 6-35
LDR 6-35
returning from 6-8

Index

ARM DUI 0056A Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-3

STM 6-35
STR 6-35
SWP 6-35

DATA directive 4-9
Data maps, assembly 2-51
Data processing instructions 2-6
Data processing instructions (Thumb)

2-10
Data size, measuring 7-46
Data structure, assembly 2-51
Data types 5-19
Directives, assembler

ENTRY 7-7
Directives, assembly language

ALIGN 2-56
AREA 2-13, 2-15
AREA (literal pools) 2-27
ASSERT 2-55, 2-65
CODE16 2-18
CODE32 2-18
DATA 4-9
END 2-16
END (literal pools) 2-27
ENTRY 2-16
IMPORT 5-14
MACRO 2-48
MAP 2-51
ROUT 2-13

E
END directive 2-16
END directive (literal pools) 2-27
ENTRY directive 2-16
Entry point, assembly 2-16
Exception handlers

chaining 6-37
Data Abort 6-35, 6-41
extending 6-37
FIQ 6-41
installing 6-9
installing from C 6-11
installing on reset 6-9
interrupt 6-22
IRQ 6-41
nested 6-23
Prefetch Abort 6-34, 6-41
reentrant 6-23

Reset 6-32
returning from 6-6
subroutines in 6-44
SWI 6-14, 6-15, 6-18, 6-41
Thumb 6-39
Undefined Instruction 6-33, 6-41

Exceptions 6-2
Data Abort 6-8
entering 6-5
FIQ 6-7
initialization code for ROM images

7-7
installing handlers 6-9
IRQ 6-2, 6-7
leaving 6-5
Prefetch Abort 6-2, 6-8
priorities 6-3
reset 6-2
response by processors 6-5
returning from 6-7, 6-41
SWI 6-2, 6-7
SWI handlers 6-14, 6-15, 6-18
Undefined Instruction 6-2, 6-7
use of modes 6-3
use of registers 6-3
vector table 6-3, 6-9

Execution
speed 2-21, 2-61, 4-2, 6-22

Extending exception handlers 6-37
extern "C" 5-15, 5-17, 5-19

F
Fault address register 6-36
FIQ 6-2, 6-22

handler 6-7, 6-22, 6-41
registers 6-22

Floating-point
ATPCS options 3-17
FPA 3-20
VFP 3-18

FPA
Undefined Instruction handlers

6-33
FPA architecture 3-20

H
Halfwords

in load and store instructions 2-6

I
IEEE 754 3-19
Illegal address 6-2
Immediate constants (ARM) 2-25
implicit this 5-17
IMPORT directive 5-14
:INDEX: operator 2-58
Inline assemblers 5-2

accessing structures 5-14
ADR pseudo-instruction 5-7
ADRL pseudo-instruction 5-7
ALU flags 5-5, 5-7, 5-8
BL instruction 5-6
branches 5-3
BX instruction 5-7
C global variables 5-14
C variables 5-4, 5-8
commas 5-8
comments 5-3
complex expressions 5-4
constants 5-5
corrupted registers 5-3
CPSR 5-5
C, C++ expressions 5-4, 5-5, 5-7
DC directives 5-6
examples 5-10
floating point instructions 5-7
instruction expansion 5-5
interrupts 5-10
invoking 5-2
labels 5-3
LDM instruction 5-7
long multiply 5-12
MUL instruction 5-5
multiple lines 5-3
operand expressions 5-4
physical registers 5-5, 5-7
register corruption 5-6, 5-8
saving registers 5-9
sign extension 5-4
stacking registers 5-9
STM instruction 5-7

Index

Index-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056A

storage declaration 5-6
subroutine parameters 5-6
SWI instruction 5-6
writing to pc 5-2, 5-5
5-5

Instruction expansion 5-5
Instruction set

ARM 2-6
Thumb 2-9

Instructions, assembly language
ADD 2-58
BL 2-17, 5-6
BX 2-18, 4-5
LDM 2-39, 2-54
LDM (Thumb) 2-46
LDR 2-51
MOV 2-24, 2-25, 2-53
MRS 2-8
MSR 2-8
MVN 2-24, 2-25
POP (Thumb) 2-46
PUSH (Thumb) 2-46
STM 2-39, 2-54
STM (Thumb) 2-46
STR 2-51
SWI 5-6, 6-14
SWI (Thumb) 6-42

Interrupt handlers 6-22
Interrupts

prioritization 6-29
ROM applications 7-9

Interworking ARM and Thumb 4-1
ARM architecture v5T 4-9
assembly language 4-5, 4-14
ATPCS 4-2, 4-16
ATPCS options, See ATPCS options
BX instruction 4-5
C 4-11
C and C++ 4-10
C and C++ libraries 4-12
compiler command-line options

4-12
compiling code 4-10
CPSR 4-8
data in Thumb code 4-9
detecting calls 4-4
duplicate functions 4-13
examples 4-8, 4-11, 4-14
exceptions 4-3

function pointers 4-12
indirect calls 4-12
leaf functions 4-10
mixed languages 4-14, 4-16
non-Thumb processors 4-11
procedure call standards 4-2
rules 4-12
veneers 3-16, 4-2, 4-10, 4-14

IRQ 6-22
handler 6-7, 6-41

IRQ exception 6-2
I/O devices, ROM applications 7-8

J
Jump table 6-15, 6-42
Jump tables, assembly 2-32

L
Labels, assembly 2-13
Labels, inline assemblers 5-6
LDM instruction 2-39, 2-54

Thumb 2-46
LDR

instruction 2-51
pseudo-instruction 2-24, 2-27, 2-35

Leaf functions 4-10
Leaf routine 3-11
Line length, assembly language 2-12
Link register 2-4, 2-17, 6-3
Linking

and assembly language labels 2-13
and interworking 4-4, 4-10
and the AREA directive 2-15
the C library 7-44

Literal pools, assembly language 2-27
Loading constants, assembly language

2-24
Local labels, assembly language 2-13

M
MACRO directive 2-48
Mangling symbol names 5-17, 5-19
MAP directive 2-51

Maps, assembly language
absolute 2-51
program-relative 2-54
register-based 2-53
relative 2-52

Memory management unit 7-8
Memory map

layout 7-3
organization of 7-3
RAM at address 0 7-4
ROM at address 0 7-3

Mixed endian 3-20
Mixed language programming

interworking ARM and Thumb
4-14, 4-16

MOV instruction 2-24, 2-25, 2-53
MRS instruction 2-8
MSR instruction 2-8
Multiple register transfers 2-39
Multiple register transfers, see also

STM, LDM
MVN instruction 2-24, 2-25

N
Nested interrupts 6-23
Nested SWIs 6-18
Nesting subroutines, assembly language

2-43
Nonvariadic routines 3-8
Numeric constants, assembly language

2-14

O
Operand expressions, inline assemblers

5-4
Operators, assembly language

:BASE: 2-58
:INDEX: 2-58
:AND: 2-56

P
Padding 2-56
Parameters (assembly macros) 2-48

Index

ARM DUI 0056A Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-5

pc, assembly language 2-5, 2-10, 2-13,
2-40, 2-43, 2-46

PIC 3-13
PID 3-14
Platforms, supported 1-5
Pointers

data members 5-19
member functions 5-19

POP instruction (Thumb) 2-46
Power-up 6-2
Prefetch Abort 6-2

handler 6-34, 6-41
returning from 6-8

Process control blocks 6-31
Processor mode 2-4
Processors

responding to exceptions 6-5
Program counter See pc
Program-relative address 2-13
Program-relative maps 2-54
Prototype statement 2-48
Pseudo-instructions, assembly language

ADR 2-30, 2-58
ADR (Thumb) 2-30
ADRL 2-30, 2-58
LDR 2-24, 2-27, 2-35
LDR (literal pools) 2-28

Pure endian 3-19
PUSH instruction (Thumb) 2-46

R
RAM

at address 0 7-4
measuring requirements 7-47

Reentrant routines 3-14
References 5-19
Register access (Thumb) 2-11
Register banks 2-4
Register-based

symbols 2-58
Register-based maps 2-53
Register-relative address 2-13
Registers 2-4

REMAP 7-5
Relative maps 2-52
REMAP register 7-5
Reset exception 6-2

Reset exception handler 6-32
RESET vector 7-5
Return address 6-7
Return instruction 6-7
ROM

at address 0 7-3
measuring requirements 7-47
see Writing code for ROM

ROPI 3-13
ROUT directive 2-13
RWPI 3-14

S
Saved program status register See SPSR
Scalar mode 3-18
Scatter load description file

examples 7-24, 7-27
Scatter loading

writing code for ROM 7-23, 7-26
Scope 2-13
Soft reset 6-2
Software FPA emulator

Undefined Instruction handlers
6-33

Software interrupt, see SWIs
SPSR 6-3, 6-5

T bit 6-42
Stack terminology 3-6
Stacks 2-4, 2-42, 6-3

initialization code for ROM images
7-8

stack pointer 6-3
supervisor 6-17

Static base 3-14
Status flags 2-19
STM instruction 2-39, 2-54

Thumb 2-46
Storage declaration, inline assemblers

5-6
STR

instruction 2-51
String constants, assembly language

2-14
String copying

assembler 5-20
Subroutines, assembly language 2-17
Supervisor mode 6-18

Supervisor stack 6-17
SWI exception 6-2
SWI instruction 5-6, 6-14

Thumb 6-42
SWIs

calling 6-19
handlers 6-14, 6-15, 6-18, 6-41
indirect 6-20
returning from 6-7
SYS_Write0 7-44
Thumb state 6-42

swstna 3-10
Symbol names, mangling 5-17, 5-19
Symbols, register-based 2-58
System decoder 7-5
System mode 6-44

T
Table of contents iii
this, implicit 5-17
Threads 3-14
Thumb

and __irq 6-23
BX instruction 2-18, 4-6
changing to Thumb state, example

4-7
code for ROM applications 7-9
conditional execution 2-19
data in code areas 4-9
direct loading 2-27
example assembly language 2-18
exception handler 6-39
handling exceptions 6-39
inline assemblers 5-2
instruction set 2-9
instruction set overview 2-9
interworking with ARM 4-2
LDM and STM instructions 2-46
popping pc 2-43
return address 6-41
using duplicate function names

4-13

U
Undefined Instruction exception 6-2

Index

Index-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0056A

Undefined Instruction handler 6-7,
6-33, 6-41

User mode 6-3

V
Variadic routines 3-8
Vector mode 3-18
Vector table 6-3, 6-9, 6-22, 6-39
Vector table and caches 6-13
Vectors

exception 7-7
RESET 7-5

Veneers, see Interworking
VFP architecture 3-18

W
Writing code for ROM 7-1

common problems 7-44
critical I/O devices 7-8
enabling interrupts 7-9
entry point 7-7
exception vectors 7-7
initialization 7-6
memory for C code 7-10
MMU 7-8
processor mode 7-9
processor state 7-9
RAM at address 0 7-4
RAM variables 7-8
ROM at address 0 7-3, 7-11
ROM at its base address 7-11, 7-14
scatter loading 7-23, 7-26
stack pointers 7-8
SWI SYS_Write0 7-44
undefined __main 7-44

Numerics
0-init data 7-47

	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Contents
	Introduction
	1.1 About the ARM Developer Suite
	1.1.1 Components of the ADS

	1.2 Supported platforms
	1.3 What is different?

	Assembly Language Programming
	2.1 Introduction
	2.1.1 Code examples

	2.2 Overview of the ARM architecture
	2.2.1 Architecture versions
	2.2.2 ARM and Thumb state
	2.2.3 Processor mode
	2.2.4 Registers
	2.2.5 ARM instruction set overview
	2.2.6 ARM instruction capabilities
	2.2.7 Thumb instruction set overview
	2.2.8 Thumb instruction capabilities

	2.3 Structure of assembly language modules
	2.3.1 Layout of assembly language source files
	2.3.2 An example ARM assembly language module
	2.3.3 Calling subroutines
	2.3.4 An example Thumb assembly language module

	2.4 Conditional execution
	2.4.1 The ALU status flags
	2.4.2 Execution conditions
	2.4.3 Using conditional execution in ARM state

	2.5 Loading constants into registers
	2.5.1 Direct loading with MOV and MVN
	2.5.2 Loading with LDR Rd, =const
	2.5.3 Loading floating-point constants

	2.6 Loading addresses into registers
	2.6.1 Direct loading with ADR and ADRL
	2.6.2 Loading addresses with LDR Rd, = label

	2.7 Load and store multiple register instructions
	2.7.1 ARM LDM and STM instructions
	2.7.2 LDM and STM addressing modes
	2.7.3 Implementing stacks with LDM and STM
	2.7.4 Block copy with LDM and STM
	2.7.5 Thumb LDM and STM instructions

	2.8 Using macros
	2.8.1 Test-and-branch macro example
	2.8.2 Unsigned integer division macro example

	2.9 Describing data structures with MAP and FIELD directives
	2.9.1 Absolute maps
	2.9.2 Relative maps
	2.9.3 Register-based maps
	2.9.4 Program-relative maps
	2.9.5 Finding the end of the allocated data
	2.9.6 Forcing correct alignment
	2.9.7 Using register-based MAP and FIELD directives
	2.9.8 Using two register-based structures
	2.9.9 Avoiding problems with MAP and FIELD directives

	2.10 Using frame directives

	Using the Procedure Call Standard
	3.1 About the ARM-Thumb Procedure Call Standard
	3.1.1 ATPCS variants
	3.1.2 ARM C libraries
	3.1.3 Conformance to the ATPCS
	3.1.4 Processes and the memory model

	3.2 Register roles and names
	3.2.1 Register roles
	3.2.2 Register names

	3.3 The stack
	3.3.1 Stack terminology
	3.3.2 Stack unwinding

	3.4 Parameter passing
	3.4.1 Variadic routines
	3.4.2 Nonvariadic routines
	3.4.3 Result return

	3.5 Stack limit checking
	3.5.1 Rules for stack limit checked code
	3.5.2 Register usage with stack limit checking
	3.5.3 Stack checking in C and C++
	3.5.4 Stack checking in assembly language

	3.6 Read-only position independence
	3.6.1 Register usage with ROPI
	3.6.2 Writing code for ROPI

	3.7 Read-write position independence
	3.7.1 Reentrant routines
	3.7.2 Register usage with RWPI
	3.7.3 Position-independent data addressing
	3.7.4 Writing assembly language for RWPI

	3.8 Interworking between ARM and Thumb states
	3.8.1 Register usage with interworking

	3.9 Floating-point options
	3.9.1 The VFP architecture
	3.9.2 The FPA architecture
	3.9.3 No floating-point hardware

	Interworking ARM and Thumb
	4.1 About interworking
	4.1.1 When to use interworking
	4.1.2 Using the /interwork option
	4.1.3 Detecting interworking calls

	4.2 Basic assembly language interworking
	4.2.1 The Branch Exchange instruction
	4.2.2 ARM architecture v5T
	4.2.3 Data labels in Thumb code areas

	4.3 C and C++ interworking and veneers
	4.3.1 Compiling code for interworking
	4.3.2 Basic rules for interworking
	4.3.3 Using two copies of the same function

	4.4 Assembly language interworking using veneers
	4.4.1 Assembly-only interworking using veneers
	4.4.2 C, C++, and assembly language interworking using veneers

	Mixed Language Programming
	5.1 Using the inline assemblers
	5.1.1 Invoking the inline assembler
	5.1.2 ARM and Thumb instruction sets
	5.1.3 Differences between the inline assemblers and armasm
	5.1.4 Usage
	5.1.5 Examples

	5.2 Accessing C global variables from assembly code
	5.3 Using C header files from C++
	5.3.1 Including system C header files
	5.3.2 Including your own C header files

	5.4 Calling between C, C++, and ARM assembly language
	5.4.1 General rules for calling between languages
	5.4.2 Information specific to C++
	5.4.3 Examples

	Handling Processor Exceptions
	6.1 Overview
	6.1.1 The vector table
	6.1.2 Use of modes and registers by exceptions
	6.1.3 Exception priorities

	6.2 Entering and leaving an exception
	6.2.1 The processor response to an exception
	6.2.2 Returning from an exception handler
	6.2.3 The return address and return instruction

	6.3 Installing an exception handler
	6.3.1 Installing the handlers at reset
	6.3.2 Installing the handlers from C

	6.4 SWI handlers
	6.4.1 SWI handlers in assembly language
	6.4.2 SWI handlers in C and assembly language
	6.4.3 Using SWIs in Supervisor mode
	6.4.4 Calling SWIs from an application
	6.4.5 Calling SWIs dynamically from an application

	6.5 Interrupt handlers
	6.5.1 Simple interrupt handlers in C
	6.5.2 Reentrant interrupt handlers
	6.5.3 Example interrupt handlers in assembly language

	6.6 Reset handlers
	6.7 Undefined Instruction handlers
	6.8 Prefetch Abort handler
	6.9 Data Abort handler
	6.10 Chaining exception handlers
	6.10.1 A single extended handler
	6.10.2 Several chained handlers

	6.11 Handling exceptions on Thumb-capable processors
	6.11.1 Thumb processor response to an exception
	6.11.2 The return address
	6.11.3 Determining the processor state

	6.12 System mode

	Writing Code for ROM
	7.1 About writing code for ROM
	7.2 Memory map considerations
	7.2.1 ROM at 0x0
	7.2.2 RAM at 0x0

	7.3 Initializing the system
	7.3.1 Initializing the execution environment
	7.3.2 Initializing the application

	7.4 The reference C example using semihosting
	7.4.1 Memory map
	7.4.2 Sample code

	7.5 Loading the ROM image at address 0
	7.5.1 Memory map
	7.5.2 Output from list option
	7.5.3 Sample code

	7.6 Using a simple scatter-loading file
	7.6.1 Memory map
	7.6.2 Scatter-loading description file
	7.6.3 Sample code
	7.6.4 Building the example

	7.7 Using both scatter-loading and remapping
	7.7.1 Memory map
	7.7.2 Scatter-loading description file
	7.7.3 Initialization code
	7.7.4 Building the example
	7.7.5 Additional examples of remapping

	7.8 A semihosted application with interrupt handling
	7.8.1 Memory map
	7.8.2 Building the example
	7.8.3 Sample code

	7.9 An embeddable application with interrupt handling
	7.9.1 Memory map
	7.9.2 Building the example
	7.9.3 Scatter-loading description file
	7.9.4 Sample code

	7.10 Using scatter loading with memory-mapped I/O
	7.10.1 Using pointers to access I/O
	7.10.2 Alignment of registers
	7.10.3 Mapping variables to specific addresses
	7.10.4 Code efficiency

	7.11 Troubleshooting
	7.11.1 Linker error __semihosting_swi_guard
	7.11.2 Replacing the Write0() SWI call
	7.11.3 Setting $top_of_memory

	7.12 Measuring code and data size
	7.12.1 Interpreting size information
	7.12.2 Calculating ROM and RAM requirements

	Glossary
	Index
	A
	B, C, D
	E, F, H, I
	J, L, M, N, O, P
	R, S, T, U
	V, W, Numerics

