
Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DUI0058B

ARM Developer Suite
Version 1.0.1

Debug Target Guide

 ii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Copyright © 1999 and 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, the ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ETM7, ETM9, TDMI, STRONG, are trademarks
of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

October 1999 A Release 1.0

March 2000 B Release 1.0.1

ARM DUI 0058 Copyright © 1999, 2000 ARM Limited. All rights reserved. iii

Contents
Debug Target Guide

Preface
About this book .. viii
Feedback .. xii

Chapter 1 Introduction
1.1 About debug support ... 1-2
1.2 ARMulator ... 1-3
1.3 Angel ... 1-3
1.4 Semihosting SWIs ... 1-3

Chapter 2 ARMulator Basics
2.1 About ARMulator ... 2-2
2.2 ARMulator components .. 2-3
2.3 Tracer .. 2-5
2.4 Profiler ... 2-11
2.5 Pagetable module ... 2-12
2.6 Flat memory model ... 2-18
2.7 Fast memory model .. 2-19
2.8 Memory model with memory map ... 2-20
2.9 DummyMMU ... 2-23
2.10 Angel ... 2-24
2.11 Peripheral models ... 2-26

iv Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0058

2.12 Other models .. 2-29
2.13 Basic ARM ten system ... 2-31

Chapter 3 Writing ARMulator Models
3.1 Adding models to ARMulator .. 3-2
3.2 Writing a new peripheral model .. 3-6
3.3 Writing a new cache model .. 3-7
3.4 Rebuilding ARMulator ... 3-11
3.5 Configuring ARMulator to use the example .. 3-15

Chapter 4 ARMulator Reference
4.1 ARMulator models .. 4-3
4.2 Basic model interface ... 4-4
4.3 The memory interface ... 4-10
4.4 Memory model interface ... 4-14
4.5 Coprocessor model interface .. 4-23
4.6 Operating system or debug monitor interface .. 4-35
4.7 Using the floating-point emulator .. 4-39
4.8 Accessing ARMulator state .. 4-41
4.9 Exceptions .. 4-51
4.10 Upcalls .. 4-53
4.11 Memory access functions ... 4-65
4.12 Event scheduling functions ... 4-67
4.13 General purpose functions ... 4-77
4.14 Accessing the debugger ... 4-85
4.15 Tracer ... 4-89
4.16 Events ... 4-91
4.17 Map files ... 4-94
4.18 armul.cnf, the ARMulator configuration file ... 4-98
4.19 ToolConf ... 4-108
4.20 Basic ARM ten system configuration trace files 4-114
4.21 Reference peripherals .. 4-121

Chapter 5 Angel
5.1 About Angel .. 5-2
5.2 Developing applications with Angel .. 5-11
5.3 Angel in operation ... 5-24
5.4 Configuring Angel ... 5-37
5.5 Angel communications architecture .. 5-41
5.6 The Fusion IP stack for Angel .. 5-47

Chapter 6 Semihosting SWIs
6.1 Overview of the C library support SWIs .. 6-2
6.2 Semihosting implementation .. 6-5
6.3 Adding an application SWI handler .. 6-7
6.4 Input/Output SWIs .. 6-10

ARM DUI 0058 Copyright © 1999, 2000 ARM Limited. All rights reserved. v

6.5 Debug agent interaction SWIs .. 6-23

vi Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0058

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. -vii

Preface

This preface introduces the ARM debug targets and their reference documentation. It
contains the following sections:

• About this book on page Preface-viii

• Feedback on page Preface-xii

Preface

 -viii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

About this book

This book provides reference information for the ARM Developer Suite (ADS). It
describes:

• ARMulator, the ARM simulator

• Angel, the ARM debug monitor

• Semihosting SWIs, the means for your ARM programs to access facilities on your
host computer.

Intended audience

This book is written for all developers who are using the ARM debuggers, armsd,
AXD, ADU or ADW. It assumes that you are an experienced software developer, and
that you are familiar with the ARM development tools as described in Getting Started.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the material in this book.

Chapter 2 ARMulator Basics
Read this chapter for a description of ARMulator, the ARM instruction
set simulator.

Chapter 3 Writing ARMulator Models
Read this chapter for help in writing your own extensions and
modifications to ARMulator.

Chapter 4 ARMulator Reference
This chapter provides further details to help you use ARMulator.

Chapter 5 Angel
Read this chapter for a description of Angel, the ARM debug monitor.

Chapter 6 Semihosting SWIs
Read this chapter for information about how to access facilities on the
host computer from your ARM programs.

Preface

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. -ix

Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that may be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or option
name.

typewriter italic
Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names and buttons. Also
used for terms in descriptive lists, where appropriate.

typewriter bold
Denotes language keywords when used outside example code and ARM
processor signal names.

Preface

 -x Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains information that is specific to the versions of ARMulator, Angel and
the semihosting SWIs supplied with the ARM Developer Suite (ADS). Refer to the
following books in the ADS document suite for information on other components of
ADS:

• Getting Started (ARM DUI 0064A)

• ADS Tools Guide (ARM DUI 0067A)

• ADS Debuggers Guide (ARM DUI 0066A)

• ADS Developer Guide (ARM DUI 0056A).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DUI 0100). This is supplied in
Dynatext format, and in PDF format in
Install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM Applications Library Programmer’s Guide (ARM DUI 0081). This is
supplied in Dynatext format, and in PDF format on the CD.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
Install_directory\PDF\specs\ARM ELFA08.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
Install_directory\PDF\specs\TIS-DWARF2.pdf.

• Angel Debug Protocol. This is supplied in PDF format in
Install_directory\PDF\specs\ADP ARM-DUI0052C.pdf

• Angel Debug Protocol Messages. This is supplied in PDF format in
Install_directory\PDF\specs\ADP ARM-DUI0053D.pdf

Preface

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. -xi

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Preface

 -xii Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Feedback

ARM Limited welcomes feedback on both the ARM Developer Suite, and its
documentation.

Feedback on the ARM Developer Suite

If you have any problems with the ARM Developer Suite, please contact your supplier.
To help us provide a rapid and useful response, please give:

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version number of the tool, including the version number and build number.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com
giving:

• the document title

• the document number

• the page number(s) to which you comments apply

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-1

Chapter 1
Introduction

This chapter introduces the debug support facilities provided in the ADS version 1.00.
It contains the following sections:

• About debug support on page 1-2

• ARMulator on page 1-3

• Angel on page 1-3

• Semihosting SWIs on page 1-3.

Introduction

1-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

1.1 About debug support

The debug support component of ADS consists of ARMulator and Angel.

You can debug your prototype software using any of the debuggers described in ADS
Debuggers Guide. The debugger runs on your host computer. It is connected to a target
system that your prototype software runs on.

Your target system may be either:

• a software simulator, simulating ARM hardware

• real ARM-based hardware.

ARMulator is a simulator that runs on the same host computer as the debugger (see
ARMulator on page 1-3).

ARM-based hardware could be an ARM evaluation or development board, a third-party
board, or ARM-based hardware of your own design. In addition to the software that you
are developing, it may need to run a debug monitor to communicate with the debugger.

Angel is the debug monitor supplied with ADS (see Angel on page 1-3).

ARMulator and the debug monitor use software interrupts (SWI) and the host computer
to handle process requests from the application for initialization, memory management,
and I/O. Using the host computer to assist the local function calls is called semihosting
(see Semihosting SWIs on page 1-3).

In-circuit emulators such as EmbeddedICE and Multi-ICE use an alternative method
instead of Angel. See the documentation accompanying the hardware for details.

Introduction

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 1-3

1.2 ARMulator

ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

You can use ARMulator for software development and for benchmarking
ARM-targeted software. It models the instruction set and counts cycles.

1.3 Angel

Angel is a debug monitor. It is designed to help you to develop and debug applications
running on ARM-based hardware. Using Angel you can debug applications running in
either ARM state or Thumb state.

You can use Angel to:

• evaluate existing application software on real hardware, as opposed to hardware
simulation

• develop new software applications on development hardware

• bring into operation new hardware that includes an ARM processor

• port operating systems to ARM-based hardware.

See the following chapters for more information:

• Chapter 5 Angel

• Chapter 6 Semihosting SWIs.

1.4 Semihosting SWIs

The semihosting SWIs provide the mechanism for using applications in a semihosted
environment. SWI handling is available for both ARM and Thumb.

You can use the semihosting SWIs to produce applications which work with Angel,
ARMulator, or your own SWI handler.

See Chapter 6 Semihosting SWIs for more information.

Introduction

1-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-1

Chapter 2
ARMulator Basics

This chapter describes ARMulator, a collection of programs that provide software
simulation of ARM processors. It contains the following sections:

• About ARMulator on page 2-2

• ARMulator components on page 2-3

• Tracer on page 2-5

• Profiler on page 2-11

• Pagetable module on page 2-12

• Flat memory model on page 2-18

• Fast memory model on page 2-19

• Memory model with memory map on page 2-20

• DummyMMU on page 2-23

• Angel on page 2-24

• Peripheral models on page 2-26

• Other models on page 2-29

• Basic ARM ten system on page 2-31.

ARMulator Basics

2-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.1 About ARMulator

ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors. To run software on
ARMulator, you must access it either through the ARM symbolic debugger, armsd, or
through the ARM GUI debuggers, AXD, ADU, or ADW. See ADS Debuggers Guide
for details.

ARMulator is suited to software development and benchmarking ARM-targeted
software. It models the instruction set and counts cycles.

ARMulator supports a full ANSI C library to allow complete C programs to run on the
simulated system. Refer to the library chapter in ADS Tools Guide for more information
on C and C++ library support. See also Chapter 6 Semihosting SWIs for information on
the C library semihosting SWIs supported by ARMulator.

ARMulator does not support ARM10 in the same way that it supports other processors.
Refer to Basic ARM ten system on page 2-31 for further information.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-3

2.2 ARMulator components

This section does not apply to ARM10 systems. For information about ARM10
systems, see Basic ARM ten system on page 2-31.

ARMulator consists of a series of modules. The main ones are:

• a model of the ARM processor core

• a model of the memory used by the processor.

There are alternative predefined modules for each of these parts. You can select the
combination of processor and memory model you want to use.

One of the predefined memory models, armmap, allows you to specify a simulated
memory system in detail.

In addition there are predefined modules which you can use to:

• model additional hardware, such as a coprocessor or peripherals

• model pre-installed software, such as a C library, semihosting SWI handler, or an
operating system

• provide debugging or benchmarking information (see Tracer on page 2-5 and
Profiler on page 2-11).

You can use different combinations of predefined modules, and different memory maps,
without rebuilding ARMulator (see Configuring ARMulator on page 2-4 and Memory
model with memory map on page 2-20).

You can write your own modules, or edit copies of the predefined ones, if the modules
provided do not meet your needs. For example:

• to model a different peripheral, coprocessor, or operating system

• to model a different memory system

• to provide additional debugging or benchmarking information.

The source code of most of the modules, excluding the processor models, is supplied.
You can use these as examples to help you write your own modules (see Chapter 3
Writing ARMulator Models).

ARMulator Basics

2-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.2.1 Configuring ARMulator

You can configure some of the details of ARMulator from armsd, AXD, ADU, or
ADW. See ADS Debuggers Guide for details. The currently active models and
configurations are announced in the debugger startup banner

To make other adjustments you must edit ARMulator files directly. These are described
in this chapter, in Chapter 3 Writing ARMulator Models, and Chapter 4 ARMulator
Reference.

The following sections describe each of the predefined modules in turn, and how they
may be configured.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-5

2.3 Tracer

You can use Tracer to trace instructions, memory accesses, and events. The
configuration file armul.cnf controls what is traced (see armul.cnf, the ARMulator
configuration file on page 4-98).

Note

Tracer cannot be used with ARM10 systems. See Basic ARM ten system on page 2-31
for information about ARM10 systems.

2.3.1 Debugger support for tracing

There is no direct debugger support for tracing. Instead, Tracer uses bit 4 of the RDI
logging level ($rdi_log) variable to enable or disable tracing.

Using AXD

Select System Views→Debugger Internals→Internal Variables, and then
double-click on the $rdi_log value to edit it.

• To enable tracing, set $rdi_log to 0x00000010.

• To disable tracing, set $rdi_log to 0x00000000.

Using ADU or ADW

Select Set RDI Log Level from the Options menu.

• To enable tracing, set the RDI log level to 16.

• To disable tracing, set the RDI log level to 0.

Using armsd

• To enable tracing under armsd, type $rdi_log=16.

• To disable tracing, type $rdi_log=0.

ARMulator Basics

2-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.3.2 Interpreting trace file output

This section describes how you interpret the output from Tracer.

Example of a trace file

The following example shows part of a trace file:

Date: Fri Jul 16 13:29:16 1999
Source: Armul
Options: Trace Instructions (Disassemble) Trace Memory Cycles
MNR4O__ 00008008 EB00000C
MSR4O__ 0000800C EB00001B
MSR4O__ 00008010 EF000011
IT 00008008 eb00000c BL 0x8040
MNR4O__ 00008040 E1A00000
MSR4O__ 00008044 E04EC00F
MSR4O__ 00008048 E08FC00C
IT 00008040 e1a00000 NOP
MSR4O__ 0000804C E99C000F
IT 00008044 e04ec00f SUB r12,r14,pc
MSR4O__ 00008050 E24CC010
IT 00008048 e08fc00c ADD r12,pc,r12
E 00000020 00000000 10005
MNR4O__ 00000020 E1A00000
IT 00000018 eb00000a BL 0x48
E 00000048 00000000 10005
MNR4O__ 00000048 E10F0000
E 0000004C 00000000 10005
MSR4O__ 0000004C E1A00000

In a trace file, there are three types of line:

• trace memory entries (M lines)

• trace instruction entries (I lines)

• trace event entries (E lines).

These are described in the following sections.

Trace memory (M lines)

Trace memory (M) lines have the following format for general memory accesses:

M<type><rw><size>[O][L][S] <address> <data>

where:

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-7

<type> indicates the cycle type:

S sequential

N nonsequential.

<rw> indicates either a read or a write operation:

R read

W write.

<size> indicates the size of the memory access:

4 word (32 bits)

2 halfword (16 bits)

1 byte (8 bits).

O indicates an opcode fetch (instruction fetch).

L indicates a locked access.

S indicates a speculative instruction fetch.

<address> gives the address in hexadecimal format, for example 00008008.

<data> can show one of the following:

value gives the read/written value, for example EB00000C

(wait) indicates nWAIT was LOW to insert a wait state

(abort) indicates ABORT was HIGH to abort the access.

Trace memory lines may also have any of the following formats:

• MI

for idle cycles

• MC

for coprocessor cycles

• MIO

for idle cycles on the instruction bus of Harvard architecture processors such as
ARM9TDMI.

Trace instructions (I lines)

The format of the trace instruction (I) lines is as follows:

[IT | IS] <instr_addr> <opcode> [<disassembly>]

For example:

ARMulator Basics

2-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

IT 00008044 e04ec00f SUB r12,r14,pc

where:

IT indicates that the instruction was taken.

IS indicates that the instruction was skipped (all ARM instructions
are conditional).

<instr_addr> shows the address of the instruction in hexadecimal format, for
example 00008044.

<opcode> gives the opcode in hexadecimal format, for example e04ec00f.

<disassembly> gives the disassembly (uppercase if the instruction is taken), for
example, SUB r12,r14,pc. This is optional and is enabled by
setting Disassemble=True in armul.cnf.

Branches and branches with link in Thumb code appear as two entries, with the first
marked:

1st instr of BL pair.

Events (E lines)

The format of the event (E) lines is as follows:

E <word1> <word2> <event_number>

For example:

E 00000048 00000000 10005

where:

<word1> gives the first of a pair of words, such as, the pc value.

<word2> gives the second of a pair of words, such as, the aborting address.

<event_number> gives an event number, for example 0x10005. This is MMU
Event_ITLBWalk. Events are described in Events on page 4-91.

2.3.3 Configuring Tracer

Tracer has its own section in the ARMulator configuration file (armul.cnf):

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-9

{ Tracer
;; Output options - can be plaintext to file, binary to file or
;; to RDI log window.
;; (Checked in the order RDILog, File, BinFile.)
RDILog=False
File=armul.trc
BinFile=armul.trc
;; Tracer options - what to trace
TraceInstructions=True
TraceMemory=False
TraceIdle=False
TraceNonAccounted=False
TraceEvents=False
;; Where to trace memory - if not set, it will trace at the
;; core.
TraceBus=True
;; Flags - disassemble instructions; start with tracing enabled;
Disassemble=True
StartOn=False
}

where:

RDILog instructs Tracer to output to the RDI log window (in the GUI
debuggers) or the console (under armsd).

File defines the file where the trace information is written.
Alternatively, you can use BinFile to store data in a binary
format.

The other options control what is being traced:

TraceMemory traces real memory accesses.

TraceIdle traces idle cycles.

TraceNonAccounted
traces unaccounted RDI accesses to memory. That is, those
accesses made by the debugger.

TraceEvents traces events. For more information, see Tracing events below.

TraceBus controls the trace data source. This is one of:

TRUE Bus (between processor and memory)

FALSE Core (between core and cache, if present).

For more information, see ARMul_InstallMemoryInterface on
page 4-8.

ARMulator Basics

2-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Disassemble disassembles instructions. Simulation is much slower if you
enable disassembly.

Other tracing controls

You can also control tracing using:

Range=low address,high address
tracing is carried out only within the specified address range.

Sample=n only every nth trace entry is sent to the trace file.

Tracing events

When tracing events, you can select the events to be traced using:

EventMask=mask,value
only those events whose number when masked (bitwise-AND)
with mask equals value are traced.

Event=number only number is traced. (This is equivalent to
EventMask=0xffffffff,number.)

For example, the following traces only MMU/cache events:

EventMask=0xffff0000,0x00010000

See Events on page 4-91 for more information.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-11

2.4 Profiler

Profiler is controlled by the debugger. For more details on Profiler, see Chapter 4
ARMulator Reference.

In addition to profiling program execution time, Profiler allows you to use the profiling
mechanism to profile events, such as cache misses.

Note

Profiler cannot be used with ARM10 systems. See Basic ARM ten system on page 2-31
for information about ARM10 systems.

2.4.1 Configuring Profiler

The Profiler section in the configuration file is as follows:

{ Profiler
;; For example - to profile the PC value when cache misses
;; happen, set:
;Type=Event
;Event=0x00010001
;EventWord=pc
}

Every line in this section is a comment, so the ARMulator will perform its default
profiling. The default is to take profiling samples at intervals of 100 microseconds.
Refer to ADS Debuggers Guide for further information.

If this section is uncommented, data cache misses will be profiled. See Events on
page 4-91 for more information.

The Type entry controls how the profiling interval is interpreted:

Type=Microsecond
instructs Profiler to take samples every n microseconds. This is
the default.

Type=Cycle instructs Profiler to take samples every n instructions, and record
the number of memory cycles since the last sample.

Type=Event instructs Profiler to ignore the profiling interval. Instead, it
profiles relevant events, see Events on page 4-91.

EventMask=mask,value is also allowed (see Tracer on page 2-5).

ARMulator Basics

2-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.5 Pagetable module

On models of ARM architecture v4 processors with a memory management unit
(MMU), the pagetable module sets up pagetables and initializes the MMU. On
processors with a protection unit (PU), the pagetable module sets up the PU. To control
whether to include the pagetable model, find the UsePageTables tag in the
configuration file, armul.cnf, and set it to True or False as appropriate:

UsePageTables=True

The Pagetables section in armul.cnf controls the contents of the pagetables, and
the configuration of the caches and MMU or PU. To locate the Pagetables section,
find this line:

{ Pagetables

For full details of the flags, control register and pagetables described in this section, see
the datasheet or technical reference manuals for the processor you are simulating.

Note

This module allows you to benchmark or debug code. You must write ARM code to set
up the MMU or PU for a real system.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-13

2.5.1 Controlling the MMU or PU and cache

The first set of flags enables or disables features of the caches and MMU or PU:

MMU=Yes
AlignFaults=No
Cache=Yes
WriteBuffer=Yes
Prog32=Yes
Data32=Yes
LateAbort=Yes
BigEnd=No
BranchPredict=Yes
ICache=Yes
HighExceptionVectors=No
FastBus=No

Each flag corresponds to a bit in the system control register 1.

Some flags only apply to certain processors. For example, BranchPredict only
applies to the ARM810, and ICache to the SA-110 and ARM940T processors. These
flags are ignored by other processor models.

The FastBus flag is used by the ARM940T. If your system uses Fast Bus Mode, set
FastBus=Yes for benchmarking. If you do not set FastBus, ARMulator assumes that
the memory is synchronous with the core. FastBus is set to No by default. You can set
it to Yes using the pagetables section of armul.cnf, or a write to CP15.

The MMU flag is also used in processors with a PU.

2.5.2 Controlling registers 2 and 3

The following options apply only to processors with an MMU:

PageTableBase=0xa0000000
DAC=0x00000001

They control:

• the translation table base register (system control register 2)

• the domain access control register (system control register 3).

You must align the address in the translation table base register to a 16KB boundary.

ARMulator Basics

2-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.5.3 Memory regions

The rest of the Pagetables configuration section defines a set of memory regions. Each
region has its own set of properties.

By default, armul.cnf contains a description of a single region covering the whole of
the address space:

{ Region[0]
VirtualBase=0
PhysicalBase=0
Size=4GB
Cacheable=Yes
Bufferable=Yes
Updateable=Yes
Domain=0
AccessPermissions=3
Translate=Yes
}

You can add more regions following the same general form:

Region[n] names the regions, starting with Region[0]. n is an integer.

VirtualBase applies only to a processor with an MMU. It gives the address of
the base of the region in the virtual address space of the processor.
This address must be aligned to a 1MB boundary. It is mapped to
PhysicalBase by the MMU.

PhysicalBase gives the physical address of the base of the region. On a
processor with an MMU, this address must be aligned to a 1MB
boundary.

On a processor with a PU it must be aligned to a boundary that is
a multiple of the size of the region.

Size specifies the size of this region. On a processor with an MMU
Size must be a whole number of megabytes. On a processor with
a PU, Size must be 4KB or a power-of-two multiple of 4KB.

Cacheable specifies whether the region is to be marked as cacheable. If it is,
reads from the region will be cached.

Bufferable specifies whether the region is to be marked as bufferable. If it is,
writes to the region will use the write buffer.

Updateable applies only to the ARM610 processor. It controls the U bit in the
translation table entry.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-15

Domain applies only on processors with an MMU. It specifies the domain
field of the table entry.

AccessPermissions
specifies the access controls to the region. Refer to the processor
datasheet for further information.

Translate controls whether accesses to this region cause translation faults.
Setting Translate=No for a region causes an abort to occur
whenever the processor reads from or writes to that region.

2.5.4 Pagetable module and memory management units

Processors such as ARM710T and ARM920T have an MMU.

An MMU uses a set of page tables, stored in memory, to define memory regions. On
reset, the pagetable module writes out a top-level page table to the address specified in
the translation table base register. The table corresponds to the regions you define in the
Pagetables section of armul.cnf.

For example, the default configuration details, given in Memory regions on page 2-14,
define the following page table:

• The entire address space, 4GB, is defined as a single region. This region is
cacheable and bufferable. Virtual addresses are mapped directly to the same
physical addresses over the whole address space.

• The translation table base register, register 2, is initialized to point to this page
table in memory, at 0xa0000000.

• The domain access control register, register 3, is initialized with value
0x00000001. This sets the access to the region as client.

• The M, C and W bits of the control register, register 1, are configured to enable
the MMU, cache, and write buffer. If the processor has separate instruction and
data caches, the I bit configures the instruction cache enabled.

2.5.5 Pagetable module and protection units

Processors such as ARM740T and ARM940T have a PU.

A PU uses a set of protection regions. The base and size of each protection region is
stored in registers in the PU. On reset, the page table module initializes the PU.

For example, the default configuration details given above define a single region,
region 0. This region is marked as read/write, cacheable, and bufferable. It occupies the
whole address range, 0 to 4GB.

ARMulator Basics

2-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

ARM740T PU

For an ARM740T, the PU is initialized as follows:

• The P, C and W bits are set in the configuration register, register 1, to enable the
protection unit, the cache and the write buffer.

• The cacheable register, register 2, is initialized to 1, marking region 0 as
cacheable.

• The write buffer control register, register 3, is initialized to 1, marking region 0
as bufferable.

• The protection register, register 5, is initialized to 3, marking region 0 as
read/write access.

• The protection region base and size register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and marking the region as enabled. The
protection region base and size register for region 0 is part of register 6. Register 6
is actually a set of eight registers, each being the protection region base and size
register for one region. See the datasheet for the processor for further details.

ARM940T PU

For an ARM940T, the PU is initialized as follows:

• The P, D, W, and I bits are set in the configuration register, register 1, to enable
the PU, the write buffer, the data cache and the instruction cache.

• Both the cacheable registers, register 2, are initialized to 1, marking region 0 as
cacheable for the I and D caches. This is displayed in the debugger as 0x0101,
where:

— the low byte (bits 0..7) represent the data cache cacheable register

— the high byte (bits 8..15) represent the instruction cache cacheable register.

• The write buffer control register, register 3, is initialized to 1, marking region 0
as bufferable. This applies only to the data cache. The instruction cache is read
only.

• Both the protection registers, register 5, are initialized to 3, marking region 0 as
allowing full access for both instruction and data caches. This is displayed in the
debugger as 0x00030003, where:

— the low halfword (bits 0..15) represent the data cache protection register

— the high halfword (bits 16..31) represent the instruction cache protection
register.

The first register value shown is for region 0, the second for region 1 and so on.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-17

• The protection region base and size register for region 0 is initialized to 0x3F,
marking the size of region 0 as 4GB and marking the region as enabled. The
protection region base and size register for region 0 is part of register 6. Register 6
is really a set of sixteen registers, each being the protection region base and size
register for one region. See the data sheet for the processor for further details.

• Register 7 is a control register. Reading from it is unpredictable. At startup the
debugger shows a value of zero. It is not written to by the page table module.

• The programming lockdown registers, register 9, are both initialized to zero. The
first register value shown in the debugger is for data lockdown control, the second
is for instruction lockdown control.

• The test and debug register, register 15, is initialized to zero. Only bits 2 and 3
have any effect in ARMulator. These control whether the cache replacement
algorithm is random or round robin.

ARMulator Basics

2-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.6 Flat memory model

ARMflat is a model of a zero-wait state memory system. The simulated memory size is
not fixed. Host memory is allocated in chunks of 64KB each time a new region of
memory is accessed. The memory size is limited by the host computer, but in theory all
4GB of the address space is available. The flat memory model does not generate aborts.

ARMflat is the default memory model used if you do not:

• specify a mapfile or validation model in AXD, ADU, or ADW

• edit armul.cnf.

2.6.1 Selecting the flat memory model

You select the flat model by setting Default=Flat in the Memories section of the
armul.cnf file:

{ Memories

;; Default memory model is the "Flat" model, or the "MapFile"
;; model if there is an armsd.map file to load.

; Validation suite uses the trickbox
#if Validate
Default=TrickBox
#endif

;; If there’s a memory mapfile, use that.
#if MemConfigToLoad && MEMORY_MapFile
Default=MapFile
#endif

;; Default default is the flat memory map
Default=Flat

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-19

2.7 Fast memory model

ARMfast is a flat memory model of 2MB of RAM. Simulation using ARMfast is
typically 17% faster than for ARMflat. This performance increase is partly achieved by
not counting cycles, so cycle counts shown by $statistics in the debugger will be
zero. This model is intended for use by software developers who want maximum
simulation speed, and are not interested in counting cycle or measuring execution time.

The memory size is limited to 2MB. You can change this by editing armfast.c and
rebuilding ARMulator, as described in Rebuilding ARMulator on page 3-11.

The fast memory model does not generate aborts.

2.7.1 Selecting the fast memory model

You select the fast memory model by setting Default=Fast, in the Memories section
of the armul.cnf file:

{ Memories

;; Default memory model is the "Flat" model, or the "MapFile"
;; model if there is an armsd.map file to load.

;; Validation suite uses the trickbox
#if Validate
Default=TrickBox
#endif

;; If there’s a memory mapfile, use that.
#if MemConfigToLoad && MEMORY_MapFile
Default=MapFile
#endif

;; Default default is the flat memory map
;Default=Flat
Default=Fast

ARMulator Basics

2-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.8 Memory model with memory map

ARMmap is a memory model which you can configure yourself. You can specify the
size, access width, access type and access speeds of individual memory blocks in the
memory system in a memory map file (see Map files on page 4-94).

The debugger internal variables $memstats and $statistics give details of
accesses of each cycle type, regions of memory accessed and time spent accessing each
region.

The map memory model may generate aborts if you specify a memory region with
access type as - (hyphen).

2.8.1 Clock frequency

You must specify a simulated clock frequency when using the map memory model. To
configure the clock frequency:

• Under armsd, use the command-line option -clock clockspeed.

• Under the ADW or ADU, select the Configure debugger option from the
Options menu. In the debugger configuration dialog, click on Configure to
display the ARMulator configuration dialog. This contains a Clock Speed box
that you can edit to the required frequency.

• Under AXD, select Options→Configure Target→Configure, enter the required
clock speed, and then click the Emulated button.

For more information, refer to ADS Debuggers Guide.

The clock frequency is used to determine the number of wait states to be added to each
memory access, as well as to calculate time from number of cycles. If you do not specify
a clock speed, a value of 1MHz is used.

2.8.2 Selecting the ARMmap memory model

Under armsd, the map memory model is automatically selected as the memory model
to use whenever an armsd.map file exists in the directory where armsd is started.

Under the AXD, ADU, or ADW, the map memory model is automatically selected
whenever a memory map file is specified. Specify map files using the Memory Maps
tab of the ARMulator configuration dialog.

;; If there’s a memory mapfile, use that.
#if MemConfigToLoad && MEMORY_MapFile
Default=MapFile
#endif

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-21

2.8.3 How the map memory model calculates wait states

The memory map file specifies access times in nanoseconds for
nonsequential/sequential reads/writes to various regions of memory. By inserting wait
states, the map memory model ensures that every access from the ARM processor takes
at least that long.

The number of wait states inserted is the least number required to take the total access
time over the number of nanoseconds specified in the memory map file. For example,
with a clock speed of 33MHz (a period of 30ns), an access specified to take 70ns in a
memory map file results in two wait states being inserted, to lengthen the access to 90ns.

This can lead to inefficiencies in your design. For example, if the access time were 60ns
(only 14% faster) the model would insert only one wait state (33% quicker).

A mismatch between processor clock-speed and memory map file can sometimes lead
to faster processor speeds having worse performance. For example, a 100MHz
processor (10ns period) takes five wait states to access 60ns memory (a total access time
of 60ns). At 110MHz, the map memory model must insert six wait states (a total access
time of 63ns). So the 100MHz-processor system is faster than the 110MHz processor.
(This does not apply to cached processors, where the 110MHz processor would be
faster.)

Note

Access times specified in the memory map file must include propagation delays and
memory controller decode time as well as the access time of the memory devices. For
example, a map file should specify 80ns for 70ns RAM if there is a 10ns propagation
delay.

2.8.4 Configuring the map memory model

You can configure the map memory model to model several different types of memory
controller, by editing its entry in the armul.cnf file:

{ MapFile
;; Options for the mapfile memory model
CountWaitStates=True
AMBABusCounts=False
SpotISCycles=True
ISTiming=Early
}

ARMulator Basics

2-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Counting wait states

By default, the model is configured to count wait states in $statistics. You can
disable this by setting CountWaitStates=False in armul.cnf.

Counting AMBA decode cycles

You can configure the model to insert an extra decode cycle for every nonsequential
access from the processor. This models the decode cycle seen on some AMBA bus
systems. Enable this by setting AMBABusCounts=True in armul.cnf.

Merged I-S cycles

All ARM processors, particularly cached processors, can perform a nonsequential
access as a pair of idle and sequential cycles, known as merged I-S cycles. By default,
the model treats these cycles as a nonsequential access, inserting wait states on the
S-cycle to lengthen it for the nonsequential access.

You can disable this by setting SpotISCycles=False in armul.cnf. However, this
is likely to result in exaggerated performance figures, particularly when modeling
cached ARM processors.

The model can optimize merged I-S cycles using one of three strategies:

Speculative This models a system where the memory controller hardware
speculatively decodes all addresses on idle cycles. The controller can use
both the I- and S-cycles to perform the access. This results in one less
wait state.

Early This starts the decode when the ARM declares that the next cycle is going
to be an S-cycle, that is, half-way through the I-cycle. This can
sometimes result in one fewer wait state. (Whether or not there are fewer
wait states depends on the cycle time and the nonsequential access time
for that region of memory.)

This is the default setting. You can change this by setting
ISTiming=Spec or ISTiming=Late in armul.cnf.

Late This does not start the decode until the S-cycle. In effect all S-cycles that
follow an I-cycle are treated as if they are N-cycles.

Refer to the processor datasheet or reference manual for details of merged I-S cycles.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-23

2.9 DummyMMU

DummyMMU is a dummy implementation of an ARM architecture v3 or v4
coprocessor 15. It does not provide any of the cache and MMU functions, but does
prevent accesses to it being Undefined Instruction exceptions.

Reads from register 0 return a dummy identification register value. You can configure
the value to be returned.

Writes to register 1 of the dummy coprocessor (the system configuration register) set
the bigend, lateabt and other signals.

2.9.1 Configuring DummyMMU

You can set the code of DummyMMU in the configuration file. Use the following entry
in the Coprocessors section of armul.cnf:

{ Coprocessors

; Here is the list of coprocessors, in the form
;; Coprocessor[<n>]=Name

#if COPROCESSOR_DummyMMU
;; By default, install a dummy MMU on coprocessor 15.
CoProcessor[15]=DummyMMU

; Here is the configuration for the coprocessors.
;; DummyMMU can be configured to return a given Chip ID
;DummyMMU:ChipID=
#endif
}

The line:

;DummyMMU:ChipID=

can be uncommented and set to any value. For example, to configure DummyMMU to
return the ARM710 ID code (0x41017100), change this line to:

; Here is the configuration for the coprocessors.
;; DummyMMU can be configured to return a given Chip ID
DummyMMU:ChipID=0x41017100

ARMulator Basics

2-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.10 Angel

The Angel Debug Monitor is a program which runs on ARM-based hardware. It handles
communication between your prototype software, running on the same ARM-based
hardware, and a debugger running on your host machine.

When you develop your prototype software on the ARMulator, you can use the Angel
operating system model to simulate the Angel Debug Monitor.

2.10.1 Configuring Angel

The configuration for the Angel model is in the armul.cnf file. Look for:

{ OS
;; Angel configuration
[...]
}

The configuration options are:

AngelSWIARM=0x123456
AngelSWIThumb=0xab
HeapBase=0x40000000
HeapLimit=0x70000000
StackBase=0x80000000
StackLimit=0x70000000

where:

AngelSWIARM/AngelSWIThumb
declares the SWI numbers that Angel uses. For descriptions, see Chapter
6 Semihosting SWIs.

HeapBase/HeapLimit
defines the application heap.

StackBase/StackLimit
defines the application stack.

The following options define the initial locations of the exception mode stack pointers.

AddrSuperStack=0xa00
AddrAbortStack=0x800
AddrUndefStack=0x700
AddrIRQStack=0x500
AddrFIQStack=0x400

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-25

The semi-hosting C library changes the stack pointer to the value returned by
SWI_SYSHEAPINFO. SWI_SYSHEAPINFO is set to the value of StackBase configured
above. You can specify the location of the User mode stack by editing the address in
AddrUserStack:

AddrUserStack=0x80000

These options define the location in memory where ARMulator places the code to
handle the hardware exception vectors:

AddrSoftVectors=0xa40
AddrsOfHandlers=0xad0
SoftVectorCode=0xb80

The final option points to a buffer where the Angel model places a copy of the command
line. This can be retrieved by catching the RDI_Info call, RDISet_Cmdline:

AddrCmdLine=0xf00

Note

The default heap/stack model used by the C library ignores HeapLimit and
StackLimit. See the libraries chapter in ADS Tools Guide for details.

ARMulator Basics

2-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.11 Peripheral models

ARMulator includes several peripheral models. This section gives basic user
information about them. For more detailed information, refer to Chapter 4 ARMulator
Reference.

Note

This section does not apply to ARM10 systems. See Basic ARM ten system on
page 2-31 for information about peripheral models in ARM10 systems.

2.11.1 Configuring ARMulator to use the peripheral models

Enable or disable each peripheral model by changing the relevant entry in the
armul.cnf file:

;; ***
;; ARMulator Peripheral Models
;; Central list of peripherals
;; Use this list to enable/disable peripherals
;; ***
;; To enable a peripheral change the rhs to TRUE
;; To disable a peripheral change the rhs to FALSE
TimerEnabled=False
WDogEnabled=False
IntCEnabled=False

2.11.2 Switch

The switch is a model of an address decoder or memory or peripheral controller. It is a
configurable address decoder that makes it easier to attach peripheral models without
drastically reducing the performance of ARMulator.

The switch is a veneer between the processor core and memory. It routes memory
accesses to the appropriate memory model. Routing is based on the access address and
a set of memory address ranges, peripheral address ranges, and peripheral address
masks.

The switch is installed if any of the reference peripheral models is enabled.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-27

2.11.3 Interrupt controller

In addition to IntCEnabled, the interrupt controller has the following configuration
items:

{ InterruptController
Range=0x0a000000,0x0a00010c
;; set WARN to enable warnings about invalid register accesses
WARN=FALSE
WAITS=1
}

Range specifies the area in memory into which the interrupt controller registers are
mapped. For details of the interrupt controller registers, see Interrupt controller on
page 4-121.

WAITS specifies the number of wait states that accessing the interrupt controller
imposes on the processor. The maximum is 30.

2.11.4 Timer

In addition to TimerEnabled, the timer has the following configuration items:

{ TimerCounter
Range=0x0a800000,0x0a80003f
;; The RPS Clock. This is usually the processor clock rate
CLK=20000000
;; Interrupt controller source bits - 4 and 5 as standard
IntOne=4
IntTwo=5
;; set WARN to enable warnings about invalid register accesses
WARN=FALSE
WAITS=1
}

Range specifies the area in memory into which the timer registers are mapped. For
details of the interrupt controller registers, see Timer on page 4-123.

CLK is used to specify the clock rate of the peripheral. This is usually the same as the
processor clock rate.

IntOne specifies the interrupt line connection to the interrupt controller for timer 1
interrupts. IntTwo specifies the interrupt line connection to the interrupt controller for
timer 2 interrupts.

WAITS specifies the number of wait states that accessing the timer imposes on the
processor. The maximum is 30.

ARMulator Basics

2-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.11.5 Watchdog

Use Watchdog to prevent a failure in your program locking up your system. Watchdog
resets ARMulator if your program fails to access it before a predetermined time.

Note

ARM do not supply a hardware watchdog timer. This is a generic model of a watchdog
timer. It is supplied to help users model their system environment.

In addition to WDogEnabled, Watchdog has the following configuration items:

{ WatchDog
Range=0xb0000000,0xb0000004
KeyValue=0x12345678
WatchPeriod=0x80000
IRQPeriod=3000
IntNumber=16
StartOnReset=True
RunAfterBark=True
;; set WARN to enable warnings about invalid register accesses
WARN=FALSE
WAITS=1
}

Range specifies the area in memory into which the watchdog registers are mapped.

This is a two-timer watchdog.

If StartOnReset is True, the first timer starts on reset. If StartOnReset is False,
the first timer starts only when your program writes the configured key value to the
KeyValue register.

The first timer generates an IRQ after WatchPeriod memory cycles, and starts the
second timer. The second timer times out after IRQPeriod memory cycles, if your
program has not written the configured key value to the KeyValue register. Configure
IRQPeriod to a suitable value to allow your program to react to the IRQ.

If RunAfterBark is True, Watchdog halts ARMulator if the second timer times out.
You can continue to execute, or debug.

If RunAfterBark is False, Watchdog resets ARMulator and halts.

IntNumber specifies the interrupt line number that Watchdog is attached to.

WAITS specifies the number of wait states that accessing the watchdog imposes on the
processor. The maximum is 30.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-29

2.12 Other models

This section gives basic user information about the less complex models. For more
detailed information, refer to Chapter 4 ARMulator Reference.

Note

This section does not apply to ARM10 systems. See Basic ARM ten system on
page 2-31 for information about peripheral models in ARM10 systems.

2.12.1 Stack tracker

The stack tracker examines the contents of the stack pointer (r13) after each instruction.
It keeps a record of the lowest value and from this it can work out the maximum size of
the stack. ARMulator runs more slowly with stack tracking enabled.

To enable the stack tracker, edit armul.cnf.

1. Find the line:

TrackStack=False

2. Change it to:

TrackStack=True

Before initialization the stack pointer may contain values outside the stack limits. You
must configure the stack limits so that the stack tracker can ignore values outside them.

;; The StackUse model continually monitors the stack pointer and
;; reports the amount of stack used in $statistics. It needs to
;; be configured with the stack’s location.
{ StackUse
StackBase=0x80000000
StackLimit=0x70000000
}

StackBase is the address of the top of the stack. StackLimit is a lower limit for the
stack. Changing these values does not reposition the stack in memory. To reposition the
stack, you must reconfigure the Angel model (see Configuring Angel on page 2-24).

ARMulator Basics

2-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.12.2 Windows Hourglass

This model calls the debugger regularly during execution. This is required when you are
using AXD, ADU or ADW. If you want to alter the interval between calls to the
debugger, find the section listed below in armul.cnf and edit it.

{ WindowsHourglass
;; We can control how regularly we callback the frontend
;; More often (lower value) means a slower simulator, but
;; faster response. The default is 8192.
Rate=8192
}

2.12.3 Watchpoints

Watchpoints provides memory watchpoints. It is a veneer between the processor core
and memory, or cache as appropriate.

To enable watchpoints, change the WatchpointsEnabled line in armul.cnf:

;; To enable watchpoints, set "WatchPointsEnabled"
WatchpointsEnabled=True

Disable watchpoints when benchmarking code. Enable watchpoints when debugging
code using watchpoints.

2.12.4 Validate

This is a small coprocessor that is used to validate the behavior of the ARM simulator.
It can cause interrupts and busy-waits, for example.

2.12.5 Trickbox

This is a memory model of a system where accessing various addresses causes events,
such as aborts and interrupts.

2.12.6 Bytelane

This is a veneer memory model. It is a veneer between the processor and the real
memory model. It converts accesses from the core into byte-lane accesses. Byte-lane
accesses are also known as byte-strobe accesses.

2.12.7 ARM PIE

This is a model of the ARM PIE card. It is only available for UNIX.

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-31

2.13 Basic ARM ten system

Basic ARM Ten System (BATS) is a separate modelling scheme from ARMulator. You
cannot use any of the other ARMulator models, such as Profiler or Tracer, with BATS.

To use BATS:

1. Select BATS instead of ARMulator as your debugger target.

2. Select a configuration trace file (CTR file) from your debugger interface.

3. Either:

• specify the name of your chosen CTR file when you start armsd

• select the name of a CTR file from the list in the BATS configuration
window in AXD, ADU, or ADW.

See ADS Debuggers Guide for details.

2.13.1 Configuration trace files

CTR files describe the configurations of the systems that BATS can model. They
describe which components are used by the system and how they are interconnected.
Some components have configuration options which are specified in the CTR file.

Three CTR files are supplied with BATS. See:

• ARM1020T on page 2-32

• ARM1020T_PERIP on page 2-33

• ARMv5TM on page 2-35.

You can also write your own CTR files. You can do this by copying one of the supplied
files and editing the copy. See Basic ARM ten system configuration trace files on
page 4-114 for more information.

In all the supplied configurations:

• the heap occupies 0x30000000 to 0x70000000 of the address space

• the stack occupies 0x80000000 to 0x70000000 of the address space

• the time resolution is 10ps.

ARMulator Basics

2-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

2.13.2 ARM1020T

The ARM1020T configuration trace file, ARM1020T.ctr, defines a model of an
ARM1020T system with two memory modules. It has:

• a system coprocessor (cp15)

• a memory management unit

• a write buffer

• separate instruction and data caches.

Communication between the caches or write buffer and the external memory modules
is through the AMBA bus. This system is shown in Figure 2-1. The filenames of BATS
modules are shown in brackets. For further information see Creating instances on
page 4-115.

 Figure 2-1 ARM1020T system

���������	�

��

����

��

����
�����	
����

��
�
���
������������ ��
�
��

���
������

���	�	�
�������

���

����
���������

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-33

2.13.3 ARM1020T_PERIP

The ARM1020T_PERIP configuration trace file, ARM1020T_PERIP.ctr, defines a
model of an ARM1020T system with two memory modules and a set of reference
peripherals. It has:

• a system coprocessor (cp15)

• a memory management unit

• a write buffer

• separate instruction and data caches.

Communication between the caches or write buffer and the external memory modules
is through the AMBA bus. This system is shown in Figure 2-2. The filenames of BATS
modules are shown in brackets. For further information see Creating instances on
page 4-115.

 Figure 2-2 ARM1020T_PERIP system

���������	�

��

����

��

����
�����	
����

��
�
���
!����������� ��
�
��

���
������

���	�	�
�������

���

��������
�������

���� �
���������

���� �
���������

"#$

#�$

ARMulator Basics

2-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Reference peripherals

The following facilities of the reference peripherals are implemented:

• Interrupt controller on page 4-121.

• Timer on page 4-123.

See Reference Peripherals Specification for additional details.

ARM1020T_PERIP memory map

In ARM1020T_PERIP, as shown in Figure 2-3:

• Memory1 occupies 0x00000000 to 0x07ffffff of the address space

• the reference peripherals occupy 0x0a000000 to 0x0dffffff of the address
space

• Memory2 occupies 0x10000000 to 0x7fffffff of the address space.

 Figure 2-3 Memory map of ARM1020T_PERIP

���� �

���� �

��������

����������

����������

����������

����������

����������

����������

����������

����������

��	�������

����%��
&

��������

ARMulator Basics

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 2-35

2.13.4 ARMv5TM

The ARMv5TM configuration trace file, ARMv5TM.ctr, defines a model of a generic
ARM architecture v5 system with one memory module. It has no coprocessor 15 or
caches.

Note

This model does not correspond to any real hardware. It cannot be used for
benchmarking. It is supplied for software development and debugging purposes only.

Although hardware without caches would be slower if it existed, the simulation is faster
without the caches.

This system is shown in Figure 2-4. The filenames of BATS modules are shown in
brackets. For further information see Creating instances on page 4-115.

 Figure 2-4 ARMv5TM system

���
������

�����
�������

����
���������

���������	�

��

����

��

ARMulator Basics

2-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-1

Chapter 3
Writing ARMulator Models

This chapter is intended to assist you in writing your own models to add to ARMulator.
It contains the following sections:

• Adding models to ARMulator on page 3-2

• Writing a new peripheral model on page 3-6

• Writing a new cache model on page 3-7

• Rebuilding ARMulator on page 3-11

• Configuring ARMulator to use the example on page 3-15.

Writing ARMulator Models

3-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

3.1 Adding models to ARMulator

This chapter does not contain information about the Basic ARM Ten System (BATS). For
information about BATS, see Basic ARM ten system on page 2-31.

You can add extra models to ARMulator without altering the existing models. Each
model is self-contained, and communicates with ARMulator through defined
interfaces. The definition of these interfaces is in Chapter 4 ARMulator Reference.

The source code of some models can be found in the rebuild kit on UNIX in:

Install_Directory\ARMulate

or on PC in:

Install_Directory\ARMulate\Win32\ARMulate\user

Use these files as examples to help you write your own models. To help you choose
suitable models to examine, this chapter includes a list of them with brief descriptions
of what they do (see Supplied models on page 3-4).

You can make a copy of one of these models and edit the copy.

To use your new model, you must rebuild ARMulator using the appropriate compiler
(see Rebuilding ARMulator on page 3-11).

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-3

3.1.1 Model stubs

Basic models, memory models, coprocessor models, and operating system models
attach to ARMulator through a stub. A stub consists of an initialization function and a
textual name for the model. ARMulator uses the textual name to locate the initialization
function.

Basic models can be initialized either before or after memory models are initialized.
This means that there are two distinct types of basic model:

• early models

• late models.

ARMulator locates each model in turn, calling the initialization function of each model,
and passing in a pointer to a structure containing a list of pointers.

Each model fills in this set of function pointers at initialization time. The model should
also register an ExitUpcall() (see ExitUpcall on page 4-55) during initialization, to
free any memory that it allocates.

Model initialization sequence

The model initialization functions are called in the following order:

1. ARMulator core model

2. Early basic models, such as peripheral models (see Basic model interface on
page 4-4)

3. Memory models, including veneer memory models installed by an early basic
model (see Basic model interface on page 4-4)

4. Coprocessor models

5. Operating system models

6. Late basic models (see Basic model interface on page 4-4).

Writing ARMulator Models

3-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

3.1.2 Supplied models

ARMulator is supplied with source code for the following groups of models:

• Basic models

• Peripheral models

• Memory models on page 3-5

• Coprocessor models on page 3-5

• Operating system models on page 3-5.

Basic models

tracer.c The tracer module can trace instruction execution and events from
within ARMulator (see Tracer on page 4-89). You can link your
own tracing code onto the tracer module, allowing real-time
tracing for example. tracer is an early basic model.

profiler.c The profiler module provides the profiling function (see Profiler
on page 2-11). This includes basic instruction sampling and more
advanced use, such as profiling cache misses. It does this by
providing an UnkRDIInfoHandler that handles the profiling
requests from the debugger (see UnkRDIInfoUpcall on
page 4-62). profiler is a late basic model.

pagetab.c On reset, this module sets up cache, PU or MMU and associated
pagetables inside ARMulator (see Pagetable module on
page 2-12). pagetab is a late basic model.

stackuse.c If enabled this model tracks the stack size. Stack usage is reported
in the ARMulator memory statistics. You can set the stack upper
and lower bounds in the armul.cnf file. stackuse is a late basic
model.

Peripheral models

All the peripheral models are early basic models.

intc.c See Interrupt controller on page 2-27. intc is a model of the
interrupt controller peripheral described in the Reference
Peripherals Specification (RPS).

timer.c See Timer on page 2-27. timer is a model of the RPS timer
peripheral. Two timers are provided. timer must be used in
conjunction with an interrupt controller, but not necessarily intc.

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-5

watchdog.c Watchdog. See Watchdog on page 2-28. watchdog is a generic
watchdog model. It does not model any specific watchdog
hardware, but provides generic watchdog functions.

Memory models

The following source files are provided for memory models:

armflat.c This module implements a flat model of 4GB RAM.

armfast.c This module implements a flat model of 2MB RAM.

armmap.c This memory model allows you to specify memory layout using
an armsd.map file, see Map files on page 4-94. This slows down
simulation speed, so when no armsd.map file is present,
ARMulator uses the faster armflat.c model in preference.

excache.c excache is an example of a basic cache model. See Writing a new
cache model on page 3-7. excache provides a starting point for
you to write your own cache models.

tracer.c As well as being a basic model, the tracer module provides a
veneer memory model that can log memory accesses.

Coprocessor models

dummymmu.c This is a cut-down model of coprocessor 15 (the system
coprocessor).

Operating system models

angel.c This is an implementation of the Software Interrupts (SWIs) and
environment required for running programs linked with the
semihosted C library on ARMulator.

noos.c This is a dummy operating system model, where no SWIs are
intercepted.

Writing ARMulator Models

3-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

3.2 Writing a new peripheral model

A peripheral model is an early model that is accessed via the switch memory model. The
switch model carries out partial address decoding to select a memory device. An
address range or an address mask is specified in the armul.cnf file for the switch to
control which peripherals are accessed for an address.

A template file, called template.c, is provided in the user directory of the rebuild
kit. There is a companion file called notes.txt. notes.txt is a step by step guide
that explains how to write a peripheral model based on the supplied template.

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-7

3.3 Writing a new cache model

A cache memory model is a veneer between the processor model and the main memory
model. Other veneer memory models, for which the source code is supplied, can be used
as examples to help you write your own model. One example is watchpnt.c. Both the
MMUlator and the StrongMMU cache simulators are part of the core ARMulator, and
are not supplied in source form.

Memory models have two main parts:

• Initialization on page 3-8

• Memory access on page 3-10.

An example cache model, excache.c, is supplied in the ARMulator rebuild kit.

The file excache.c defines an extra memory model. For ARMulator to know about
this model, you must declare the model in models.h by adding the line:

MEMORY(ExampleCache)

The reference ExampleMemory comes from ARMul_MemStub ExampleCache in the
file example.c.

You must also add the object file to the supplied Makefile, along with a rule for building
the model.

Writing ARMulator Models

3-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

3.3.1 Initialization

A cache model must include the standard initialization functions, such as allocating a
state, setting up the interface and so on. It must also:

• Use ToolConf_Lookup(config, ARMulCnf_Memory) to find the name of the
memory model.

• Use ARMul_FindMemoryInterface to locate the memory model and initialize
it. To do this, the cache model must have its own ARMul_MemInterface block.

Example 3-1 shows this.

Example 3-1 Cache model initialization

/* Find the name of the child memory interface */

child_name = (tag_t)ToolConf_Lookup(config, ARMulCnf_Memory);

/* Now locate it using ARMul_FindMemoryInterface. This also locates
 * its configuration for us
 */

if (child_name != NULL)
 child_init = ARMul_FindMemoryInterface(state, child_name, &child_config);
if (child_name == NULL || child_init == NULL || child_init == MemInit)
 return ARMul_RaiseError(state, ARMulErr_NoMemoryChild, ModelName);

/* Initialize the child model */

child_interf = &cache->child;
err = child_init(state, child_interf, type, child_config);
if (err != ARMulErr_NoError) {
 free(cache);
 return err;
}

Other memory interface functions such as ReadClock and ReadCycles, must be
forwarded to the external memory model. You cannot just copy the functions over to
ARMul_MemInterface, as they would have the wrong handle. You must create thin
veneer functions.

Finding clock speed

To find the clock speed in a memory model, use code similar to the following:

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-9

 const char *option;
 unsigned long clockspeed;

 bool hasClock;

 option = ToolConf_Lookup(config, ARMulCnf_MCLK);
 if (option == NULL) {

 hasClock = FALSE;
 } else {

 hasClock = TRUE;
 clockspeed = ToolConf_Power(option, FALSE);

 }

If you need to know the CPU’s clock speed, rather than the memory clock speed,
replace:

 option = ToolConf_Lookup(config, ARMulCnf_MCLK);

with:

 option = ToolConf_Lookup(config, Dbg_Cnf_CPUSpeed);

Writing ARMulator Models

3-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

3.3.2 Memory access

In a cache model, the memory access function has to:

• Search the cache for the data being accessed.

• For a read:

— if found, read from the cache, then perform an idle cycle on the external bus

— if not found, perform a cache line fill.

• For a write:

— if found, write the value to the cache, then perform the write on the external
bus

— if not found, perform the write on the external bus.

The details might vary if you wanted to model, for example, a write-back cache, a write
buffer, or memory protection.

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-11

3.4 Rebuilding ARMulator

Which UNIX version of ARMulator you build depends on whether you are using
Solaris or HP, and whether you want to use your rebuilt ARMulator with armsd or with
ADU. In order to rebuild ARMulator you need the appropriate build tools:

PC You require Microsoft Visual C++ Version 5.0 to rebuild
armulate.dll.

Solaris/armsd Build the armsd ARMulator executable using the GNU gcc
compiler. The ADS1.0 version was built using gcc version
egcs-2.91.66.

Solaris/ADU You require the SparcWorks C compiler version 4.2 to rebuild
ARMulate.dll.

HP/armsd Build the armsd ARMulator executable using an ANSI-compliant
C compiler.

HP/ADU You require the HP ANSI C compiler version 1.18 or later to
rebuild ARMulate.dll.

You should make a copy of the ARMulate directory with a different name, and work in
that.

3.4.1 Rebuilding on UNIX

In this section example.c is used to illustrate how to add a source file. Replace this
with a filename of your own.

The locations of the source files and makefiles for the different UNIX versions of
ARMulator are shown in Table 3-1. All the locations are relative to
Install_Directory.

 Table 3-1

Source file location Makefile

Solaris/armsd solaris/armsd/source solaris/armsd/build/makefile

Solaris/ADU solaris/source/ARMulate solaris/source/ARMulate/makefile.sol2

HP/armsd HP/armsd/source HP/armsd/build/makefile

HP/ADU HP/source/ARMulate HP/source/ARMulate/makefile.hp700mt

Writing ARMulator Models

3-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Follow these steps to add a file and rebuild ARMulator under UNIX:

1. Place the new source code file (or files) in the source directory.

2. Load the Makefile into an editor.

3. Find the entry:

OBJALL=main.o angel.o armfast.o armflat.o armmap.o \
armpie.o bytelane.o dummymmu.o ebsa110.o errors.o \
models.o pagetab.o profiler.o tracer.o trickbox.o \
validate.o watchpnt.o winglass.o switch.o intc.o timer.o \
watchdog.o dcc.o tube.o stackuse.o cnffile.o

(OBJS instead of OBJALL in the ADU versions).

4. Add the new object filename to the list of objects to link:

OBJALL=main.o angel.o armfast.o armflat.o armmap.o \
armpie.o bytelane.o dummymmu.o ebsa110.o errors.o \
models.o pagetab.o profiler.o tracer.o trickbox.o \
validate.o watchpnt.o winglass.o switch.o intc.o timer.o \
watchdog.o dcc.o tube.o stackuse.o cnffile.o \
example.o

5. Find the comment line:

Generated dependencies

6. Add all the dependencies, and the make rule, for your new file:

example.o: $(SRCDIR1)/example.c
example.o: $(SRCDIR1)/armdefs.h
example.o: $(SRCDIR1)/rdi_hif.h

 $(CC) $(CFLAGS) $(CFLexample) -o example.o \
 $(SRCDIR1)/example.c

7. Type:

make -f makefile.

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-13

3.4.2 Rebuilding on Windows

To rebuild armulate.dll, you need to have Microsoft Visual C++ version 5.0
installed.

1. Double click on the file
Install_Directory\ARMulate\Win32\ARMulate\dll\armulate.dsp.

Microsoft Developer Studio will open the project.

2. Add your new file or files to the project.

3. To rebuild armulate.dll, click on Build→Build armulate.dll.

4. Back up the old armulate.dll from Install_Directory\bin, and then
copy your new armulate.dll file into Install_Directory\bin.

Alternatively, in the Install_Directory\ARMulate\Win32\ARMulate\dll
directory, you can type:

nmake /f armulate.mak CFG="armulate - Win32 release"

at the DOS command prompt.

3.4.3 Rebuilding the ARM966E-S

To emulate the ARM966E-S core, you must use a special version of ARMulator,
supplied in file armul9xxe.dll.

You can rebuild the armul9xxe.dll ARMulator in a similar manner to rebuilding the
standard armulate.dll ARMulator.

There is a separate visual C++ project.

The rebuild kit (armulate\Win32\) has two directories:

• armul9xxE

• arm9tdmi

The dsp file (armulate9xxE) and makefile (armulate9xxE.mak) are in
armul9xxE\dll\.

The models are in the directory armul9xxE/user/.

Writing ARMulator Models

3-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

3.4.4 Giving a rebuilt ARMulator a different name

You can give your new version of the ARMulator a different name. We recommend that
you use the same name that you used for the copy of the ARMulate directory.

If you do this, you can choose whichever version you want when choosing your target
from the debugger. See ADS Debuggers Guide for information about selecting targets.

To give your ARMulator a different name, do the following:

1. Find the armu8dll.def file. In the line that reads:

LIBRARY ARMULATE

and replace ARMULATE with the name of your new armulator.

2. Change the name of your new armulate.dll before moving it into
Install_Directory.

Writing ARMulator Models

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 3-15

3.5 Configuring ARMulator to use the example

By default, ARMulator determines which memory model to use by reading the
configuration file, armul.cnf (you can make ARMulator use a different configuration
file, with a different name, by editing cnffile.c). See also armul.cnf, the ARMulator
configuration file on page 4-98.

Before the example memory model can be used by ARMulator, a reference to it must
be added to the configuration file. By default, ARMulator uses the built-in Flat or
MapFile memory models.

Follow these steps to edit the configuration file so that ARMulator selects the sample
memory model:

1. Load the armul.cnf file into a text editor, and find the following lines
approximately halfway through the file:

;; List of memory models
{ Memories

;; the ’default’ default is the flat memory map
Default=Flat

2. Change the last two lines to:

;; Use the new memory model instead
Default=Example

The changed lines specify that the default memory model is now Example, rather
than Flat.

Note

If a map file exists (or for ADW, if a map file is specified), the armmap memory
model is used.

3. Start AXD, ADU, ADW, or armsd. The debugger responds:

ARMulator 2.10
ARM7, User manual example, 1MB memory, Dummy MMU,
Soft Angel 1.4 [Angel SWIs], Profiler, Tracer, Pagetables,
Big endian.

You may see the following errors:

• The Floating-point Emulator (FPE) initialization failed because this model
does not have a standard memory map, and the FPE could not be loaded.

• Alternatively, you might see the error:

Initialization failed: Memory model ’Example’
incompatible with bus interface

Writing ARMulator Models

3-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

This means that the memory model cannot communicate with the selected
processor (for example, ARM7TDMI, or ARM9TDMI).

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-1

Chapter 4
ARMulator Reference

This chapter gives reference information about ARMulator. It contains the following
sections:

• ARMulator models on page 4-3

• Basic model interface on page 4-4

• The memory interface on page 4-10

• Memory model interface on page 4-14

• Coprocessor model interface on page 4-23

• Operating system or debug monitor interface on page 4-35

• Using the floating-point emulator on page 4-39

• Accessing ARMulator state on page 4-41

• Exceptions on page 4-51

• Upcalls on page 4-53

• Memory access functions on page 4-65

• Event scheduling functions on page 4-67

• General purpose functions on page 4-77

• Accessing the debugger on page 4-85

• Tracer on page 4-89

• Events on page 4-91

ARMulator Reference

4-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

• Map files on page 4-94

• armul.cnf, the ARMulator configuration file on page 4-98

• ToolConf on page 4-108

• Basic ARM ten system configuration trace files on page 4-114

• Reference peripherals on page 4-121.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-3

4.1 ARMulator models

ARMulator comprises a collection of models that simulate ARM hardware. They
enable you to benchmark, develop, and debug software before your hardware is
available.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.1.1 Configuring models through ToolConf

ARMulator models are configured through ToolConf. ToolConf is a database of tags
and values that ARMulator reads from a configuration file (armul.cnf) during
initialization, see ToolConf on page 4-108.

A number of functions are provided for looking up values from this database. The full
set of functions is defined in toolconf.h. All the functions take an opaque handle
called a toolconf.

4.1.2 The ARMul_State state pointer

ARMul_State is an opaque data type that is a handle to the internal state of ARMulator.
All the models are passed a state variable of type ARMul_State. ARMulator exports
a number of functions to enable you to access ARMulator state. See Accessing
ARMulator state on page 4-41 for more information.

ARMulator Reference

4-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.2 Basic model interface

The simplest model interface is the basic model. This provides a mechanism for calling
a user-supplied function during initialization (see Basic model initialization function on
page 4-7). The function can then install upcalls, for example, to add functionality.

Basic models can be initialized either before or after memory models are initialized.
This means that there are two distinct types of basic model:

• early models

• late models.

Whether a basic model is early or late is controlled by the location of its configuration
in the configuration file, see armul.cnf, the ARMulator configuration file on page 4-98.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.2.1 Early basic models

Early basic models are initialized before memory models and can change the way the
memory interface is initialized, primarily through calling
ARMul_InstallMemoryInterface() (see ARMul_InstallMemoryInterface on
page 4-8). In particular, early basic models can be used to install additional, veneer
memory models.

Early models must not call the memory system, for example ARMul_WriteWord(),
because it is not initialized when the early model is called.

The watchpnt.c and tracer.c models are examples of early basic models. These
models install watchpoint and trace veneer memory models. The following sections
give more information on installing a veneer memory model.

Installing a veneer memory model

By default, the ARMulator initialization sequence installs the default memory model
for a specific processor core. For example, Figure 4-1 shows the model hierarchy after
the memory model initialization function has completed.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-5

 Figure 4-1 Minimal ARMulator model

You can use an early basic model to install any number of veneer memory models. The
sequence of events is:

1. Define the early model in armul.cnf. ARMulator calls the initialization
function for the early model (see Basic model initialization function on page 4-7).

2. The early model initialization function must call
ARMul_InstallMemoryInterface() to install the memory interface for the
veneer memory model. This is required only if you are installing veneer memory
models (see ARMul_InstallMemoryInterface on page 4-8).

3. When the initialization function for the early model returns, ARMulator calls the
memory model initialization function for the veneer memory model (see Memory
model initialization function on page 4-15).

The initialization function must call the initialization function for the model
underneath it, either another veneer model or the standard memory model if there
are no more veneer memory models installed.

4. When all veneer models are installed, the initialization function for the standard
memory model for the processor model is called, see Memory model initialization
function on page 4-15.

Figure 4-2 shows an example of a model hierarchy with the watchpoint veneer installed.

��������

	�
����������
����

������������
���

ARMulator Reference

4-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

 Figure 4-2 Veneer model hierarchy

4.2.2 Late basic models

Late basic models are initialized after the memory models. They can call the memory
system, and can, for example, initialize the memory contents. The pagetable.c
model is an example of a late basic model. It writes an MMU pagetable to memory, after
the memory system and MMU have been initialized.

��������

�����������
�����������

������������
���

	�
����������
����

������������
���

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-7

4.2.3 Basic model initialization function

A basic model exports a function that is called during initialization. You must provide
the model initialization function. If the model and the function are registered, and an
armul.cnf entry is found, then the model initialization function is called.

The name of the function is defined by you. In the description below, the name
ModelInit is used.

Syntax

static ARMul_Error ModelInit(ARMul_State *state,
 toolconf config)

where:

state is the ARMulator state pointer.

config is the configuration database.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 4-77).

Example

The following example is from watchpnt.c:

#define ModelName (tag_t)"WatchPoints"

static ARMul_Error ModelInit(ARMul_State *state,
 toolconf config)
{
 return ARMul_InstallMemoryInterface(state, TRUE, ModelName);
}

ARMul_ModelStub ARMul_WatchPointsInit = {
 ModelInit,
 ModelName
};

ARMulator Reference

4-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.2.4 ARMul_InstallMemoryInterface

This function must be called from an early basic model that is installing a veneer
memory model. It installs the memory interface for the veneer memory model.

Syntax

ARMul_Error ARMul_InstallMemoryInterface(ARMul_State *state,
 unsigned at_core,
 tag_t new_model)

where:

state is a pointer to the ARMulator state.

at_core indicates where to place the model:

FALSE places the model immediately above the lowest
memory model in the memory hierarchy.

TRUE places the model immediately below the processor.

new_model names the veneer memory model.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during installation

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 4-77).

Usage

This function must be called before the memory models are initialized, for example,
from an early model (see Early basic models on page 4-4).

For a simple processor and memory system, at_core has no effect, because the lowest
memory model is the one immediately below the processor. However, for a cached
processor, a cache model sits between the processor and the lowest memory model, as
shown in Figure 4-3 on page 4-9.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-9

 Figure 4-3 Inserting into a cache hierarchy

������

����� ���������

�����

������

��������	�
��

������

���������

�����

������

��������	�����

��������	�
��

���������

�����

������

������

��������	�����

ARMulator Reference

4-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.3 The memory interface

The memory interface is the interface between the ARMulator core and the memory
model.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

Because there are many core processor types, there are many memory type variants. The
memory initialization function is told which type it should provide (see Memory model
initialization function on page 4-15). A model must refuse to initialize in the case of an
unrecognized memory type variant.

If you install a veneer memory model between the default memory model and the ARM
core, you must explicitly install the memory interface for the veneer model by calling
ARMul_InstallMemoryInterface(). See ARMul_InstallMemoryInterface on
page 4-8 and Installing a veneer memory model on page 4-4 for more information.

Note

The nTRANS signal from the processor is not passed to the memory interface. Because
this signal changes infrequently and might not be used by a memory model, a model
should use TransChangeUpcall() to track nTRANS (see TransChangeUpcall on
page 4-57).

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-11

4.3.1 Memory type variants

The memory type variants are defined in the ARMul_MemInterface structure in
armmem.h. They are described in the following sections:

• Basic memory types on page 4-11

• Cached versions of basic memory types on page 4-12

• Byte-lane memory for StrongARM on page 4-12

• ARM8 memory type on page 4-13

• ARM9 memory type on page 4-13.

Basic memory types

There are three basic variants of memory type. All three use the same function interface
to the core. The types are defined as follows:

ARMul_MemType_Basic
supports byte and word loads and stores.

ARMul_MemType_16Bit
is the same as ARMul_MemType_Basic but with the addition of halfword
loads and stores.

ARMul_MemType_Thumb
is the same as ARMul_MemType_16Bit but with halfword instruction
fetches (that can be sequential). This can indicate to a memory model that
most accesses will be halfword-instruction-sequential rather than the
usual word-instruction-sequential.

Note

Memory models that do not support halfword accesses should refuse to initialize for
ARMul_MemType_16Bit and ARMul_MemType_Thumb.

For all three types, the model should fill in the interf->x.basic function pointers.

The file armflat.c contains an example function that implements a basic model.

ARMulator Reference

4-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Cached versions of basic memory types

There are three variants of the basic memory types for cached processors such as the
ARM710 and ARM740T. These variants are defined as follows:

• ARMul_MemType_BasicCached

• ARMul_MemType_16BitCached

• ARMul_MemType_ThumbCached.

These differ from the basic equivalents in that there are only two types of cycle:

• Memory cycle, where acc_MREQ(acc) is TRUE

• Idle cycle, where acc_MREQ(acc) is FALSE.

A nonsequential access consists of an Idle cycle followed by a Memory cycle, with the
same address supplied for both.

A sequential access is a Memory cycle, with address incremented from the previous
access.

Byte-lane memory for StrongARM

StrongARM variants are defined as follows:

• ARMul_MemType_StrongARM

• ARMul_MemType_ByteLanes.

Externally, StrongARM can use a byte-lane memory interface. There is a StrongARM
variant of the basic memory type that handles this. All the function types are the same,
and the model must still fill in the basic part of the ARMul_MemInterface structure,
but the meaning of the ARMul_acc word passed to the access() function is different.

The StrongARM variant replaces acc_WIDTH (see armul_MemAccess on page 4-20)
with acc_BYTELANE(acc). This returns a four-bit mask of the bytes in the word
passed to the access() function that are valid.

There is no byte-order problem with this method of access. The model can ignore byte
order. Bit 0 of this word corresponds to bits 0-7 of the data, bit 1 to bits 8-15, bit 2 to
bits 16-23, and bit 4 to bits 24-31.

Note

Byte-lane memory for ARM7TDMI is not supported.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-13

ARM8 memory type

The ARM8 memory type is defined as:

ARMul_MemType_ARM8

This is a double bandwidth interface. The ARM8 core can request two sequential
accesses per cycle.

ARM9 memory type

The ARM9 memory type is defined as:

ARMul_MemType_ARM9

ARMulator Reference

4-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.4 Memory model interface

The memory model interface is defined in the file armmem.h (which is #included
from armdefs.h). All memory accesses are performed through a single function
pointer that is passed a flags word. The flags word consists of a bitfield in which the bits
correspond to the signals on the outside of the ARM processor. This determines the type
of memory access that is being performed.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

At initialization time, the initialization function registers a number of functions in the
memory interface structure, ARMul_MemInterface in armmem.h. The basic entries
are:

typedef struct armul_meminterface ARMulMemInterface;
struct armul_meminterface {
 void *handle;
 armul_ReadClock *read_clock;
 armul_ReadCycles *read_cycles;
 union {
 struct {
 armul_MemAccess *access;
 armul_GetCycleLength *get_cycle_length;
 } basic;
 // ... other processor specific entries follow

The following sections describe the initialization function and the basic function
entries:

• Memory model initialization function on page 4-15

• armul_ReadClock on page 4-17

• armul_GetCycleLength on page 4-17

• armul_ReadCycles on page 4-18

• armul_MemAccess on page 4-20.

There are two functions that allow you to set and return the address of the top of
memory. These are described in:

• ARMul_SetMemSize on page 4-22

• ARMul_GetMemSize on page 4-22.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-15

4.4.1 Memory model initialization function

The memory model exports a function that is called during initialization. You must
provide the memory model initialization function. If the model and the function are
registered, and an armul.cnf entry is found, then the memory model initialization
function is called.

The name of the function is defined by you. In the description below, the name
MemInit is used.

Syntax

static ARMul_Error MemInit(ARMul_State *state,
 ARMul_MemInterface *interf,
 ARMul_MemType variant,
 toolconf config)

where:

state is a pointer to the ARMulator state.

interf is a pointer to the memory interface structure. See the
ARMul_MemInterface structure in armmem.h for an example.

variant is the memory interface variant. See the ARMul_MemType enumeration in
armmem.h. Refer to Memory type variants on page 4-11 for a description
of the variants.

config is the configuration database.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 4-77).

ARMulator Reference

4-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Usage

The initialization should set the handle for the model by assigning to
interf->handle. The handle is usually a pointer to the state representing this
instantiation of the model. It is passed to all the access functions called by ARMulator.

This function should also be used to:

• register any upcalls

• announce itself to the user using ARMul_PrettyPrint()

• attach any associated coprocessor models (CP15, for example) and set up its state.

Example

Refer to the definition of MemInit in armflat.c for an example. MemInit installs
ReadClock(), ReadCycles(), MemAccess(), and GetCycleLength() functions.
Refer to the following sections for more information on implementing these functions:

• armul_ReadClock on page 4-17

• armul_GetCycleLength on page 4-17

• armul_ReadCycles on page 4-18

• armul_MemAccess on page 4-20.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-17

4.4.2 armul_ReadClock

This function should return the elapsed time in µ-seconds since the simulation model
reset.

The read_clock entry in the ARMul_MemInterface structure is a pointer to an
armul_ReadClock() function.

Syntax

unsigned long armul_ReadClock(void *handle)

where:

handle is the value of interf->handle set in MemInit.

Return

The function returns an unsigned long value representing the elapsed time in µ-seconds
since the model reset.

Usage

A model can supply NULL if it does not support this functionality.

4.4.3 armul_GetCycleLength

The get_cycle_length entry in the ARMul_MemInterface structure is a pointer to
an armul_GetCycleLength() function. This function should return the length of a
single cycle in units of one tenth of a nanosecond.

You should implement this function, even if the implementation is very simple. The
function name is defined by you.

Syntax

unsigned long armul_GetCycleLength(void *handle)

where:

handle is the value of interf->handle set in MemInit.

Return

The function returns an unsigned long representing the length of a single cycle in units
of one tenth of a nanosecond. For example, it returns 300 for a 33.3MHz clock.

ARMulator Reference

4-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.4.4 armul_ReadCycles

The read_cycles entry in the ARMul_MemInterface structure is a pointer to an
armul_ReadCycles() function. This function should calculate the total cycle count
since the simulation model reset. You should implement this function, even if the
implementation is very simple. The function name is defined by you.

Syntax

const ARMul_Cycles *armul_ReadCycles(void *handle)

where:

handle is the value of interf->handle set in MemInit.

Return

The function is called each time the counters are read by the debugger. The function
calculates the total cycle count and returns a pointer to the ARMul_Cycles structure
that contains the cycle counts. The ARMul_Cycles structure is defined as:

typedef struct {
 unsigned long Total;
 unsigned long NumNcycles, NumScycles,
 NumCcycles, NumIcycles, NumFcycles;
 unsigned long CoreCycles;
} ARMul_Cycles;

Usage

A model can keep count of the accesses made to it by ARMulator by providing this
function. The value of the CoreCycles field in ARMul_Cycles, is provided by
ARMulator, not the memory model. When you write this function you must calculate
the Total field, because this is the value returned when ARMul_Time() is called. See
Event scheduling functions on page 4-67 for a description of ARMul_Time().

These counters are also used to provide the $statistics variable inside the ARM
debuggers, if the memory model does not use ARMul_AddCounterDesc() and
ARMul_AddCounterValue(). (see Upcalls and General purpose functions on
page 4-77).

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-19

Example

ARMul_Cycles *cycles;
cycles = interf->read_cycles(handle);
// where interf is a pointer to the memory interface structure.
// and handle is a void * pointer to the ARMul_State structure.

ARMulator Reference

4-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.4.5 armul_MemAccess

The access entry in the ARMul_MemInterface structure is a pointer to an
armul_MemAccess() function. This function is called on each ARM core cycle.

You must implement this function, even if the implementation is very simple. The
function name is defined by you.

Syntax

int armul_MemAccess(void *handle, ARMword address,
 ARMword *data, ARMul_acc access_type)

where:

handle is the value assigned to interf->handle in the initialization function.

address is the value on the address bus.

data is a pointer to the data for the memory access. See Usage below for
details.

access_type

encodes the type of cycle. On some processors (for example, cached
processors) some of the signals will not be valid. The macros for
determining access type are:

acc_MREQ(acc)

chooses between memory request and non-memory request
accesses.

acc_WRITE(acc)

acc_READ(acc)

for memory cycles, determines whether this is a read or write
cycle (not acc_READ implies acc_WRITE, and not
acc_WRITE implies acc_READ).

acc_SEQ(acc)

for a memory cycle, this is TRUE if the address is the same as,
or sequentially follows from the address of the preceding
cycle. For a non-memory cycle it distinguishes between
coprocessor (acc_SEQ) and idle (not acc_SEQ) cycles.

acc_OPC(acc)

for memory cycles, this is TRUE if the data being read is an
instruction. (It is never TRUE for writes.)

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-21

acc_LOCK(acc)

distinguishes a read-lock-write memory cycle.

acc_ACCOUNT(acc)

is TRUE if the cycle is coming from the ARM core, rather than
the remote debug interface.

acc_WIDTH(acc)

returns BITS_8, BITS_16, or BITS_32 depending on whether
a byte, halfword, or word is being accessed.

Return

The function returns:

• 1, to indicate successful completion of the cycle

• 0, to tell the processor to busy-wait and try the access again next cycle

• –1, to signal an abort

• –2, to indicate that an address was not decoded by a peripheral model (see
Reference peripherals on page 4-121).

Usage

Reads For reads, the memory model function should write the value to be read
by the core to the word pointed to by data. For example, with a byte load
it should write the byte value, with a halfword load it should write the
halfword value.

The model can ignore the alignment of the address passed to it because
this is handled by ARMulator. However, it must present the bytes of the
word in the correct order for the byte order of the processor. This can be
determined by using either a ConfigChangeUpcall() upcall or
ARMul_SetConfig() (see Accessing ARMulator state on page 4-41).

armdefs.h provides a flag variable macro named HostEndian, which
is TRUE if ARMulator is running on a big-endian machine. See the
armflat.c memory model for an example of how to handle byte order.

Writes For writes, data points to the datum to be stored. However, this value
may need to be shortened for a byte or halfword store.

As with reads, byte order must be handled correctly.

ARMulator Reference

4-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.4.6 ARMul_SetMemSize

This function can be called during memory initialization. It specifies the size, and
therefore the top of memory.

Syntax

ARMword ARMul_SetMemSize(ARMul_State *state, ARMword size)

where:

state is a pointer to the ARMulator state.

size is the size of memory in bytes (word aligned).

Return

The function returns the previous MemSize value.

Usage

The value of size should not exceed 0x80000000.

4.4.7 ARMul_GetMemSize

This function returns the address of the top of memory.

Syntax

ARMword ARMul_GetMemSize(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the highest available address in memory.

Usage

This function can be used, for example, by a debug monitor model to tell an application
where the top of usable memory is, so it can set up application memory.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-23

4.5 Coprocessor model interface

The coprocessor model interface is defined in armdefs.h. The basic coprocessor
functions are:

• init on page 4-27

• ldc on page 4-28

• stc on page 4-29

• mrc on page 4-30

• mcr on page 4-31

• cdp on page 4-32.

In addition, two functions are provided that enable a debugger to read and write
coprocessor registers through the Remote Debug Interface (RDI). They are:

• read on page 4-33

• write on page 4-34.

If a coprocessor does not handle one or more of these functions, it should leave their
entries in the ARMul_CPInterface structure unchanged.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

ARMulator Reference

4-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.5.1 The ARMul_CPInterface structure

The coprocessor initialization structure contains a set of function pointers for each
supported operation. You must use the coprocessor initialization function to install your
functions in the structure at initialization. Refer to init on page 4-27 for more
information.

This structure also contains a pointer to a reg_bytes array that contains:

• the number of coprocessor registers, in the first element

• the number of bytes available to each register, in the remaining elements.

For example, dummymmu.c defines an array of eight registers, each of four bytes:

static const unsigned int MMURegBytes[] = {8, 4,4,4,4,4,4,4,4};

Definition

The ARMul_CPInterface structure is defined as:

typedef struct ARMul_cop_interface_str ARMul_CPInterface;

struct ARMul_cop_interface_str {
 void *handle; /* A model private handle */
 armul_LDC *ldc; /* LDC instruction */
 armul_STC *stc; /* STC instruction */
 armul_MRC *mrc; /* MRC instruction */
 armul_MCR *mcr; /* MCR instruction */
 armul_CDP *cdp; /* CDP instruction */
 armul_CPRead *read; /* Read CP register */
 armul_CPWrite *write; /* Write CP register */
 const unsigned int *reg_bytes; /* map of CP reg sizes */
}

Example

In Example 4-1 on page 4-25, if the core has a memory management unit (MMU), a
predefined mmu->RegBytes is used. If the core has a protection unit (PU), the size of
RegBytes[7] and RegBytes[8] is modified. RegBytes[7] corresponds to CP
register 6 and RegBytes[8] corresponds to CP register 7.

CP register 6 is the protection region base and size register and has eight indexable
registers, so it is set to size sizeof(ARMword)*8.

Refer to ARM Architecture Reference Manual for more information on the MMU and
PU.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-25

Example 4-1

{
 if (mem->prop & Cache_ProtectionUnit_Prop)
 {
 /* Use the PU */
 mmu->RegBytes[0]=8; /* has 8 registers */
 mmu->RegBytes[7]=sizeof(ARMword)*8; /* register 7 is 8 words long */
 mmu->RegBytes[8]=sizeof(ARMword); /* register 8 is a single word */
 interf->mrc=PU_MRC;
 interf->mcr=PU_MCR;
 interf->read=PU_CPRead;
 interf->write=PU_CPWrite;
 interf->reg_bytes=mmu->RegBytes;
 ARMul_PrettyPrint(state,", PU");

 /* Initialise PU Area registers to 0 */
 for (i=0; i<=7; i++)
 {
 mmu->PU_Areas[i].PU_Register=0;
 }
 }
 else /* Use the MMU */
 {
 interf->mrc=MRC;
 interf->mcr=MCR;
 interf->read=CPRead;
 interf->write=CPWrite;
 interf->reg_bytes=mmu->RegBytes;
 ARMul_PrettyPrint(state,", MMU");
 }
}

ARMulator Reference

4-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.5.2 ARMul_CoProAttach

Coprocessors are either initialized directly by ARMulator as appropriate, or can be
attached directly by another model by calling ARMul_CoProAttach(). As with
memory models, the coprocessor initialization function is used to fill in the interface
structure. ARMul_CoProAttach() registers the coprocessor initialization function for
a specified coprocessor.

Syntax

ARMul_Error ARMul_CoProAttach(ARMul_State *state,
 unsigned number,
 const ARMul_CPInit *init,
 toolconf config,
 void *sibling)

where:

state is a pointer to the ARMulator state.

number is the coprocessor number to attach.

init is a pointer to a coprocessor initialization function.

config is the configuration database.

sibling is a pointer to the state to be shared with the coprocessor.

Return

This function returns either:

• ARMulErr_NoError, if there is no error during initialization

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 4-77).

Example

error = ARMul_CoProAttach(state, 4, init, config, handle);

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-27

4.5.3 init

This is the coprocessor initialization function. This function fills in the
ARMul_CPInterface structure for the coprocessor model (see The
ARMul_CPInterface structure on page 4-24).

Syntax

ARMul_Error init(ARMul_State *state, unsigned num,
 ARMul_CPInterface *interf, toolconf config,
 void *sibling)

where:

state is a pointer to the ARMulator state.

num is the coprocessor number.

interf is a pointer to the ARMul_CPInterface structure to be filled in.

config is the configuration database.

sibling identifies associations between the coprocessor and other simulated
components, such as sibling coprocessors. For example, a system may
have a pair of coprocessors that must be aware of each other. This is the
value passed to ARMul_CoProAttach().

Return

This function returns either:

• ARMulErr_NoError, if there is no error

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error should be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 4-77).

ARMulator Reference

4-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.5.4 ldc

This function is called when an LDC instruction is recognized for a coprocessor.

Syntax

unsigned ldc(void *handle, unsigned type, ARMword instr,
 ARMword data)

where:

handle is the value of interf->handle set in init.

type is the type of coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_TRANSFER indicates that the ARM is about to perform the load.

ARMul_DATA indicates that valid data is included in data.

instr the current opcode.

data is the data being transferred to the coprocessor.

Return

The function must return one of:

• ARMul_INC, to request more data from the core (only in response to
ARMul_FIRST, ARMul_BUSY, or ARMul_DATA)

• ARMul_DONE, to indicate that the coprocessor operation is complete (only in
response to ARMul_DATA)

• ARMul_BUSY, to indicate that the coprocessor is busy (only in response to
ARMul_FIRST or ARMul_BUSY)

• ARMul_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed (only in response to ARMul_FIRST or ARMul_BUSY).

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-29

4.5.5 stc

This function is called when an STC instruction is recognized for a coprocessor.

Syntax

unsigned stc(void *handle, unsigned type, ARMword instr,
 ARMword *data)

where:

handle is the value of interf->handle set in init.

type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates that the coprocessor should return valid
data in *data.

instr is the current opcode.

data is a pointer to the location of the data being transferred from the
coprocessor to the core.

Return

The function must return one of:

• ARMul_INC, to indicate that there is more data to transfer to the core (only in
response to ARMul_FIRST, ARMul_BUSY, or ARMul_DATA)

• ARMul_DONE, to indicate that the coprocessor operation is complete (only in
response to ARMul_DATA)

• ARMul_BUSY, to indicate that the coprocessor is busy (only in response to
ARMul_FIRST or ARMul_BUSY)

• ARMul_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed (only in response to ARMul_FIRST or ARMul_BUSY).

ARMulator Reference

4-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.5.6 mrc

This function is called when an MRC instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function should
return ARMul_CANT.

Syntax

unsigned mrc(void *handle, unsigned type, ARMword instr,
 ARMword *data)

where:

handle is the value of interf->handle set in init.

type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates that valid data is included in *data.

instr is the current opcode.

data is a pointer to the location of the data being transferred from the
coprocessor to the core.

Return

The function must return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete, and valid
data has been returned to *data.

• ARMul_BUSY, to indicate that the coprocessor is busy

• ARMul_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-31

4.5.7 mcr

This function is called when an MCR instruction is recognized for a coprocessor. If the
requested coprocessor register does not exist or cannot be written to, the function should
return ARMul_CANT.

Syntax

unsigned mcr(void *handle, unsigned type, ARMword instr,
 ARMword data)

where:

handle is the value of interf->handle set in init.

type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

ARMul_DATA indicates valid data is included in data.

instr is the current opcode.

data is the data being transferred to the coprocessor.

Return

The function must return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete

• ARMul_BUSY, to indicate that the coprocessor is busy

• ARMul_CANT, to indicate that the instruction is not supported, or the specified
register cannot be accessed.

ARMulator Reference

4-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.5.8 cdp

This function is called when a CDP instruction is recognized for a coprocessor. If the
requested coprocessor operation is not supported, the function should return
ARMul_CANT.

Syntax

unsigned cdp(void *handle, unsigned type, ARMword instr)

where:

handle is the value of interf->handle set in init.

type is the type of the coprocessor access. This can be one of:

ARMul_FIRST indicates that this is the first time the coprocessor
model has been called for this instruction.

ARMul_BUSY indicates that this is a subsequent call, after the first
call was busy-waited.

ARMul_INTERRUPT warns the coprocessor that the ARM is about to
service an interrupt, so the coprocessor should
discard the current instruction. Usually, the
instruction will be retried later, in which case the
type will be reset to ARMul_FIRST.

instr is the current opcode.

Return

The function must return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete

• ARMul_BUSY, to indicate that the coprocessor is busy

• ARMul_CANT, to indicate that the instruction is not supported.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-33

4.5.9 read

This function enables a debugger to read a coprocessor register. The function reads the
coprocessor register numbered reg and transfers its value to the location addressed by
value.

If the requested coprocessor register does not exist, or the register cannot be read, the
function should return ARMul_CANT.

Syntax

unsigned read(void *handle, unsigned reg, ARMword const *value)

where:

handle is the value of interf->handle set in init.

reg is the register number of the coprocessor register to be read.

value is a pointer to the location of the data to be read from the coprocessor by
RDI.

Return

The function must return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete

• ARMul_CANT, to indicate that the register is not supported.

Usage

This function is called by the debugger.

ARMulator Reference

4-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.5.10 write

This function enables a debugger to write to a coprocessor register.

Syntax

unsigned write(void *handle, unsigned reg, ARMword const *value)

where:

handle is the value of interf->handle set in init.

reg is the register number of the coprocessor register that is to be written.

value is a pointer to the location of the data that is to be written to the
coprocessor.

Return

The function must return one of:

• ARMul_DONE, to indicate that the coprocessor operation is complete

• ARMul_CANT, to indicate that the register is not supported.

Usage

This function is called by the debugger.

The function writes the value at the location addressed by value to the coprocessor
register numbered reg.

If the requested coprocessor does not exist or the register cannot be written, the function
must return ARMul_CANT.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-35

4.6 Operating system or debug monitor interface

ARMulator supports rapid prototyping of low-level operating system code through an
interface that enables a model to intercept SWIs and exceptions, and model them on the
host. This model can communicate with the simulated application by reading and
writing the simulated ARM state using the routines described in Accessing ARMulator
state on page 4-41.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

The interface functions are:

• init on page 4-36

• handle_swi on page 4-37

• exception on page 4-38.

These functions are described in more detail in the following sections.

4.6.1 The ARMul_OSInterface structure

The ARMul_OSInterface structure is defined as:

typedef struct armul_os_interface ARMul_OSInterface;

typedef ARMul_Error armul_OSInit(ARMul_State *state,
 ARMul_OSInterface *interf,
 toolconf config);
typedef unsigned armul_OSHandleSWI(void *handle,ARMword number);
typedef unsigned armul_OSException(void *handle, ARMword vector,
 ARMword pc);

struct armul_os_interface {
 void *handle; /* A model private handle */
 armul_OSHandleSWI *handle_swi; /* SWI handler */
 armul_OSException *exception; /* Exception handler */
};

typedef struct {
 armul_OSInit *init; /* O/S initializer */
 tag_t name; /* O/S name */
} ARMul_OSStub;

ARMulator Reference

4-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.6.2 init

This is the OS initialization function. It is passed a vector of functions to fill in. As with
other models, the operating system model is called through an initialization function
exported in a stub.

The memory system is guaranteed to be operating at this time, so the operating system
can read and write to the simulated memory using the routines described in Memory
access functions on page 4-65.

Syntax

typedef ARMul_Error init(ARMul_State *state,
 ARMul_OSInterface *interf,
 toolconf config)

where:

state is a pointer to the ARMulator state.

interf is a pointer to the OS interface structure.

config is the configuration database.

Return

This function returns either:

• ARMulErr_NoError, if there is no error

• an ARMul_Error value.

See armerrs.h and errors.h for a full list of error codes. The error must be passed
through ARMul_RaiseError() for formatting (see ARMul_RaiseError on page 4-77).

Usage

This function can also run initialization code.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-37

4.6.3 handle_swi

This is the OS model SWI handling function. It is called whenever a SWI instruction is
executed. This enables support code to simulate operating system operations. This code
can model as much of your operating system as you choose.

Syntax

typedef unsigned handle_swi(void *handle, ARMword number)

where:

handle is the value of interf->handle set in init.

number is the SWI number.

Return

The function can refuse to handle the SWI by returning FALSE, or the model may choose
not to handle SWI instructions by setting NULL as the handle_swi function. In either
case, the SWI exception vector is taken by ARMulator. If the function returns TRUE
ARMulator continues from the next instruction after the SWI.

4.6.4 ARMulator SWIs

In addition to the standard Angel SWIs, ARMulator uses a set of SWIs for default
exception vector handlers. These are known as the soft vector SWIs. The soft vector
code is installed by the Angel model.

There are two sets of SWIs:

SWIs 0x90 – 0x98 are used to implement $vector_catch. That is, they return
control to the debugger if the user has set $vector_catch for the
relevant exception vector. SWI 0x90 is used for the reset vector,
0x91 for the undefined instruction vector, and so on.

SWIs 0x80 – 0x88 are used to stop ARMulator if the exception cannot be handled.
The 0x80 SWIs are used as a final stop if the exception is not
caught by such an exception handler.

Note

These SWIs are for internal use by ARMulator only.

ARMulator Reference

4-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.6.5 exception

This is the OS model exception handling function. It is called whenever an exception
occurs.

Syntax

typedef unsigned exception(void *handle, ARMword vector,
 ARMword pc)

where:

handle is the value of interf->handle set in init.

vector contains the address of the vector about to be executed, for example:

0x00 Reset

0x04 Undefined Instruction

0x1C Fast Interrupt (FIQ).

pc contains the program counter (including the effect of pipelining) at the
time the exception occurred.

Return

If the function returns TRUE, ARMulator continues from the instruction following the
instruction that was being executed when the exception occurred.

Note

If the exception is a Prefetch or Data Abort, the user function must make ARMulator
retry the instruction, rather than continuing from the following instruction. The user
function can set up the pc by calling ARMul_SetPC to ensure this, before returning
TRUE.

A return value of FALSE causes ARMulator to handle the exception normally.

Usage

The CPU state is frozen immediately after the exception has occurred, but before the
CPU has switched processor state or taken the appropriate exception vector.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-39

4.7 Using the floating-point emulator

ARMulator is supplied with the floating-point emulator (FPE) in object form. If the
FPE is selected on initialization, the debug monitor model (angel.c) loads and starts
executing the FPE.

The FPE requires the following SWIs to be supported by the debug monitor. Angel does
not support these SWIs, however they are implemented by angel.c to support FPE:

• SWI_Exit (0x11)

• SWI_GenerateError (0x71).

To load and initialize the FPE, call the following functions:

• ARMul_FPEInstall()

• ARMul_FPEVersion()

• ARMul_FPEAddressInEmulator().

These are described in more detail in the following sections.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.7.1 ARMul_FPEInstall

This function writes the FPE into memory (below 0x8000), and executes it.

Syntax

int ARMul_FPEInstall(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Usage

Note

Because this involves running code, it must be done only after ARMulator is fully
initialized. Before calling ARMul_FPEInstall(), Angel completely initializes itself.

ARMulator Reference

4-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Return

The function returns:

• TRUE, if the installation is successful

• FALSE, if the installation fails.

4.7.2 ARMul_FPEVersion

This function returns the FPE version number. Angel uses this for unwinding aborts
inside the emulator (see the angel.c source code for details).

Syntax

int ARMul_FPEVersion(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns either:

• the FPE version code, if available

• –1 if there is no FPE.

4.7.3 ARMul_FPEAddressInEmulator

This function returns TRUE if the specified address lies inside the emulator.

Syntax

int ARMul_FPEAddressInEmulator(ARMul_State *state, ARMword addr)

where:

state is a pointer to the ARMulator state.

addr is the address to check.

Return

The function returns:

• FALSE, if there is no FPE, or the address is not in the FPE

• TRUE, if the address is in the FPE.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-41

4.8 Accessing ARMulator state

All the models are passed a state variable of type ARMul_State. This is an opaque
handle to the internal state of ARMulator. ARMulator exports these functions to enable
models to access the ARMulator state through this handle.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

The following functions provide read and write access to ARM registers:

• ARMul_GetMode on page 4-42

• ARMul_GetReg on page 4-43

• ARMul_SetReg on page 4-44

• ARMul_GetR15 and ARMul_GetPC on page 4-45

• ARMul_SetR15 and ARMul_SetPC on page 4-45

• ARMul_GetCPSR on page 4-46

• ARMul_SetCPSR on page 4-46

• ARMul_GetSPSR on page 4-47

• ARMul_SetSPSR on page 4-47.

The following functions call the read and write methods for a coprocessor:

• ARMul_CPRegBytes on page 4-48

• ARMul_CPRead on page 4-48

• ARMul_CPWrite on page 4-49.

The following function enables you to change the configuration of your modeled
processor:

• ARMul_SetConfig on page 4-50.

Note

It is not appropriate to access some parts of the state from certain parts of a model. For
example, you must not set the contents of an ARM register from a memory access
function, because the memory access function may be called during simulation of an
instruction. In contrast, it is necessary to set the contents of ARM registers from a SWI
handler function.

ARMulator Reference

4-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

A number of the following functions take an unsigned mode parameter to specify the
processor mode. The mode numbers are defined in armdefs.h, and are listed in Table
4-1.

In addition, the special value CURRENTMODE is defined. This enables ARMul_GetReg()
to return the current mode number.

4.8.1 ARMul_GetMode

This function returns the current processor mode.

Syntax

ARMword ARMul_GetMode(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Returns

This function returns the current mode.

See Table 4-1 on page 4-42 for a list of defined processor modes.

Usage

If this is to be done frequently, a model should install a ModeChange() upcall instead
(see ModeChangeUpcall on page 4-56).

 Table 4-1 Defined processor modes

USER32MODE ABORT32MODE

FIQ32MODE UNDEF32MODE

IRQ32MODE SYSTEM32MODE

SCV32MODE

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-43

4.8.2 ARMul_GetReg

This function reads a register for a specified processor mode.

Syntax

ARMword ARMul_GetReg(ARMul_State *state, unsigned mode,
 unsigned reg)

where:

state is a pointer to the ARMulator state.

mode is the processor mode. Values for mode are defined in armdefs.h (see
Table 4-1 on page 4-42).

reg is the number of the register to read.

Return

The function returns the value in the given register for the specified mode.

Usage

Note

Register r15 must not be accessed with this function. Use ARMul_GetPC() or
ARMul_GetR15() as described in ARMul_GetR15 and ARMul_GetPC on page 4-45.

ARMulator Reference

4-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.8.3 ARMul_SetReg

This function writes a register for a specified processor mode.

Syntax

void ARMul_SetReg(ARMul_State *state, unsigned mode,
 unsigned reg, ARMword value)

where:

state is a pointer to the ARMulator state.

mode is the processor mode. Mode numbers are defined in armdefs.h (see
Table 4-1 on page 4-42).

reg is the number of the register to write.

value is the value to be written to register reg for the specified processor mode.

Usage

Note

Register r15 must not be accessed with this function. Use ARMul_SetPC(), or
ARMul_SetR15() as in ARMul_SetR15 and ARMul_SetPC on page 4-45.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-45

4.8.4 ARMul_GetR15 and ARMul_GetPC

The following functions read register r15.

Syntax

ARMword ARMul_GetR15(ARMul_State *state)
ARMword ARMul_GetPC(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The functions return the value of register r15. The effect of either variant is the same.

4.8.5 ARMul_SetR15 and ARMul_SetPC

The following functions write register r15.

Syntax

void ARMul_SetR15(ARMul_State *state, ARMword value)

void ARMul_SetPC(ARMul_State *state, ARMword value)

where:

state is a pointer to the ARMulator state.

value the new value of r15 (pc) to be written.

Return

The functions write a value into register r15. The effect of either variant is the same.

ARMulator Reference

4-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.8.6 ARMul_GetCPSR

This function reads the CPSR.

Syntax

ARMword ARMul_GetCPSR(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the value of the CPSR for the current mode.

4.8.7 ARMul_SetCPSR

This function writes a value to the CPSR for the current processor mode.

Syntax

void ARMul_SetCPSR(ARMul_State *state, ARMword value)

where:

state is a pointer to the ARMulator state.

mode is the processor mode. Values for mode are defined in armdefs.h (see
Table 4-1 on page 4-42).

value is the value to be written to the CPSR for the current mode.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-47

4.8.8 ARMul_GetSPSR

This function reads the SPSR for a specified processor mode.

Syntax

ARMword ARMul_GetSPSR(ARMul_State *state, ARMword mode)

where:

state is a pointer to the ARMulator state.

mode is the processor mode for the SPSR to be read.

Return

The function returns the value of the SPSR for the specified mode.

4.8.9 ARMul_SetSPSR

This function writes the SPSR for a specified processor mode.

Syntax

void ARMul_SetSPSR(ARMul_State *state, ARMword mode,
 ARMword value)

where:

state is a pointer to the ARMulator state.

mode is the processor mode for the SPSR to be read. Values for mode are
defined in armdefs.h (see Table 4-1 on page 4-42).

value is the new value to be written to the SPSR for the specified mode.

ARMulator Reference

4-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.8.10 ARMul_CPRegBytes

This function returns the reg_bytes[] array for the specified coprocessor (see The
ARMul_CPInterface structure on page 4-24 for details).

Syntax

unsigned int const *ARMul_CPRegBytes(ARMul_State *state,
 unsigned CPnum)

where:

state is a pointer to the ARMulator state.

CPnum is the coprocessor number to return the reg_bytes[] array for.

4.8.11 ARMul_CPRead

This function calls the read method for a coprocessor. It also intercepts calls to read the
FPE emulated registers (see Using the floating-point emulator on page 4-39).

Syntax

unsigned ARMul_CPRead(void *handle, unsigned reg,
 ARMword *value)

where:

handle is a pointer to the ARMulator state.

reg is the number of the coprocessor register to read from.

value is the address to write the register value to.

Return

The function must return:

• ARMul_DONE, if the register can be read

• ARMul_CANT, if the register cannot be read.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-49

4.8.12 ARMul_CPWrite

This function calls the write method for a coprocessor. It also intercepts calls to write
the FPE emulated registers (see Using the floating-point emulator on page 4-39).

Syntax

unsigned ARMul_CPWrite(void *handle, unsigned reg,
 ARMword const *value)

where:

handle is a pointer to the ARMulator state.

reg is the number of the coprocessor register to write to.

value is the address of the data to write to the coprocessor register.

Return

The function must return:

• ARMul_DONE, if the register can be written

• ARMul_CANT, if the register cannot be written.

ARMulator Reference

4-50 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.8.13 ARMul_SetConfig

This function changes the config value of the modeled processor. The config value
represents the state of the configuration pins on the ARM core. See Configuration bits
and signals on page 4-58 for details of bit to signal assignments.

Syntax

ARMword ARMul_SetConfig(ARMul_State *state, ARMword changed,
 ARMword config)

where:

state is a pointer to the ARMulator state.

changed is a bitmask of the config bits to change.

config contains the new values of the bits to change.

Return

The function returns the previous config value.

Usage

Note

If a bit is cleared in changed it must not be set in config. For example, to set bit 1 and
clear bit 0:

changed 0x03 (00000011 binary)

config 0x02 (00000010 binary)

ConfigChangeUpcall() is called. See ConfigChangeUpcall on page 4-58 for more
information on this upcall.

Example

oldConfig = ARMul_SetConfig(state, 0x00000001, 0x00000001);
// This sets bit 0 to value 1
oldConfig = ARMul_SetConfig(state, 0x00000002, 0x00000001);
// This sets bit 1 to value 0 - note that bit 0 is unaffected.

The following call can be used to obtain the current settings of the configuration pins,
without modifying them:

currentConfig = ARMul_SetConfig(state, 0, 0);

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-51

4.9 Exceptions

The following functions enable a model to set or clear interrupts and resets, or branch
to a SWI handler:

• ARMul_SetNirq and ARMul_SetNfiq

• ARMul_SetNreset on page 4-52

• ARMul_SWIHandler on page 4-52.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.9.1 ARMul_SetNirq and ARMul_SetNfiq

The following functions are used to set and clear IRQ and FIQ interrupts.

Syntax

unsigned ARMul_SetNirq(ARMul_State *state, unsigned value)
unsigned ARMul_SetNfiq(ARMul_State *state, unsigned value)

where:

state is a pointer to the ARMulator state.

value is the new Nirq or Nfiq signal value.

Note

The signals are active LOW:

• 0 = interrupt

• 1 = no interrupt.

Return

The functions return the old signal value.

Note

For information about signalling interrupts when using an interrupt controller see
Interrupt controller on page 4-121.

ARMulator Reference

4-52 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.9.2 ARMul_SetNreset

This function sets and clears RESET exceptions.

Syntax

unsigned ARMul_SetNreset(ARMul_State *state, unsigned value)

where:

state is a pointer to the ARMulator state.

value is the new Nreset signal value.

Note

The signal is active LOW:

• 0 = reset

• 1 = no reset.

Return

The function returns the old signal value.

4.9.3 ARMul_SWIHandler

This function can be called from a handle_swi() function to enter a SWI handler at
a given address. It causes the processor to act as if it had taken the SWI vector, decoded
the SWI number, and then branched to this address.

Syntax

void ARMul_SWIHandler(ARMul_State *state, ARMword address)

where:

state is a pointer to the ARMulator state.

address is the address of the instruction to branch to.

Usage

See the code for handling SWI_GenerateError in angel.c. for an example of how
to use this function.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-53

4.10 Upcalls

ARMulator can be made to call back your model when some state values change. You
do this by installing the relevant upcall. In the context of ARMulator, the term upcall is
synonymous with callback.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

You must provide implementations of the upcalls if you want to use them in your own
models. See the implementations in the ARM supplied models for examples.

You can use upcalls to avoid having to check state values on every access. For example,
a memory model is expected to present the ARM core with data in the correct byte order
for the value of the ARM processor bigend signal. A memory model can attach to the
ConfigChangeUpcall() upcall to be informed when this signal changes.

Every upcall is called when ARMulator resets and after ARMulator initialization is
complete, regardless of whether the signals have changed, with the exception of
UnkRDIInfoUpcall() and EventUpcall().

The upcalls are defined in armdefs.h. The following upcalls are described in the
sections below:

• ExitUpcall on page 4-55

• ModeChangeUpcall on page 4-56

• TransChangeUpcall on page 4-57

• ConfigChangeUpcall on page 4-58

• InterruptUpcall on page 4-60

• ExceptionUpcall on page 4-61

• UnkRDIInfoUpcall on page 4-62

• EventUpcall on page 4-64.

Refer to Installing an upcall and Removing an upcall on page 4-54 for information on
how to install and remove the upcalls.

ARMulator Reference

4-54 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.10.1 Installing an upcall

Each upcall is installed using a function of the form:

void *ARMul_Install<UpcallName>(ARMul_State *state,
 typename *fn,
 void *handle)

where:

<UpcallName>

is the name of the upcall. For example, the ExitUpcall() is installed
with ARMul_InstallExitHandler.

state is a pointer to the ARMulator state.

typename is the type of the function, as defined by typedef in the upcall prototype.

fn is a pointer to the function to be installed.

handle is the handle to be passed to the upcall function.

The function returns a void * handle to the upcall handler. This must be kept because
it is required by the corresponding Remove upcall function.

4.10.2 Removing an upcall

Each upcall is removed using a function of the form:

int *ARMul_Remove<UpcallName>(ARMulState *state, void *node)

where:

<UpcallName>

is the name of the upcall to be removed. For example, the
ExitUpcall() is removed with ARMul_RemoveExitHandler.

state is the state pointer.

node is the handle returned from the corresponding Install upcall function.

The remove upcall functions return:

• TRUE if the upcall is removed

• FALSE if the upcall remove failed.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-55

4.10.3 ExitUpcall

The exit upcall is called when ARMulator exits. It should be used to release any
memory used.

Syntax

typedef void armul_ExitUpcall(void *handle)

where:

handle is the handle passed to ARMul_InstallExitHandler.

Usage

Note

The ANSI free() function is a valid ExitUpcall(). If no exit upcall is registered and
a model uses some memory, that memory will be lost.

Install the upcall using:

void *ARMul_InstallExitHandler(ARMul_State *state,
 armul_ExitUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveExitHandler(ARMul_State *state, void *node)

Refer to Installing an upcall on page 4-54 for more information.

ARMulator Reference

4-56 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.10.4 ModeChangeUpcall

The mode change upcall is called whenever ARMulator changes mode. The upcall is
passed both the old and new modes.

Syntax

typedef void armul_ModeChangeUpcall(void *handle, ARMword old,
 ARMword new)

where:

handle is the handle passed to ARMul_InstallExitHandler.

old is the old processor mode. Values for mode are defined in armdefs.h
(see Table 4-1 on page 4-42).

new is the new processor mode. Values for mode are defined in armdefs.h
(see Table 4-1 on page 4-42).

Usage

Install the mode change upcall using:

void *ARMul_InstallModeChangeHandler(ARMul_State *state,
 armul_ModeChangeUpcall *fn,
 void *handle)

Remove the mode change upcall using:

int ARMul_RemoveModeChangeHandler(ARMul_State *state,
 void *node)

Refer to Installing an upcall on page 4-54 for more information.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-57

4.10.5 TransChangeUpcall

This upcall is called when the nTRANS signal on the ARM core changes.

The nTRANS signal is the Not Memory Translate signal. When LOW, it indicates that
the processor is in User mode, or that the processor is executing an LDRT/STRT
instruction from a non-User mode. It can be used to tell memory management models
when translation of the addresses should be turned on, or as an indicator of non-User
mode activity (for example, to provide different levels of access in non-User modes).

Refer to ARM Architecture Reference Manual for details of the LDRT/STRT instructions.

Syntax

typedef void armul_TransChangeUpcall(void *handle, unsigned old,
 unsigned new)

where:

handle is the handle passed to ARMul_InstallExitHandler.

old is the old nTRANS signal value.

new is the new nTRANS signal value.

Usage

Install the upcall using:

void *ARMul_InstallTransChangeHandler(ARMul_State *state,
 armul_TransChangeUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveTransChangeHandler(ARMul_State *state,
 void *node)

Refer to Installing an upcall on page 4-54 for more information.

ARMulator Reference

4-58 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.10.6 ConfigChangeUpcall

This upcall is made when the ARMulator model configuration is changed (for example,
from big-endian to little-endian). You can call ARMul_SetConfig() to change the
configuration yourself (see ARMul_SetConfig on page 4-50).

Configuration is specified as a bitfield of config bits. The config bits represent signals
to the configuration pins on the ARM core. Table 4-2 lists the bits that correspond to
each signal.

Refer to ARM Architecture Reference Manual for more information on configuration
signals.

If you have a CP15 then the control register bits corresponding to the signals listed in
Table 4-2 will be set in the same way.

Syntax

typedef void armul_ConfigChangeUpcall(void *handle, ARMword old,
 ARMword new)

where:

handle is the handle passed to ARMul_InstallExitHandler.

old is a bitfield representing the old configuration.

new is a bitfield representing the new configuration.

 Table 4-2 Configuration bits and signals

Signal Bit Notes

ARMul_Prog32 bit 4 Always high on ARM7TDMI, ARM9TDMI

ARMul_Data32 bit 5 Always high on ARM7TDMI, ARM9TDMI

ARMul_LateAbt bit 6 Not on ARM7, ARM9, or StrongARM

ARMul_BigEnd bit 7 —

ARMul_BranchPredict bit 11 ARM8 only

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-59

Usage

Install the upcall using:

void *ARMul_InstallConfigChangeHandler(ARMul_State *state,
 armul_ConfigChangeUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveConfigChangeHandler(ARMul_State *state,
 void *node)

Refer to Installing an upcall on page 4-54 for more information.

ARMulator Reference

4-60 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.10.7 InterruptUpcall

This upcall is called whenever the ARM core notices an interrupt (not when it takes an
interrupt) or reset. It is called even if interrupts are disabled.

Syntax

typedef unsigned int armul_InterruptUpcall(void *handle,
 unsigned int which)

where:

handle is the handle passed to ARMul_InstallExitHandler.

which is a bitfield that encodes which interrupt(s) have been noticed:

bit 0 Fast interrupt request (FIQ).

bit 1 Interrupt request (IRQ).

bit 2 Reset.

Usage

This upcall can be used by a memory model to reset its state or implement a wake-up,
for example. It is called at the start of the instruction or cycle (depending on the core
being simulated) when the interrupt is noticed.

The interrupt responsible can be removed using ARMul_SetNirq() or
ARMul_SetNfiq(), in which case the ARM will not notice the interrupt. See
ARMul_SetNirq and ARMul_SetNfiq on page 4-51 for more information.

Note

You can use ARMul_SetNirq() and ARMul_SetNfiq() to clear the interrupt signal,
but they will not necessarily clear the interrupt source itself.

Install the interrupt upcall using:

void *ARMul_InstallInterruptHandler(ARMul_State *state,
 armul_InterruptUpcall *fn, void *handle)

Remove the interrupt upcall using:

int ARMul_RemoveInterruptHandler(ARMul_State *state, void *node)

Refer to Installing an upcall on page 4-54 for more information.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-61

4.10.8 ExceptionUpcall

This upcall is called whenever the ARM processor takes an exception.

Syntax

typedef unsigned int armul_ExceptionUpcall(void *handle,
 ARMword vector,
 ARMword pc,
 ARMword instr)

where:

handle is the handle passed to ARMul_InstallExitHandler.

vector is the address of the appropriate hardware vector to be taken for the
exception.

pc is the value of pc at the time the exception occurs.

instr is the instruction that caused the exception.

Usage

As an example, this can be used by an operating system model to intercept and simulate
SWIs. If an installed upcall returns nonzero, the ARM does not take the exception (the
exception is ignored).

Note

In this release of ARMulator, this occurs in addition to the calling of the
handle_swi() function of the installed operating system model. Future releases may
not support the operating system interface, and you should use this upcall in preference.
The model can be installed as a basic model (see Basic model interface on page 4-4).
The models, such as angel.c and validate.c, shipped with this release of
ARMulator can be built either as a basic model or as an operating system model.

Note

If the processor is in Thumb state, the equivalent ARM instruction will be supplied.

Install the exception upcall using:

void *ARMul_InstallExceptionHandler(ARMul_State *state,
 armul_ExceptionUpcall *fn,
 void *handle)

ARMulator Reference

4-62 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Remove the exception upcall using:

int ARMul_RemoveExceptionHandler(ARMul_State *state, void *node)

Refer to Installing an upcall on page 4-54 for more information.

4.10.9 UnkRDIInfoUpcall

UnkRDIInfoUpcall() functions are called if ARMulator cannot handle an RDI_Info
request itself. They return an RDIError value. The UnkRDIInfoUpcall() function
can be used by a model extending the RDI interface between ARMulator and the
debugger. For example, the profiler module (in profiler.c) provides the
RDIProfile info calls.

Syntax

typedef int armul_UnkRDIInfoUpcall(void *handle, unsigned type,
 ARMword *arg1,
 ARMword *arg2)

where:

handle is the handle passed to ARMul_InstallExitHandler.

type is the RDI_Info subcode. These are defined in rdi_info.h. See below
for some examples.

arg1/arg2 are arguments passed to the upcall from the calling function.

Usage

ARMulator stops calling UnkRDIInfoUpcall() functions when one returns a value
other than RDIError_UnimplementedMessage.

The following codes are examples of the RDI_Info subcodes that can be specified as
type:

RDIInfo_Target

This enables models to declare how to extend the functionality of the
target. For example, profiler.c intercepts this call to set the
RDITarget_CanProfile flag.

RDIInfo_Points

watchpnt.c intercepts RDIInfo_Points to tell the debugger that
ARMulator supports watchpoints. This is similar to the use of
RDIInfo_Target in profiler.c.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-63

RDIInfo_SetLog

This is passed around so that models can switch logging information on
and off. For example, tracer.c uses this call to switch tracing on and
off from bit 4 of the rdi_log value.

RDIRequestCyclesDesc

This enables models to extend the list of counters provided by the
debugger in $statistics. Models call ARMul_AddCounterDesc()
(see General purpose functions on page 4-77) to declare each counter in
turn. It is essential that the model also trap the RDICycles RDI info call.

RDICycles Models that have declared a statistics counter by trapping
RDIRequestCyclesDesc must also respond to RDICycles by calling
ARMul_AddCounterValue() (see General purpose functions on
page 4-77) for each counter in turn, in the same order as they were
declared.

The above RDI info calls have already been dealt with by ARMulator, and are passed
for information only, or so that models can add information to the reply. Models should
always respond to these messages with RDIError_UnimplementedMessage, so that
the message is passed on even if the model has responded.

Install the upcalls using:

void *ARMul_InstallUnkRDIInfoHandler(ARMul_State *state,
 armul_UnkRDIInfoUpcall *proc, void *handle)

Remove the upcalls using:

int ARMul_RemoveUnkRDIInfoHandler(ARMul_State *state,
 void *node)

Refer to Installing an upcall on page 4-54 for more information.

Example

The angel.c model supplied with ARMulator uses the UnkRDIInfoUpcall() to
interact with the debugger:

RDIErrorP returns errors raised by the program running under ARMulator to
the debugger.

RDISet_Cmdline finds the command line set for the program by the debugger.

RDIVector_Catch intercepts the hardware vectors.

ARMulator Reference

4-64 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.10.10 EventUpcall

This upcall catches ARMulator events.

Syntax

typedef void armul_EventUpcall(void *handle, unsigned int event,
 ARMword addr1, ARMword addr2)

where:

handle is the handle passed to ARMul_InstallExitHandler.

event is one of the event numbers defined in Table 4-3 on page 4-91, Table 4-4
on page 4-92, and Table 4-5 on page 4-92.

addr1 is the first word of the event.

addr2 is the second word of the event.

Usage

Install the upcall using:

void *ARMul_InstallEventUpcall(ARMul_State *state,
 armul_EventUpcall *fn,
 void *handle)

Remove the upcall using:

int ARMul_RemoveEventUpcall(ARMul_State *state, void *node)

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-65

4.11 Memory access functions

The memory model can be probed by another model using a set of functions for reading
and writing memory. These functions access memory without inserting cycles on the
bus. If your model needs to insert cycles on the bus, it should install itself as a memory
model, possibly between the core and the real memory model.

Note

It is not possible to tell if these calls resulted in a data abort.

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.11.1 Reading from a given address

The following functions return the word, halfword, or byte at the specified address.
Each function accesses the memory without inserting cycles on the bus.

Syntax

ARMword ARMul_ReadWord(ARMul_State *state, ARMword address)
ARMword ARMul_ReadHalfWord(ARMul_State *state, ARMword address)
ARMword ARMul_ReadByte(ARMul_State *state, ARMword address)

where:

state is a pointer to the ARMulator state.

address is the address in simulated memory from which the word, halfword, or
byte is to be read.

Return

The functions return the word, halfword, or byte, as appropriate.

ARMulator Reference

4-66 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.11.2 Writing to a specified address

The following functions write the specified word, halfword, or byte at the specified
address. Each function accesses memory without inserting cycles on the bus.

Syntax

void ARMul_WriteWord(ARMul_State *state, ARMword address,
 ARMword data)

void ARMul_WriteHalfWord(ARMul_State *state, ARMword address,
 ARMword data)

void ARMul_WriteByte(ARMul_State *state, ARMword address,
 ARMword data)

where:

state is a pointer to the ARMulator state.

address is the address in simulated memory to write to.

data is the word, halfword, or byte to write.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-67

4.12 Event scheduling functions

The event scheduling functions enable you to schedule a call to a function based on:

• the number of instructions executed (instruction events)

• the number of memory system cycles (cycle events)

• the number of core cycles (core cycle events).

This section describes the event scheduling functions:

Instruction events The following functions enable you to schedule instruction
events:

• armul_Hourglass on page 4-68

• ARMul_HourglassSetRate on page 4-69.

Cycle events The following functions enable you to schedule or remove cycle
events:

• ARMul_ScheduleEvent on page 4-70

• ARMul_ScheduleEventCore on page 4-72

• ARMul_ScheduleEventCoreCycles on page 4-74

• ARMul_ScheduleEventCoreOrMemory on page 4-75

• ARMul_RemoveEvent on page 4-71

• ARMul_RemoveEventCore on page 4-73

• ARMul_RemoveEventCoreOrMemory on page 4-76.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

ARMulator Reference

4-68 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.12.1 armul_Hourglass

The armul_Hourglass() function provides a mechanism for calling a function at
every instruction, or at every n instructions for a value of n that is set by the
ARMul_HourglassSetRate() function.

Syntax

typedef void armul_Hourglass(void *handle, ARMword pc,
 ARMword instr)

where:

handle is the handle passed to ARMul_InstallHourglass.

pc is the program counter.

instr is the instruction about to be executed.

Return

handle to pass to ARMul_RemoveHourglass and ARMul_HourglassSetRate.

Usage

Install the function in the same way as upcalls:

void *ARMul_InstallHourglass(ARMul_State *state,
 armul_Hourglass *fn,
 void *handle)

Remove the function with:

int ARMul_RemoveHourglass(ARMul_State *state, void *node)

The remove function returns:

• TRUE, if the hourglass function is removed successfully

• FALSE, if the hourglass function is not removed successfully.

You can use the ARMul_HourglassSetRate() function to change the default rate at
which armul_Hourglass() is called. See ARMul_HourglassSetRate on page 4-69 for
details. See also Installing an upcall on page 4-54.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-69

4.12.2 ARMul_HourglassSetRate

This function sets the rate at which the armul_HourGlass() function is called. By
default, the armul_Hourglass() function is called every instruction.

Syntax

unsigned long ARMul_HourglassSetRate(ARMul_State *state,
 void *node,
 unsigned long rate)

where:

state is a pointer to the ARMulator state.

node is the handle returned from ARMul_InstallHourglass() when the
upcall was installed.

rate defines the rate at which the function should be called. For example, a
value of 1 calls the function every instruction. A value of 100 calls it
every 100 instructions.

Return

The function returns the old hourglass rate.

ARMulator Reference

4-70 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.12.3 ARMul_ScheduleEvent

This function schedules events using memory system cycles. It enables a function to be
called at a specified number of cycles in the future.

Syntax

void ARMul_ScheduleEvent(ARMul_State *state,
 unsigned long delay,
 armul_EventProc *func,
 void *handle)

where:

state is a pointer to the ARMulator state.

delay specifies the number of cycles to delay before the event function is called.

func is a pointer to the event function to call of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

Note

The function can be called only on the first instruction boundary following the specified
cycle.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-71

4.12.4 ARMul_RemoveEvent

ARMul_RemoveEvent() removes a previously scheduled memory cycle based event.

Syntax

void ARMul_RemoveEvent(ARMul_State *state, unsigned long when,
armul_EventProc *func, void *handle)

where:

state is a pointer to the ARMulator state.

when is the memory cycle count at which the event function was to be called.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

Note

Use ARMul_Time() to determine when.

ARMulator Reference

4-72 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.12.5 ARMul_ScheduleEventCore

ARMmul_ScheduleEventCore() function schedules events using the absolute core
cycle count at which the event will occur. It enables a function to be called at a specified
point in the future.

Syntax

void ARMul_ScheduleEventCore(ARMul_State *state,
 armul_EventProc *func,
 void *handle,
 unsigned long when)

where:

state is a pointer to the ARMulator state.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

when the absolute core cycle count at which the event function is to be
called.

Note

This function is supported only by ARM9-based models.

Use ARMul_ReadCycles to determine when.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-73

4.12.6 ARMul_RemoveEventCore

ARMmul_RemoveEventCore() removes a previously scheduled core cycle based
event.

Syntax

void ARMul_RemoveEventCore(ARMul_State *state,
unsigned long when,
armul_EventProc *func, void *handle)

where:

state is a pointer to the ARMulator state.

when is the core cycle count at which the event function was to be called.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

ARMulator Reference

4-74 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.12.7 ARMul_ScheduleEventCoreCycles

ARMmul_ScheduleEventCoreCycles() schedules events using core cycles. It
enables a function to be called at a specified number of core cycles in the future.

Syntax

void ARMul_ScheduleEventCoreCycles(ARMul_State *state,
unsigned long coreCycleDelay,
armul_EventProc *func,
void *handle)

where:

state is a pointer to the ARMulator state.

coreCycleDelay

specifies the number of core cycles to delay before the event function is
called.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

Note

This function is only supported on ARM9-based models.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-75

4.12.8 ARMul_ScheduleEventCoreOrMemory

ARMmul_ScheduleEventCoreOrMemory() schedules either memory or core cycle
based events. It provides a convenient means of scheduling events regardless of
whether they are core cycle or memory cycle based. It enables a function to be called at
a specified point in the future.

Syntax

void ARMul_ScheduleEventCoreOrMemory(ARMul_State *state,
unsigned long delay,
armul_EventProc *func,
void *handle,
int coreNotMemory)

where:

state is a pointer to the ARMulator state.

delay specifies the number of cycles to delay before the event function is called.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

coreNotMemory

controls whether the event is scheduled using core cycles or memory
cycles:

• FALSE = memory cycles

• TRUE = core cycles.

Note

This function is only supported on ARM9-based models.

ARMulator Reference

4-76 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.12.9 ARMul_RemoveEventCoreOrMemory

ARMmul_RemoveEventCoreOrMemory() removes a previously scheduled core or
memory cycle based event.

Syntax

void ARMul_RemoveEventCoreOrMemory(ARMul_State *state,
unsigned long when,
armul_EventProc *func,
void *handle,
int coreNotMemory)

where:

state is a pointer to the ARMulator state.

when is the core or memory cycle count at which the event function was to be
called.

func is a pointer to the event function to call, of type:

typedef unsigned armul_EventProc(void *handle)

handle is the void * handle to pass to the event function.

coreNotMemory

controls whether the event was scheduled using core cycles or memory
cycles:

• FALSE = memory

• TRUE = core.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-77

4.13 General purpose functions

The following are general purpose ARMulator functions. They include functions to
access processor properties, add counter descriptions and values, stop ARMulator and
execute code:

• ARMul_RaiseError

• ARMul_Time on page 4-79

• ARMul_Properties on page 4-79

• ARMul_CondCheckInstr on page 4-80

• ARMul_AddCounterDesc on page 4-81

• ARMul_AddCounterValue on page 4-82

• ARMul_HaltEmulation on page 4-83

• ARMul_EndCondition on page 4-83

• ARMul_DoProg on page 4-84

• ARMul_DoInstr on page 4-84.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.13.1 ARMul_RaiseError

Errors of type ARMul_Error are returned from a number of initialization and
installation functions. These errors should be passed through ARMul_RaiseError().
This is a printf-like function that formats the error message associated with an
ARMul_Error error code.

Syntax

ARMul_Error ARMul_RaiseError(ARMul_State *state,
 ARMul_Error errcode, ...)

where:

state is a pointer to the ARMulator state.

errcode is the error code for the error message to be formatted.

... are printf-style format specifiers of variadic type.

ARMulator Reference

4-78 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Return

The function returns the error code it was passed, after formatting the error message.

Example

This function is a printf-style variadic function, and the textual form can be a
printf-style format string. For example:

interf->handle = (model_state *)malloc(sizeof(model_state));
if (interf->handle == NULL)
 return ARMul_RaiseError(state, ARMulErr_OutOfMemory);

For example, the ARMulErr_MemTypeUnhandled error message, used by memory
models to reject an unrecognized interface type, is declared:

ERROR(ARMulErr_MemTypeUnhandled,
 "Memory model ’%s’ incompatible with bus interface.")

and called:

return ARMul_RaiseError(state,
 ARMulErr_MemTypeUnhandled,
 ModelName);

In this case, the debugger displays an error message such as:

Memory model ’Flat’ incompatible with bus interface.

Extending the error file

The file errors.h can be extended by adding more errors. However, new errors must
be added only at the end of the file. Entries are of the form:

ERROR(ARMulErr_OutOfMemory, "Out of memory.")

This declares an error message, ARMulErr_OutOfMemory, with the textual form:

 "Out of memory."

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-79

4.13.2 ARMul_Time

This function returns the number of memory cycles executed since system reset.

Syntax

unsigned long ARMul_Time(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the total number of cycles executed since system reset.

4.13.3 ARMul_Properties

This function returns the properties word associated with the processor being simulated.

This is a bitfield of properties, defined in armdefs.h.

Syntax

ARMword ARMul_Properties(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the properties word. This is a bitfield of properties, defined in
armdefs.h.

Example

if ((ARMul_Properties(state) & ARMul_HasMMU_Prop != 0)
{
 /* processor has an MMU */
 ...
}

ARMulator Reference

4-80 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.13.4 ARMul_CondCheckInstr

Given an instruction, the ARMul_CondCheckInstr() function returns TRUE if it
would execute given the current state of the PSR flags.

Syntax

unsigned ARMul_CondCheckInstr(ARMul_State *state, ARMword instr)

where:

state is a pointer to the ARMulator state.

instr is the instruction opcode to check.

Return

The function returns:

• TRUE if the instruction would execute

• FALSE if the instruction would not execute.

4.13.5 ARMul_AddToSwitch

A peripheral model must call ARMul_AddToSwitch to instruct the switch address
decoder to instantiate and install the peripheral.

When the switch model is initialized, it calls the memory initialization function of the
peripheral.

Syntax

ARMul_Error ARMul_AddToSwitch(ARMul_State *state,
 tag_t model, toolconf config)

where:

state is the ARMulator state pointer.

model is the name of the peripheral model to install.

config is the toolconf database for the peripheral model.

config must contain an entry for either Range or Mask, depending on the type of
address decoding used by switch, see Switch on page 4-105.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-81

4.13.6 ARMul_AddCounterDesc

The ARMul_AddCounterDesc() function adds new counters to $statistics.

Syntax

int ARMul_AddCounterDesc(ARMul_State *state,
 ARMword *arg1,
 ARMword *arg2,
 const char *name)

where:

state is a pointer to the ARMulator state.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

name is a string that names the statistic counter. The string must be less than 32
characters long.

Return

The function returns one of:

• RDIError_BufferFull

• RDIError_UnimplementedMessage.

Usage

When ARMulator receives an RDIRequestCycleDesc() call from the debugger, it
uses the UnkRDIInfoUpcall() (see Upcalls on page 4-53) to ask each module in turn
if it wishes to provide any statistics counters. Each module responds by calling
ARMul_AddCounterDesc() with the arguments passed to the
UnkRDIInfoUpcall().

All statistics counters must be either a 32-bit or 64-bit word, and be monotonically
increasing. That is, the statistic value must go up over time. This is a requirement
because of the way the debugger calculates $statistics_inc.

See the implementation in armflat.c for an example.

ARMulator Reference

4-82 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.13.7 ARMul_AddCounterValue

This function is called when the debugger requests the current statistics values.

Syntax

int ARMul_AddCounterValue(ARMul_State *state,
 ARMword *arg1,
 ARMword *arg2,
 bool is64,
 const ARMword *counter)

where:

state is a pointer to the ARMulator state.

arg1/arg2 are the arguments passed to the UnkRDIInfoUpcall().

is64 denotes whether the counter is a pair of 32-bit words making a 64-bit
counter (least significant word first), or a single 32-bit value. This
enables modules to provide a full 64-bit counter.

counter is the current value of the counter.

Return

The function must always return RDIError_UnimplementedMessage.

Usage

When ARMulator receives an RDICycles() call from the debugger, it uses the
UnkRDIInfoUpcall() to ask each module in turn to provide the counter values. Each
module responds by calling ARMul_AddCounterValue().

Note

It is essential that a module that calls ARMul_AddCounterDesc() when
RDIRequestCycleDesc() is called also calls ARMul_AddCounterValue() when
RDICycles() is called. It must also call both functions the same number of times and
in the same order.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-83

4.13.8 ARMul_HaltEmulation

This function stops simulator execution at the end of the current instruction, giving a
reason code.

Syntax

void ARMul_HaltEmulation(ARMul_State *state,
 unsigned end_condition)

where:

state is a pointer to the ARMulator state.

end_condition

is one of the RDIError error values defined in rdi_err.h. Not all of
these errors are valid. The debugger interprets end_condition and
issues a suitable message.

4.13.9 ARMul_EndCondition

This function returns the end_condition passed to ARMul_HaltEmulation().

Syntax

unsigned ARMul_EndCondition(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The end condition passed to ARMul_HaltEmulation().

ARMulator Reference

4-84 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.13.10 ARMul_DoProg

This function starts running the simulator at the current pc value. It is called from the
ARMulator RDI interface.

Syntax

ARMword ARMul_DoProg(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the value of pc on halting simulation.

4.13.11 ARMul_DoInstr

This function executes a single instruction. It is called from the ARMulator RDI
interface.

Syntax

ARMword ARMul_DoInstr(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns the value of pc on halting simulation.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-85

4.14 Accessing the debugger

This section describes the input, output, and RDI functions that you can use to access
the debugger.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

Several functions are provided to display messages in the host debugger. Under armsd,
these functions print messages to the console. Under AXD, ADW, or ADU they display
messages to the relevant window:

• ARMul_DebugPrint

• ARMul_ConsolePrint on page 4-86

• ARMul_PrettyPrint on page 4-86

• ARMul_DebugPause on page 4-87.

The RDI functions are:

• ARMul_RDILog on page 4-87

• ARMul_HostIf on page 4-88.

4.14.1 ARMul_DebugPrint

This function displays a message in the RDI logging window under AXD, ADW, or
ADU, or to the console under armsd.

Syntax

void ARMul_DebugPrint(ARMul_State *state, const char *format,
 ...)

where:

state is a pointer to the ARMulator state.

format is a printf-style formatted output string.

... are a variable number of parameters associated with format.

ARMulator Reference

4-86 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.14.2 ARMul_ConsolePrint

This function prints the text specified in the format string to the ARMulator console.
Under AXD, ADW, or ADU, the text appears in the console window.

Syntax

void ARMul_ConsolePrint(ARMul_State *state, const char *format,
 ...)

where:

state is a pointer to the ARMulator state.

format is a printf-style formatted output string.

... are a variable number of parameters associated with format.

Note

Use ARMul_PrettyPrint() to display startup messages.

4.14.3 ARMul_PrettyPrint

This function prints a string in the same way as ARMul_ConsolePrint(), but in
addition performs line-break checks so that wordwrap is avoided. It should be used for
displaying startup messages.

Syntax

void ARMul_PrettyPrint(ARMul_State *state, const char *format,
 ...)

where:

state is a pointer to the ARMulator state.

format is a printf-style formatted output string.

... are a variable number of parameters associated with format.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-87

4.14.4 ARMul_DebugPause

This function waits for the user to press any key.

Syntax

void ARMul_DebugPause(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

4.14.5 ARMul_RDILog

This function returns the value of the RDI logging level.

Syntax

ARMword ARMul_RDILog(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

ARMulator Reference

4-88 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.14.6 ARMul_HostIf

This function returns a pointer to a RDI_HostosInterface structure, defined in
rdi_hif.h. The structure includes pointers to RDI functions that enable a debug target
to send and receive textual information to and from a host.

Syntax

const RDI_HostosInterface *ARMul_HostIf(ARMul_State *state)

where:

state is a pointer to the ARMulator state.

Return

The function returns a pointer to the RDI_HostosInterface structure. Refer to
rdi_hif.h for the RDI_HostosInterface structure definition.

Usage

An operating system model can make use of this to:

• efficiently access the console window (under AXD, ADW, or ADU) or the
console (under armsd) without going through ARMul_ConsolePrint()

• receive user input.

The following input/output functions are included in RDI_HostosInterface:

void writec(RDI_Hif_HostosArg *arg, int c)

writes a single character to the console window under AXD, ADW, or
ADU, or to the console under armsd. This is used by
ARMul_ConsolePrint(), and by the simulation of SYS_WriteC in
angel.c.

int readc(RDI_Hif_HostosArg *arg, char const *buffer, int len)

reads a single character of input from the host debugger.

int write(RDI_Hif_HostosArg *arg, char const *buffer, int len)

writes a stream of data to the console window under AXD, ADW, or
ADU, or to the console under armsd.

char *gets(RDI_Hif_HostosArg *arg, char *buffer, int len)

reads a string from the host debugger.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-89

4.15 Tracer

This section describes the functions provided by the tracer module, tracer.c.

The default implementations of these functions can be changed by compiling
tracer.c with EXTERNAL_DISPATCH defined.

The formats of Trace_State and Trace_Packet are documented in tracer.h.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.15.1 Tracer_Open

This function is called when the tracer is initialized.

Syntax

unsigned Tracer_Open(Trace_State *ts)

Usage

The implementation in tracer.c opens the output file from this function, and writes a
header.

4.15.2 Tracer_Dispatch

This function is called on each traced event for every instruction, event, or memory
access.

Syntax

void Tracer_Dispatch(Trace_State *ts, Trace_Packet *packet)

Usage

In tracer.c, this function writes the packet to the trace file.

ARMulator Reference

4-90 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.15.3 Tracer_Close

This function is called at the end of tracing.

Syntax

void Tracer_Close(Trace_State *ts)

Usage

The file tracer.c uses this to close the trace file.

4.15.4 Tracer_Flush

This function is called when tracing is disabled.

Syntax

extern void Tracer_Flush(Trace_State *ts)

Usage

The file tracer.c uses this to flush output to the trace file.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-91

4.16 Events

ARMulator has a mechanism for broadcasting and handling events. These events
consist of an event number and a pair of words. The number identifies the event. The
semantics of the words depends on the event.

Note

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

The core ARMulator generates some example events, defined in armdefs.h. They are
divided into three groups:

• events from the ARM processor core, listed in Table 4-4 on page 4-92

• events from the MMU and cache (not on StrongARM-110), listed in Table 4-3
below

• events from the prefetch unit (ARM8-based processors only), listed in Table 4-5
on page 4-92.

These events can be logged in the trace file if tracing is enabled, and trace events is
turned on. Additional modules can provide new event types that will be handled in the
same way.

You can catch events by installing an event upcall (see EventUpcall on page 4-64). You
can raise an event by calling ARMul_RaiseEvent() (see ARMul_RaiseEvent on
page 4-93).

 Table 4-3 Events from the MMU and cache (not on StrongARM-110)

Event name Word 1 Word 2 Event number

MMUEvent_DLineFetch Miss address Victim address 0x10001

MMUEvent_ILineFetch Miss address Victim address 0x10002

MMUEvent_WBStall Physical address of write Number of words in write buffer 0x10003

MMUEvent_DTLBWalk Miss address Victim address 0x10004

MMUEvent_ITLBWalk Miss address Victim address 0x10005

MMUEvent_LineWB Miss address Victim address 0x10006

MMUEvent_DCacheStall Address causing stall Address fetching 0x10007

MMUEvent_ICacheStall Address causing stall Address fetching 0x10008

ARMulator Reference

4-92 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

 Table 4-4 Events from the ARM processor core

Event name Word 1 Word 2
Event
number

CoreEvent_Reset - - 0x1

CoreEvent_UndefinedInstr pc value Instruction 0x2

CoreEvent_SWI pc value SWI number 0x3

CoreEvent_PrefetchAbort pc value - 0x4

CoreEvent_DataAbort pc value Aborting address 0x5

CoreEvent_AddrExceptn pc value Aborting address 0x6

CoreEvent_IRQ pc value - 0x7

CoreEvent_FIQ pc value - 0x8

CoreEvent_Breakpoint pc value RDI_PointHandle 0x9

CoreEvent_Watchpoint pc value Watch address 0xa

CoreEvent_IRQSpotted pc value - 0x17

CoreEvent_FIQSpotted pc value - 0x18

CoreEvent_ModeChange pc value New mode 0x19

CoreEvent_Dependency pc value Interlock register
bitmask

0x20

 Table 4-5 Events from the prefetch unit (ARM810 only)

Event name Word 1 Word 2 Event number

PUEvent_Full Next pc value - 0x20001

PUEvent_Mispredict Address of branch - 0x20002

PUEvent_Empty Next pc value - 0x20003

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-93

4.16.1 ARMul_RaiseEvent

This function invokes events. The events are passed to the user-supplied event upcalls.

Syntax

void ARMul_RaiseEvent(ARMul_State *state, unsigned int event,
 ARMword word1, ARMword word2)

where:

state is a pointer to the ARMulator state.

event is one of the event numbers defined in Table 4-3 on page 4-91, and Table
4-4 on page 4-92 and Table 4-5 on page 4-92.

word1 is the first word of the event (see the Tables above).

word2 is the second word of the event (see the Tables above).

ARMulator Reference

4-94 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.17 Map files

The type and speed of memory in a simulated system is detailed in a map file. A map
file defines the number of regions of attached memory, and for each region:

• the address range to which that region is mapped

• the data bus width in bytes

• the access time for the memory region.

armsd expects the map file to be called armsd.map, in the current working directory.

AXD and ADW/ADU accept map files of any name, provided that they have the
extension .map. See ADS Debuggers Guide for details of how to use a particular map
file in a debugging session.

To calculate the number of wait states for each possible type of memory access, the
ARMulator uses the access times supplied in the map file, and the clock frequency from
the debugger (see ADS Debuggers Guide).

Note

A memory map file defines the characteristics of the memory areas defined in
armcul.cnf (see armul.cnf, the ARMulator configuration file on page 4-98). A .map
file must define rw areas that are at least as large as those specified for the heap and
stack in armul.cnf, and at the same locations. If this is not the case, Data Aborts are
likely to occur during execution.

This section does not apply to ARM10 systems (see Basic ARM ten system
configuration trace files on page 4-114).

4.17.1 Format of a map file

The format of each line is:

start size name width access{*} read-times write-times

where:

start is the start address of the memory region in hexadecimal, for example
80000.

size is the size of the memory region in hexadecimal, for example, 4000.

name is a single word that you can use to identify the memory region when
memory access statistics are displayed. You can use any name. To ease
readability of the memory access statistics, give a descriptive name such
as SRAM, DRAM, or EPROM.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-95

width is the width of the data bus in bytes (that is, 1 for an 8-bit bus, 2 for a
16-bit bus, or 4 for a 32-bit bus).

access describes the type of accesses that may be performed on this region of
memory:

r for read-only.

w for write-only.

rw for read-write.

- for no access. Any access causes a Data or Prefetch Abort.

An asterisk (*) may be appended to access to describe a Thumb-based
system that uses a 32-bit data bus to memory, but which has a 16-bit latch
to latch the upper 16 bits of data, so that a subsequent 16-bit sequential
access can be fetched directly out of the latch.

read-times

describes the nonsequential and sequential read times in nanoseconds.
These should be entered as the nonsequential read access time followed
by a slash (/), followed by the sequential read access time. Omitting the
slash and using only one figure indicates that the nonsequential and
sequential access times are the same.

Note

For accurate modelling of real devices, you may need to add a signal
propagation delay (20 to 30ns) to the read and write times quoted for a
memory chip.

write-times

describes the nonsequential and sequential write times. The format is the
same as that given for read times.

The following examples assume a clock speed of 20MHz.

Example 1

0 80000000 RAM 4 rw 135/85 135/85

This describes a system with a single continuous section of RAM from 0 to
0x7fffffff with a 32-bit data bus, read-write access, nonsequential access time of
135ns, and sequential access time of 85ns.

ARMulator Reference

4-96 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Example 2

This example describes a typical embedded system with 32KB of on-chip memory,
16-bit ROM and 32KB of external DRAM:

00000000 8000 SRAM 4 rw 1/1 1/1
00008000 8000 ROM 2 r 100/100 100/100
00010000 8000 DRAM 2 rw 150/100 150/100
7fff8000 8000 Stack 2 rw 150/100 150/100

There are four regions of memory:

• A fast region from 0 to 0x7fff with a 32-bit data bus. This is labelled SRAM.

• A slower region from 0x8000 to 0xffff with a 16-bit data bus. This is labelled
ROM and contains the image code. It is marked as read-only.

• A region of RAM from 0x10000 to 0x17fff that is used for image data.

• A region of RAM from 0x7fff8000 to 0x7fffffff that is used for stack data.
The stack pointer is initialized to 0x80000000.

In the final hardware, the two distinct regions of the external DRAM would be
combined. This does not make any difference to the accuracy of the simulation.

To represent fast (no wait state) memory, the SRAM region is given access times of 1ns.
In effect, this means that each access takes 1 clock cycle, because ARMulator rounds
this up to the nearest clock cycle. However, specifying it as 1ns allows the same map
file to be used for a number of simulations with differing clock speeds.

Note

To ensure accurate simulations, make sure that all areas of memory likely to be accessed
by the image you are simulating are described in the memory map.

To ensure that you have described all areas of memory that you think the image should
access, you can define a single memory region that covers the entire address range as
the last line of the map file. For example, you could add the following line to the above
description:

00000000 80000000 Dummy 4 - 1/1 1/1

You can then detect if any reads or writes are occurring outside the regions of memory
you expect using the print $memory_statistics command.

Note

A dummy memory region must be the last entry in a map file.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-97

Reading the memory statistics

To read the memory statistics use the command:

print $memory_statistics

This reports the statistics in the following form:

Example 4-2

address name W acc R(N/S) W(N/S) reads(N/S) writes(N/S) time (ns)
00000000 Dummy 4 - 1/1 1/1 0/0 0/0 0
7FFF8000 Stack 2 rw 150/100 150/100 9290/10590 4542/11688 8538300
00010000 DRAM 2 rw 150/100 150/100 18817/18 11031/140 8915800
00008000 ROM 2 r 100/100 100/100 48638/176292 0/0 44817000
00000000 SRAM 4 rw 1/1 1/1 0/0 0/0 0

print $memstats is a short version of print $memory_statistics.

ARMulator Reference

4-98 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.18 armul.cnf, the ARMulator configuration file

armul.cnf is a ToolConf configuration file. See ToolConf on page 4-108.

Depending on your system, armul.cnf may be located in:

• Install_directory\bin

• Install_directory/solaris/bin

• Install_directory/hpux/bin.

If you are using armsd on a UNIX system, you can have a local copy of armul.cnf in
your current working directory. If it finds a copy of armul.cnf in your current working
directory, ARMulator uses it in preference to the copy in the above location.

armul.cnf has the following regions:

• armul.cnf header on page 4-100

• Processors on page 4-101

• Memories on page 4-104

• Coprocessors on page 4-106

• Early models on page 4-106

• Late models on page 4-107.

This is the order of these regions in armul.cnf as supplied. The order is not important.

armul.cnf is not used by BATS (see Basic ARM ten system configuration trace files
on page 4-114).

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-99

4.18.1 Predefined tags

Before reading armul.cnf, ARMulator creates several tags itself, based on the settings
you give to the debugger. These are given in Table 4-6. Preprocessing directives in
armul.cnf use these tags to control the configuration.

 Table 4-6 Tags predefined by ARMulator

Tag Description

RDI_* A tag starting RDI_ is created for each simulator in the DLL. For
example, RDI_BASIC (the ARM6, ARM7, ARM8 simulator) and
RDI_STRONG (the StrongARM simulator).

MEMORY_* A tag starting MEMORY_ is created for each memory model
declared in models.h. For example, MEMORY_Flat.

COPROCESSOR_* A tag starting COPROCESSOR_ is created for each coprocessor
model declared in models.h. For example,
COPROCESSOR_Validate.

OSMODEL_* A tag starting OSMODEL_ is created for each operating system
model declared in models.h. For example, OSMODEL_Angel.

MODEL_* A tag starting MODEL_ is created for each basic model. For
example, MODEL_Profiler.

CPUSpeed Set to the speed set in the configuration window of AXD, ADU or
ADW, or in the -clock command line option for armsd. For
example, CPUSpeed=30MHz.

MCLK and FCLK Set to the same value as CPUSpeed, if that value is not zero. Not
set if CPUSpeed is zero.

ByteSex Set to L or B if a bytesex is specified from the debugger. Not set
otherwise.

FPE Set to True or False from the debugger.

MemConfigToLoad Set to a .map filename, if one is specified from the debugger.

UseMapFile Set to True is a mapfile is to be loaded, False if not.

ARMulator Reference

4-100 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.18.2 armul.cnf header

The header is at the root level in armul.cnf. It contains flags used by preprocessing
directives in the file. This allows changes in configuration which affect several
locations in the file to be controlled from a single location.

All the flags are Boolean (see Boolean flags in a ToolConf database on page 4-111).
They are listed in Table 4-7.

 Table 4-7 Flags defined in the armul.cnf header

Flag Description

Verbose Models check the Verbose flag to decide whether to report their full
configuration during initialization. If you write your own models you should also
check this, to ease debugging.

TraceMemory The TraceMemory flag controls whether memory accesses are traced by the
Tracer model.

Validate Validate controls whether ARMulator initializes an ARM validation system.
An ARM validation system is a memory or coprocessor model which can generate
exceptions and interrupts. It is used to validate some aspects of the ARMulator
model.

WatchPointsEnabled The ARMulator can support watchpoints, but it runs much more slowly when it is
doing so. The WatchPointsEnabled flag allows you to make this choice. Set
it to False when benchmarking, and True when debugging.

UsePageTables The PageTables model writes pagetables to memory, and initializes the cache and
MMU on cached processors. You can enable or disable this using the
UsePageTables flag.

TimerEnabled TimerEnabled controls whether the timer model is available. See Timer on
page 2-27.

IntCEnabled IntCEnabled controls whether the interrupt controller model is available. See
Interrupt controller on page 2-27.

WDogEnabled WDogEnabled controls whether the watchdog model is available. See Watchdog
on page 2-28.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-101

4.18.3 Processors

The processors region is a child ToolConf database (see ToolConf on page 4-108). It has
a full list of processors supported by the ARMulator. This list is the basis of the list of
processors in AXD, ADU and ADW, and the list of accepted arguments for the
-processor option of armsd.

You can add a variant processor to this list, for example to include a particular memory
model in the definition.

Default specifies the processor to use if no other processor is specified. Each other
entry in the Processors region is the name of a processor.

Example

{ Processors

{ ARM7TDM
Processor=ARM7TDM
Core=ARM7
ARMulator=BASIC
Architecture=4T
ARM7TDMI:Processor=ARM7TDMI
}

ARM7TDMI=ARM7TDM
}

This declares two processors, ARM7TDM and ARM7TDMI.

ARM7TDM has a child of its own. Inside this child are the options for an ARM7TDM. For
example, its name (Processor) is ARM7TDM, and the Core it uses is ARM7. It also
contains the entry ARM7TDMI:Processor=ARM7TDMI. This declares a child of
ARM7TDM called ARM7TDMI. This child inherits all the features of ARM7TDM except the
processor name.

After the child, ARM7TDMI=ARM7TDM declares the ARM7TDMI processor. It specifies that
it is based on the ARM7TDM.

ARMulator Reference

4-102 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Finding the configuration for a selected processor

ARMulator uses the following algorithm to find a configuration for a selected
processor:

1. Set the current region to be Processors.

2. Find the selected processor in the current region.

3. If the tag has a child, that child is the required configuration.

4. Otherwise, if the tag has a value:

a. Look up the value in the current region.

b. If the tag has a child, set the current region to be that child, and return to
step 2.

5. Otherwise the configuration is not found, and an error is reported.

For the example ARM7TDMI:

1. Find Processors.

2. Look up ARM7TDMI in Processors. This finds ARM7TDMI=ARM7TDM.

3. This tag has no child.

4. The tag has value ARM7TDM so:

a. Look up ARM7TDM in Processors. This finds { ARM7TDM.

b. Return to step 2 with resulting child (from { to }).

5. (Step 2) Look up ARM7TDMI in this child.

6. (Step 3) ARM7TDMI has a child, Processor=ARM7TDMI. This is the required
configuration. All other features of the configuration are inherited from the
parent, ARM7TDM.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-103

Adding a new processor model

Suppose you have created a memory model called MyASIC, designed to be combined
with an ARM7TDMI processor core to make a new microcontroller called ARM7TASIC.
To allow this to be selected from AXD, ADW, ADU or armsd, edit the appropriate part
of armul.cnf:

{ ARM7TDM
Processor=ARM7TDM
Core=ARM7
ARMulator=BASIC
Architecture=4T
ARM7TDMI:Processor=ARM7TDMI
ARM7TASIC:Processor=ARM7TASIC
ARM7TASIC:Memory=MyASIC
}

ARM7TDMI=ARM7TDM
ARM7TASIC=ARM7TDM

The three lines containing ARM7TASIC have been added:

• ARM7TASIC:Processor=ARM7TASIC

This line is added inside the ARM7TDM child. The ARM7TASIC tag has a child, that
declares the new processor.

• ARM7TASIC:Memory=MyASIC

This line is also inside the ARM7TDM child. It extends the ARM7TASIC child with
a declaration of the memory model used by ARM7TASIC. (Usually ARMulator
uses whatever memory model is specified in the Memories region.)

• ARM7TASIC=ARM7TDM

This line is outside the ARM7TDM region, and tells ARMulator to look in ARM7TDM
for ARM7TASIC.

ARMulator Reference

4-104 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.18.4 Memories

The memory system inside ARMulator is hierarchical. This allows cache models, bus
tracers and so on to be inserted in the simulated system. The hierarchy is controlled by
armul.cnf.

Each processor configuration has a Memory tag. This specifies the top level of the
memory system. The same algorithm is used to find a memory model configuration as
is used to find a processor configuration (see Finding the configuration for a selected
processor on page 4-102).

Example

{ Memories

{ MMUlator

{ ARM700
ARM710:NoCoprocessorInterface
ARM710:ChipNumber=0x710
}

ARM710=ARM700

Memory=Default
}

ARM710=MMUulator
}

Following the algorithm given on page 4-102:

1. Find Memories.

2. Look up ARM710 in Memories.

3. Tag has no child.

4. Tag has value MMUlator, so:

a. Look up MMulator in Memories.

b. Return to step 2 with child.

5. (Step 2) Look up ARM710 in Memories:MMUlator.

6. (Step 3) Tag has no child.

7. (Step 4) Tag has value ARM700 so:

a. Look up ARM700 in Memories:MMUlator.

b. Return to step 2 with child.

8. (Step 2) Look up ARM710 in Memories:MMUlator:ARM700.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-105

9. (Step 3) This has a child. This is the required configuration.

So ARM710 is derived from ARM700 (generic cached ARM7). ARM700 in turn is derived
from MMUlator (generic cached ARM).

When the MMUlator cache model is initialized it looks for the next level down in the
memory hierarchy. It looks up the Memories tag in the ARM710 configuration, and finds
Default by searching back up the tree to the MMUlator region.

4.18.5 Switch

The switch module is a veneer between the processor model and the memory models,
including peripheral models. It has an entry in the Memories region. This contains the
configuration specifying how switch decodes accesses to main memory.

Peripheral models add their own configuration details dynamically using
ARMul_AddToSwitch. One of two types of address decoding can be used:

Range This specifies that the model it to be used if the address lies within the
range specified, including both endpoints.

Mask This specifies a mask and a value. The model is used if the address AND
the mask equals the value.

In the example below, the mask and value specified have the same effect as the range
specified.

Example

#if MEMORY_Switch
{ Switch
;; The switch memory model multiplexes peripheral models with a
;; memory model

;;; Specify Range or Mask to use range or mask decoding.
;; Decode for the RAM (Memory Model)
; Use RAM from 0->0x7fffffff
Range=0x0,0x7fffffff

; Use RAM for (address & 0x80000000) == 0
;Mask=0x80000000,0x0
}
#endif

ARMulator Reference

4-106 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.18.6 Coprocessors

The Coprocessors region contains two types of entry:

• configurations for all coprocessor models that need them, for example:

{ Coprocessors
DummyMMU:ChipID=0x12345678
}

• a list of assignments of coprocessor numbers to coprocessor models, for example:

Coprocessor[15]=DummyMMU

which associates the DummyMMU coprocessor model with coprocessor number 15.

The ARM supports 16 coprocessors, numbered 0 to 15. Entries outside this range are
ignored.

4.18.7 Early models

The EarlyModels region contains configurations for early basic models.

Early models are initialized before memory initialization. Other models are initialized
after memory initialization (see Basic model interface on page 4-4).

In all other respects early models conform to the description of late models (see Late
models on page 4-107).

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-107

4.18.8 Late models

The Models region contains configurations for late basic models. Late basic models
attach themselves to call-backs, write things to memory and so on. They do not provide
functions to the ARMulator.

ARMulator goes through the list of models declared to it, and initializes all those with
entries in the Models region.

For example, the profiler module configuration is contained in the Models region:

{ Models

{ Profiler
Type=Instruction
}

}

This tells ARMulator to start the model called Profiler, which initializes itself to profile
instructions.

Disabling models

A model is only started if a configuration for it is found in the Models region. You can
disable a model by removing its configuration from the region.

For example, the Pagetables model is controlled in this way. In the Header region,
there is an entry:

UsePageTables=True

and in Models:

{ Models

#if UsePageTables==True
{ PageTables
MMU=Yes
AlignFaults=No
Cache=Yes
}
#endif

}

If you set UsePageTables to False in the header, the #if UsePageTables==True
directive fails, no configuration for PageTables is found, and the model is not enabled.

ARMulator Reference

4-108 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.19 ToolConf

ToolConf is a module within ARMulator. A ToolConf file is a tree-structured database
consisting of tag and value pairs. Tags and values are strings, and are usually
case-insensitive.

You can find a value associated with a tag from a ToolConf database, or add or change
a value. We recommend you to take a copy of armul.cnf before modifying it. If you
use a different name for each copy, you can select which copy to use (see Configuring
ARMulator to use the example on page 3-15).

If a tag is given a value more than once in a database, the first value is used.

ToolConf is not used by BATS (see Basic ARM ten system configuration trace files on
page 4-114).

4.19.1 File format

The following are typical ToolConf database lines:

TagA=ValueA
TagA=NewValue
Othertag
Othertag=Othervalue
;; Lines starting with ; (semicolon) are comments.
; Tag=Value

The first line creates a tag in the ToolConf called TagA, with value ValueA.

The second line has no effect, as TagA already has a value.

The third line creates a tag called Othertag, with no value.

The fourth line gives the value Othervalue to Othertag.

There must be no whitespace at the beginning of database lines, in tags, in values, or
between tags or values and the = symbol.

Conventionally, ordinary comments start with two semicolons. Lines starting with one
semicolon are usually commented-out lines. You can comment out a line to disable it,
or uncomment a commented-out line to enable it.

A comment must be on a line by itself.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-109

Tree structure

Each tag can have another ToolConf database associated with it, called its child. When
a tag lookup is performed on a child, if the tag is not found in the child, the search
continues in the parent, and if necessary in the parent’s parent and so on until the tag is
found.

This means that the child only needs to include tags whose values are different from
those of the same tag in the parent.

If child databases are specified more than once for the same parent, the child databases
are merged.

Specifying children

There are two ways of specifying children in a ToolConf database.

One is more suited to specifying large children:

{ TagP=ValueP
TagC1=ValueC1
TagC2=ValueC2
}

This creates a tag called TagP, with the value ValueP, and a child database. Two tags
are given values in the child.

The other is more suited to specifying small children:

TagP:TagC=ValueC

This creates a tag called TagP, with no value. TagP has a child in which one tag is
created, TagC, with value ValueC. It is equivalent to:

{ TagP
TagC=ValueC
}

ARMulator Reference

4-110 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Conditional expressions

The full #if...#elif...#else...#endif syntax is supported. You can use this to
skip regions of a ToolConf database. Expressions use tags from the file, for example,
the C preprocessor sequence:

#define Control True

#if defined(Control) && Control==True
#define controlIsTrue Yes
#endif

maps to the ToolConf sequence:

Control=True

#if Control && Control=True
ControlIsTrue=Yes
#endif

A condition is evaluated from left to right, on the contents of the configuration at that
point. Table 4-8 shows the operators that can be used in ToolConf conditional
expressions.

File inclusion

You can use the #include directive to include one ToolConf file in another. The
directive is ignored if it is in a region which is being skipped under control of a
conditional expression.

 Table 4-8 Operators in ToolConf preprocessor expressions

Operator Example Description

none Tag Test for existence of tag definition

== Tag==Value Case-insensitive string equality test

!= Tag!=Value Case-insensitive string inequality test

(...) (Tag==Value) Grouping

&& TagA==ValueA && TagB==ValueB Boolean AND

|| TagA==ValueA || TagB==ValueB Boolean OR

! !(Tag==Value) Boolean NOT

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-111

4.19.2 Boolean flags in a ToolConf database

Table 4-9 shows the full set of permissible values for Boolean flags. The strings are
case-insensitive.

4.19.3 SI units in a ToolConf database

Some values may be specified using SI (Système Internationale) units, for example:

ClockSpeed=10MHz
MemorySize=2Gb

The scaling factor is set by the prefix to the unit. ARMulator only accepts k, M, or G
prefixes for kilo, mega, and giga. These correspond to scalings of 103, 106, and 109, or
210, 220, and 230. ARMulator decides which scaling to use according to context.

 Table 4-9 Boolean values

True False

True False

On Off

High Low

Hi Lo

1 0

T F

ARMulator Reference

4-112 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.19.4 ToolConf_Lookup

This function performs a lookup on a specified tag in the armul.cnf database. If the
tag is found, its associated value is returned. Otherwise, NULL is returned.

Syntax

const char *ToolConf_Lookup(toolconf hashv, tag_t tag)

where:

hashv is the armul.cnf database to perform the lookup on.

tag is the tag to search for in the database. The tag is case-dependent.

Return

The function returns:

• a const pointer to the tag value, if the search is successful

• NULL, if the search is not successful.

Example

const char *option = ToolConf_Lookup(db, ARMulCnf_Size);

/* ARMulCnf_Size is defined in armcnf.h */

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-113

4.19.5 ToolConf_Cmp

This function performs a case-insensitive comparison of two ToolConf database tag
values.

Syntax

int ToolConf_Cmp(const char *s1, const char *s2)

where:

s1 is a pointer to the first string value to compare.

s2 is a pointer to the second string value to compare.

Return

The function returns:

• 1, if the strings are identical

• 0, if the strings are different.

Example

if (ToolConf_Cmp(option, "8192"))

ARMulator Reference

4-114 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.20 Basic ARM ten system configuration trace files

Configuration trace (CTR) files describe the configurations of the systems that the
Basic ARM Ten System (BATS) can model. They describe which components are used
by the system and how they are interconnected. BATS is quite distinct from other
ARMulator models.

You must create a new CTR file if you need to model a system different from the models
supplied. We recommend that you copy one of the supplied files and edit the copy. CTR
files are in Install_directory\bin, and have .ctr file extensions.

The sections of a configuration file must be in the order given here.

Any line starting with a # symbol is a comment. You can put comment lines anywhere
in a CTR file.

You can also append a comment to a line using the # symbol. The comment ends at the
end of the line. We recommend that you do not do this often, because most CTR lines
are long.

4.20.1 Setting the time units

The first section in a CTR file sets a fundamental time unit. It has a single line.

Syntax

TimeUnitsPerNanosecond "n"

where:

n is an integer in decimal notation.

Usage

The debugger system clock counts simulated time. CTR files specify the time required
for each kind of cycle in multiples of the fundamental time unit. The default value of n
is 100. This makes the fundamental time unit 10ps.

If you change n, it is your responsibility to ensure that times counted by the debugger
system clock are meaningful (see System time and wait states on page 4-120).

4.20.2 Opening module classes

The second section in a CTR file is the Open Classes section. It has a list of the module
classes used. You must not edit this section.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-115

4.20.3 Creating instances

The third section in a CTR file is the Create Instances section. It has subsections to
create each instance of each module.

4.20.4 The processor instance

This is a subsection in the Create Instances section of the CTR file. You can edit the
period of the MCLK signal, the addresses of the stack and heap, and whether
semihosting is enabled or disabled.

Syntax

CreateInstance "armv5" "processor"
SetParameters "processor" 6
+ "MCLK_PERIOD" "INT32" "period" "armv5"
+ "HEAP_BASE" "HEX32" "0xhhhhhhhh" "armv5"
+ "HEAP_LIMIT" "HEX32" "0xhhhhhhhh" "armv5"
+ "STACK_BASE" "HEX32" "0xhhhhhhhh" "armv5"
+ "STACK_LIMIT" "HEX32" "0xhhhhhhhh" "armv5"
+ "SEMIHOSTING_ENABLED" "BOOLEAN" "bool" "armv5"

where:

period is the period of the MCLK signal applied to the armv5 core, in
fundamental time units (see Setting the time units on page 4-114).

0xhhhhhhhh are hexadecimal memory addresses.

bool may be either TRUE or FALSE.

Entries must be separated by at least one whitespace character.

Example

CreateInstance "armv5" "ARM10TDMI"
SetParameters "ARM10TDMI" 6
+ "MCLK_PERIOD" "INT32" "5000" "armv5"
+ "HEAP_BASE" "HEX32" "0x30000000" "armv5"
+ "HEAP_LIMIT" "HEX32" "0x70000000" "armv5"
+ "STACK_BASE" "HEX32" "0x80000000" "armv5"
+ "STACK_LIMIT" "HEX32" "0x70000000" "armv5"
+ "SEMIHOSTING_ENABLED" "BOOLEAN" "TRUE" "armv5"

ARMulator Reference

4-116 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.20.5 The AMBA instance

This is a subsection in the Create Instances section of the CTR file.

The amba switch module models the AMBA bus.

It has an arbiter that selects which bus master should drive the bus at any time. It also
has a decoder that decides which memory module, or peripheral module, should receive
each transaction (see The AMBA memory map on page 4-117 and The reference
peripherals instance on page 4-119).

The number of waits required by each memory module is configured in the AMBA
module instantiation, not in the memory module instantiations. This is because it is
AMBA that applies the waits (see System time and wait states on page 4-120).

Syntax

CreateInstance "amba" "AMBA1"
SetParameters "AMBA1" 2
+ "BCLK_PERIOD" "INT32" "period" "amba"
+ "DEFAULT_GRANT_BUS_MASTER" "INT32" "b" "amba"

followed by a memory map. This is described in The AMBA memory map on
page 4-117.

where:

period is the period of the BCLK signal applied to the amba bus. This must be
the same as the MCLK signal applied to the processor core.

b is the number of the BUS_MASTERS port linked to the default grant bus
master. On reset, the arbiter grants control of the bus to the default grant
bus master.

Entries must be separated by at least one whitespace character.

Example

CreateInstance "amba" "AMBA1"
SetParameters "AMBA1" 2
+ "BCLK_PERIOD" "INT32" "2000" "amba"
+ "DEFAULT_GRANT_BUS_MASTER" "INT32" "0" "amba"

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-117

4.20.6 The AMBA memory map

The amba module instantiation in the Create Instances section of the CTR file includes
a memory map. You can edit this to model the memory in your system.

Syntax

SetTable "ARM10T" "MEMORY_MAP" 6 n

followed by n lines of memory map of the following format:

+ "0xhhhhhhhh" "0xhhhhhhhh" "apply_waits" "n" "s" "port"

where:

0xhhhhhhhh are hexadecimal memory addresses. These are used by the
decoder to route transactions to the appropriate ports.

Note

If your simulated system has reference peripherals, you must
locate them at 0x0a000000 to 0x0affffff.

apply_waits is either TRUE or FALSE. Set apply_waits TRUE for accurate
benchmarking, FALSE for faster debugging in single processor
systems.

n is the number of BCLK cycle waits required for a nonsequential
access to the memory linked to this port. No waits are applied if
apply_waits is FALSE.

s is the number of BCLK cycle waits required for a sequential
access to the memory linked to this port. No waits are applied if
apply_waits is FALSE.

port is the port number. These must run consecutively from 0.

Entries must be separated by at least one whitespace character.

Example

SetTable "AMBA1" "MEMORY_MAP" 6 4
+ "0x00000000" "0x07ffffff" "TRUE" "5" "5" "0"
+ "0x0a000000" "0x0affffff" "FALSE" "0" "0" "1" # Peripherals
+ "0x10000000" "0x7fffffff" "TRUE" "5" "5" "2"
+ "0x80000000" "0xffffffff" "TRUE" "5" "5" "3"

ARMulator Reference

4-118 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.20.7 Memory instances

For each instance of the virtmem memory module, there must be a subsection in the
Create Instances section of the CTR file.

Syntax

CreateInstance "virtmem" "instancename"
SetParameters "instancename" 0

where:

instancename is the name of this instance of the virtmem memory module. It
has values like mem1, mem2, or mem3 in the supplied CTR files.

Entries must be separated by at least one whitespace character.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-119

4.20.8 The reference peripherals instance

This is a subsection in the Create Instances section of the ARM1020T_PERIP CTR file.

You can alter which interrupts are initially enabled.

Syntax

CreateInstance "mperf" "mperf0"
SetParameters "mperf0" 2
+ "INITIAL_FIQENABLE" "INT32" "fiq" "mperf"
+ "INITIAL_IRQENABLE" "INT32" "irq" "mperf"

where:

fiq is an integer. When BATS is initialized, the value of fiq is written to the
FIQEnable register, see Interrupt controller on page 4-121.

irq is an integer. When BATS is initialized, the value of irq is written to the
IRQEnable register, see Interrupt controller on page 4-121.

Entries must be separated by at least one whitespace character.

The parameter entries are optional, see examples below. The default values are those
shown in the first example. The effect of these values is that inputs FIQ0 and IRQ6 are
enabled. IRQ6 is the lowest-numbered external interrupt, see Interrupt controller
defined bits on page 4-122.

Examples

CreateInstance "mperf" "mperf0"
SetParameters "mperf0" 2
+ "INITIAL_FIQENABLE" "INT32" "1" "mperf"
+ "INITIAL_IRQENABLE" "INT32" "64" "mperf"

CreateInstance "mperf" "mperf0"
SetParameters "mperf0" 1
+ "INITIAL_IRQENABLE" "INT32" "64" "mperf"

CreateInstance "mperf" "mperf0"
SetParameters "mperf0" 0

ARMulator Reference

4-120 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

4.20.9 Connecting module instances

The fourth section in a CTR file is the Connect Module Instances section. It has a
subsection for each instance of each module. The subsection specifies the links
connected to the instance. You must not edit this section.

4.20.10 Closing instantiations

The final section in a CTR file is the Finalize Instantiations section. It closes all the
instantiations. You must not edit this section.

4.20.11 System time and wait states

The default fundamental time unit is 10ps (see Setting the time units on page 4-114).

MCLK and BCLK periods are defined as multiples of the fundamental time unit. See:

• The processor instance on page 4-115

• The AMBA instance on page 4-116.

Memory waits are defined as multiples of the BLCK period. See The AMBA memory
map on page 4-117.

Only the system clock is affected by changes in fundamental time unit or wait state
configuration. This means that these configuration details are important for
benchmarking but not for debugging.

Note

MCLK is not gated when a processor core is busy waited by coprocessor 15, and the
processor core module counts the busy waited cycles.

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-121

4.21 Reference peripherals

Two reference peripherals are detailed here:

• Interrupt controller, below

• Timer on page 4-123.

BATS has no other reference peripherals.

4.21.1 Interrupt controller

The base address of the interrupt controller, IntBase, is:

• 0x0a000000 in BATS

• configurable in other ARMulator models, see Interrupt controller on page 2-27.

Table 4-10 shows the location of individual registers.

 Table 4-10 Interrupt controller memory map

Address Read Write

IntBase IRQStatus Reserved

IntBase + 004 IRQRawStatus Reserved

IntBase + 008 IRQEnable IRQEnableSet

IntBase + 00c Reserved IRQEnableClear

IntBase + 010 Reserved IRQSoft

IntBase + 100 FIQStatus Reserved

IntBase + 104 FIQRawStatus Reserved

IntBase + 108 FIQEnable FIQEnableSet

IntBase + 10c Reserved FIQEnableClear

ARMulator Reference

4-122 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Interrupt controller defined bits

The FIQ interrupt controller is one bit wide. It is located on bit 0.

Table 4-11 gives details of the interrupt sources associated with bits 1 to 5 in the IRQ
interrupt controller registers. You can use bit 0 for a duplicate FIQ input.

Note

Timer 1 and Timer 2 may be configured to use different bits in the IRQ controller
registers, see Timer on page 2-27.

This does not apply to BATS, where they must use bits 4 and 5 as shown in Table 4-11.

 Table 4-11 Interrupt sources

Bit Interrupt source

0 FIQ source

1 Programmed interrupt

2 Communications channel Rx

3 Communications channel Tx

4 Timer 1

5 Timer 2

ARMulator Reference

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 4-123

4.21.2 Timer

The base address of the timer, TimerBase, is:

• 0x0A800000 in BATS

• configurable in other ARMulator models, see Timer on page 2-27.

See Table 4-12 for the location of individual registers.

Timer load registers

Write a value to one of these registers to set the initial value of the corresponding timer
counter. You must write the top 16 bits as zeroes.

If the timer is in periodic mode, this value is also reloaded to the timer counter when the
counter reaches zero.

If you read from this register, the bottom 16 bits return the value that you wrote. The
top 16 bits are undefined.

Timer value registers

Timer value registers are read-only. The bottom 16 bits give the current value of the
timer counter. The top 16 bits are undefined.

 Table 4-12 Timer memory map

Address Read Write

TimerBase Timer1Load Timer1Load

TimerBase + 04 Timer1Value Reserved

TimerBase + 08 Timer1Control Timer1Control

TimerBase + 0c Reserved Timer1Clear

TimerBase + 10 Reserved Reserved

TimerBase + 20 Timer2Load Timer2Load

TimerBase + 24 Timer2Value Reserved

TimerBase + 28 Timer2Control Timer2Control

TimerBase + 2c Reserved Timer2Clear

TimerBase + 30 Reserved Reserved

ARMulator Reference

4-124 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Timer clear registers

Timer clear registers are write-only. Writing to one of them clears an interrupt generated
by the corresponding timer.

Timer control registers

See Table 4-14 and Table 4-13 for details of timer register bits. Only bits 7, 6, 3, and 2
are used. You must write all others as zeroes.

The counter counts downwards. It counts BCLK cycles, or BCLK cycles divided by
16 or 256. Bits 2 and 3 define the prescaling applied to the clock.

In free-running mode, the timer counter overflows when it reaches zero, and continues
to count down from 0xffff.

In periodic mode, the timer generates an interrupt when the counter reaches zero. It then
reloads the value from the load register and continues to count down from this value.

 Table 4-13 Clock prescaling using bits 2 and 3

Bit
3

Bit
2

Clock
divided by

Stages of
prescale

0 0 1 0

0 1 16 4

1 0 256 8

1 1 Undefined

 Table 4-14 Timer enable and mode control using bits 6 and 7

0 1

Bit 7 Timer disabled Timer enabled

Bit 6 Free-running
mode

Periodic mode

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-1

Chapter 5
Angel

This chapter describes the Angel debug monitor. It contains the following sections:

• About Angel on page 5-2

• Developing applications with Angel on page 5-11

• Angel in operation on page 5-24

• Configuring Angel on page 5-37

• Angel communications architecture on page 5-41

• The Fusion IP stack for Angel on page 5-47.

Angel

5-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

5.1 About Angel

Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

You can use Angel to:

• evaluate existing application software on real hardware, as opposed to hardware
emulation

• develop new software applications on development hardware

• bring into operation new hardware that includes an ARM processor

• port operating systems to ARM-based hardware.

These activities require you to have some understanding of how Angel components
work together. The more technically challenging ones, such as porting operating
systems, require you to modify Angel itself.

A typical Angel system has two main components that communicate through a physical
link, such as a serial cable:

Debugger The debugger runs on the host computer. It gives instructions to Angel
and displays the results obtained from it. All ARM debuggers support
Angel, and you can use any other debugging tool that supports the
communications protocol used by Angel.

Angel Debug Monitor
The Angel debug monitor runs alongside the application being debugged
on the target platform.

See Figure 5-1 on page 5-6 for an overview of a typical Angel system. The debugger on
the host machine sends requests to Angel on the target system. Angel interprets those
requests and performs an operation such as inserting an undefined instruction where a
breakpoint is required, or reading a portion of memory and sending back a response to
the host.

Angel uses a debugging protocol called the Angel Debug Protocol (ADP) to
communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol. Refer to Angel
Debug Protocol for more information on ADP.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-3

Angel is supplied as:

• a standalone form that is built into the Flash and/or ROM of ARM evaluation and
development boards and other, third party boards

• prebuilt images that you can program into ROM or download to Flash

• source files that allow new ports to be built.

ANSI C and C++ libraries that support Angel are supplied with the ADS.

5.1.1 Angel system features

Angel provides the following functionality:

• Debug support on page 5-3

• C library semihosting support on page 5-3

• Communications support on page 5-4

• Task management on page 5-5

• Exception handling on page 5-5.

See Figure 5-1 on page 5-6 for an overview of the Angel components that provide this
functionality.

Debug support

Angel provides the following basic debug support:

• reporting and modifying memory and processor status

• downloading applications to the target system

• setting breakpoints.

Refer to Angel debugger functions on page 5-25 for more information on how Angel
performs these functions.

C library semihosting support

Angel uses a software interrupt (SWI) mechanism to enable applications linked with the
ARM C and C++ libraries to make semihosting requests. Semihosting requests are
requests such as open a file on the host, or get the debugger command line, that must be
communicated to the host to be carried out. These requests are referred to as
semihosting because they rely on the C library of the host machine to carry out the
request.

The ADS provides prebuilt ANSI C libraries that you can link with your application.
Specific C library functions, such as input/output, use the SWI mechanism to pass the
request to the host system.

Angel

5-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

These libraries are used by default when you link code that calls ANSI C library
functions. Refer to the description of the C libraries in the ADS Tools Guide for more
information.

Angel uses a single SWI to request semihosting operations. By default, the SWI is
0x123456 in ARM state and 0xab in Thumb state. You can change this number if
required. Refer to Configuring Angel on page 5-37 for more information.

If semihosting support is not required you can disable it by setting the
semihosting_enabled variable in the ARM debuggers:

• In armsd set:

$semihosting_enabled = 0

• In AXD, ADW or ADU, select Debugger Internals from the View menu to view
and edit the variable. Refer to the description of ARM debuggers in the ADS
Debuggers Guide for more information.

Refer to Chapter 6 Semihosting SWIs for details of the semihosting SWIs.

Communications support

Angel communicates using ADP, and uses channels to allow multiple independent sets
of messages to share a single communications link. Angel provides an error-correcting
communications protocol over:

• Serial and serial/parallel connection from host to the target board, with Angel
resident on the board.

• Ethernet connection from the host to ARM development board, with Angel
resident on the board. For the ARM development board, this requires the Ethernet
Adaptor Kit (No. KPI 0014D), available separately from ARM Limited.

The host and target system channel managers ensure that logical channels are
multiplexed reliably. The device drivers detect and reject corrupted data packets. The
channel managers monitor the overall flow of data and store transmitted data in buffers,
in case retransmission is required. Refer to Angel communications architecture on
page 5-41 for more information.

The Angel Device Driver Architecture uses Angel task management functionality to
control packet processing and to ensure that interrupts are not disabled for long periods
of time.

You can write device drivers to use alternative devices for debug communication, such
as a ROMulator. You can extend Angel to support different peripherals, or your
application can address devices directly.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-5

Task management

All Angel operations, including communications and debug operations, are controlled
by Angel task management. Angel task management:

• ensures that only a single operation is carried out at any time

• assigns task priorities and schedules task accordingly

• controls the Angel environment processor mode.

Refer to Angel task management on page 5-28 for more information.

Exception handling

Angel exception handling provides the basis for debug, C library semihosting,
communications and task management. Angel installs exception handlers for each
ARM exception type except Reset.

SWI Angel installs a SWI exception handler to support C library semihosting
requests, and to allow applications and Angel to enter Supervisor mode.

Undefined Angel uses three Undefined Instructions to set breakpoints in code. Refer
to Setting breakpoints on page 5-21 for more information.

Data, Prefetch Abort
Angel installs basic Data and Prefetch Abort handlers. These handlers
report the exception to the debugger, suspend the application, and pass
control back to the debugger.

FIQ, IRQ Angel installs IRQ and FIQ handlers that enable Angel communications
to run off either, or both types of interrupt. If you have a choice you
should use IRQ for Angel communications, and FIQ for your own
interrupt requirements.

You can chain your own exception handlers for your own purposes. Refer to Chaining
exception handlers on page 5-19 for more information.

Angel

5-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

5.1.2 Angel component overview

The main components of an Angel system are shown in Figure 5-1.

 Figure 5-1 A typical Angel system

'���((��

'���((������)��*

�'�
%������

����
%������

��+�����
%������

���,,�)���,�(��

���,,�)���,�(��

'���
��-�����

�����,(
�,-
�,����)�.����,

/�,���
�-���(�%������

���(���-���,-�,�
�-���(�%������

0*
�����,%�%������

�,(�)���)�����
1�#�%������

��+�����

���)�
����,

'���
��-�����

1����)�)�,&

'���((��

�,(�)

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-7

The following sections give a summary of the system components:

• Host system components summary on page 5-7

• Target system components summary on page 5-8

• System resources on page 5-9

• ROM and RAM requirements on page 5-9

• Exception vectors on page 5-9

• Interrupts on page 5-10

Host system components summary

The host system components are:

Debugger This is the ARM Debugger for Windows (ADW or AXD), the ARM
Debugger for UNIX (ADU), the ARM command-line debugger (armsd),
or a third party debugger that supports the Angel Debug Protocol.

Debugger toolbox
This provides an interface between the debugger and the Remote Debug
Interface (RDI).

ADP support
This translates between RDI calls from the debug controller and Angel
ADP messages.

Boot support
This establishes communication between the target and host systems. For
example, it sets baud rates and re-initializes Angel in the target.

C library support
This handles semihosting requests from the target C library.

Host channel manager
This handles the communication channels, providing the functionality of
the devices at a higher level.

Device drivers
These implement specific communications devices on the host. Each
driver provides the entry points required by the channel manager.

Angel

5-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Target system components summary

The target system components are:

Device drivers
These implement specific communications devices on the ARM
development boards. Each driver provides the entry points required by
the channel manager.

Channel manager
This handles the communication channels. It provides a streamed packet
interface that hides details of the device driver in use.

Generic debug support
This handles the ADP by communicating with the host over a configured
channel, and sending and receiving commands from the host.

Target-dependent debug support
This provides system-dependent features, such as setting up breakpoints
and reading/writing memory.

Exceptions support
This handles all ARM exceptions.

C library support
C library support consists of the ARM ANSI C libraries supplied with
ADS, and the semihosting support that is built into Angel to send requests
to the host when necessary.

Booting and initialization
The Angel booting and initialization support code:

• performs startup checks

• sets up memory, stacks, and devices

• sends a boot message to the debugger.

User application
This is an application on the target system.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-9

5.1.3 Angel system resource requirements

Where possible, Angel resource usage can be statically configured at compile and link
time. For example, the memory map, exception handlers, and interrupt priorities are all
fixed at compile and link time. Refer to Configuring Angel on page 5-37 for more
information.

System resources

Angel requires the following non-configurable resources:

• two ARM Undefined Instructions (for big endian or little endian versions)

• one Thumb Undefined Instruction.

• one ARM SWI at 0x123456

• one Thumb SWI at 0xAB.

ROM and RAM requirements

Angel requires ROM or Flash memory to store the debug monitor code, and RAM to
store data. The amount of ROM, Flash, and RAM required varies depending on the
development board you are using.

Additional RAM might be required to download a new version of Angel.

Exception vectors

Angel requires some control over the ARM exception vectors. Exception vectors are
initialized by Angel, and are not written to after initialization. This supports systems
with ROM at address 0, where the vectors cannot be overwritten.

Note

An application that chains the vectors must unchain them on exit, or the target must be
reset, so that the exceptions do not crash the machine when the application is
overwritten.

Angel installs itself by initializing the vector table so that it takes control of the target
when an exception occurs. For example, debug communications from the host cause an
interrupt that halts the application and calls the appropriate code within Angel.

Angel

5-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Interrupts

Angel requires use of at least one interrupt to support communication between the host
and target systems. You can set up Angel to use:

• IRQ

• FIQ

• both IRQ and FIQ.

It is recommended that you use FIQ for your own interrupt requirements because Angel
has no fast interrupt requirements.

Stacks

Angel requires control over its own Supervisor stack. If you want to make Angel calls
from your application you must set up your own stacks. Refer to Developing an
application under Angel on page 5-16 for more information.

Angel also requires that the current stack pointer points to a few words of usable full
descending stack whenever an exception is possible, because the Angel exception
return code uses the application stack to return.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-11

5.2 Developing applications with Angel

This section describes how you can develop applications under Angel.

It also describes the programming restrictions that you must be aware of when
developing an application under Angel, and provides some workarounds for Angel
intrusions.

Angel is a standalone system that resides on the target board and is always active. Angel
is used during the development of the application code. It supports all debugger
functions and you can use it to:

• download your application image from a host

• debug your application code

• develop the application before converting to standalone code.

Angel is supplied in the following forms:

In target board ROM
The ARM development and evaluation boards are supplied with Angel
built into ROM, or Flash, or both. To use Angel in this form you simply
connect your target board to a host machine running a debugger, such as
AXD, ADW, ADU, or armsd.

Prebuilt images
Angel is supplied as prebuilt images for the ARM development board
board with ADS. These are located in:

• Install_directory\Angel\Images\pid\little for a
little-endian configuration of the ARM development board

• Install_directory\Angel\Images\pid\big for a
big-endian configuration of the ARM development board.

Angel

5-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

The supplied binaries are:

angel.rom This is a ROM image of Angel. You can use this
image in place of the Angel in your target board
ROM if your board contains an older version. In
addition, if you are porting Angel to your own
hardware this image provides you with a working
default to test against.

angel.hex This is an Intellec Hex format version of the Angel
ROM.

angel.m32 This is a Motorola M32 version of Angel.

angel.elf This is the ELF image used to build the binary
images.

Source code
You can port the Angel source code to your own development board if
you are developing an application on your own hardware.

5.2.1 Overview of the development procedure

This section gives an overview of the development process of an application using
Angel, from the evaluation stage to the final product.

The stages in the Angel development procedure are:

1. Stage 1: Evaluating applications on page 5-13

2. Stage 2: Building applications on a development board with high dependence on
Angel on page 5-14

3. Stage 3: Building applications on a development board with little dependence on
Angel on page 5-15

4. Stage 4: Moving an application to final production hardware on page 5-16.

Figure 5-2 shows an example of this development procedure. The stages of the
development procedure are described in more detail below.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-13

 Figure 5-2 The Angel development process

Stage 1: Evaluating applications

If you want to evaluate the ARM processor you must have a program, or suite of
programs to run on the ARM processor.

You can rebuild your programs using the ADS, and link them with an ARM C or C++
library.

���)�
����,��,-��
���)���������,��,
���)�����,�����-

���)�
����,��%�,(�"�))
�,(�)��,

'���)����,������-
���� �-���,-�,��

���)�
����,��%�,(�"�))
�,(�)��,�'���)����,�

����-
���,���)�-���,-�,
 �

���)�
����,��,-��
��,���)��,(�)��,
��,�)����-�
�

���)�
����,��,���,�)
���-�
�2�3���,(�)2

Angel

5-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

You can run your ported applications in two ways:

ARMulator You can run your programs under the ARMulator, and evaluate cycle
counts to see if the performance is sufficient.

This method does not involve Angel. However, you can use ARM C or
C++ library functions that require semihosting because the ARMulator
supports the semihosting SWIs. C library calls, unless you have created
new implementations of them, are handled by the host C library support.

Evaluation board
Instead of testing programs under the ARMulator, you can use an ARM
evaluation board to evaluate performance. In this case you use Angel
running as a debug monitor on the ARM evaluation board. You do not
have to rebuild Angel, or to be familiar with the way Angel works.

You can build images that are linked with an ARM C or C++ library, and
then download the images with an ARM debugger.

Stage 2: Building applications on a development board with high
dependence on Angel

After evaluating your application you move to the development stage. At this stage, the
target board is either your own development board or an ARM development board:

Using an ARM development board
You can use an ARM development board to closely emulate the
configuration of your production hardware. You can develop your
application on the board and port it to your final hardware with minimal
effort.

Using your own development board
If you are developing on your own hardware it is likely to have different
peripheral hardware, different memory maps, and so on from the ARM
evaluation boards or development boards. This means that you must port
Angel to your development board. The porting procedure includes
writing device drivers for (at least one of) your hardware devices.

When you have chosen your development platform, you build a standalone application
that runs next to Angel on your target hardware. The procedure for downloading the
application to the development platform will depend on the development board you are
using. Typical download procedures are described in Downloading new application
versions on page 5-23.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-15

At this stage you are highly reliant on Angel to debug your application. In addition you
must make design decisions about the final form of your application. In particular you
should decide whether the final application is standalone, or uses a customized version
of Angel to provide initialization code, interrupt handlers, and device drivers.

If you are developing simple embedded applications, you might want to move straight
to building your application on a development board.

Stage 3: Building applications on a development board with little
dependence on Angel

As you proceed with your development project and your code becomes more stable, you
will rely less on Angel for debugging and support. For example, you might want to use
your own initialization code, and you might not require C library semihosting support:

• You can switch off semihosting, without building a special cut-down version of
Angel, by setting the $semihosting_enabled variable in the ARM debuggers.
In armsd:

semihosting_enabled = 0

In ADW or ADU select Debugger Internals from the View menu to view and
edit the variable. Refer to the descriptions of the ARM debuggers in the ADS
Debuggers Guide for more information.

• You can build an application that links with a customized version of the Angel
library. This can be blown into a ROM, soft-loaded into Flash by the ARM
debuggers, or installed using a ROM emulator or Multi-ICE.

If you want to debug a customized version of an Angel application and your
hardware supports JTAG you can use Multi-ICE. This requires very few
resources on the target.

• You can build an application that uses redefined I/O functions in place of the
semihosted I/O functions in the C library. For example, you can provide I/O
functions that work with your hardware and keep the Angel functionality for
debugging.

Angel

5-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Stage 4: Moving an application to final production hardware

When you are ready to move the application onto final production hardware, you have
a different set of requirements. For example:

• Production hardware might not have as many communications links as your
development board. You might not be able to communicate with the debugger.

• RAM and ROM might be limited.

• Interrupt handlers for timers might be required in the final product, but debug
support code is not.

At this stage you can use all the standard C library if you avoid, or have redefined, the
I/O functions that use semihosting.

5.2.2 Developing an application under Angel

This section gives useful information on how to develop applications under Angel:

• Planning your development project

• Programming restrictions on page 5-17

• Using Angel with an RTOS on page 5-18

• Using Supervisor mode on page 5-19

• Chaining exception handlers on page 5-19

• Linking Angel C library functions on page 5-20

• Using assertions when debugging on page 5-20

• Setting breakpoints on page 5-21

• Changing from little-endian to big-endian Angel on page 5-21.

Planning your development project

Before you begin your development project you must make basic decisions about such
things as:

• the ATPCS variant to be used for your project

• whether or not ARM/Thumb interworking is required

• the endianness of your target system.

Refer to the appropriate chapters of the ADS Debuggers Guide and ADS Developer
Guide for more information on interworking ARM and Thumb code, and specifying
APCS options.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-17

In addition, you should consider:

• Whether or not you require C library support in your final application. You must
decide how you will implement C library I/O functions if they are required,
because the Angel semihosting SWI mechanism will not be available. Refer to
Linking Angel C library functions on page 5-20 for more information.

• Whether or not the image is built with debug enabled. You should be aware of the
small size overhead when using debuggable images as production code.

• Communications requirements. You must write your own device drivers for your
production hardware.

• Memory requirements. You must ensure that your hardware has sufficient
memory to hold both Angel and your program images.

Programming restrictions

Angel resource requirements introduce a number of restrictions on application
development under Angel:

• Angel requires control of its own Supervisor stack. If you are using an RTOS you
must ensure that it does not change processor state while Angel is running. Refer
to Using Angel with an RTOS on page 5-18 for more information.

• You should avoid using ARM SWI 0x123456 or Thumb SWI 0xab. These SWIs
are used by Angel to support C library semihosting requests. Refer to Configuring
SWI numbers on page 5-40 for information on changing the default SWI
numbers.

• If you are using SWIs in your application, and using Multi-ICE for debugging,
you should usually set a breakpoint on the SWI handler routine, where you know
it is a SWI, rather than at the SWI vector itself.

• If you are using SWIs in your application you must restore registers to the state
that they were when you entered the SWI.

• If you want to use the Undefined Instruction exception for any reason you must
remember that Angel uses this to handle breakpoints and the exception must be
chained.

Angel

5-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Using Angel with an RTOS

From the application perspective Angel is single threaded, modified by the ability to use
interrupts provided the interrupt is not context switching. External functions must not
change processor modes through interrupts. This means that running Angel and an
RTOS together is difficult, and is not recommended unless you are prepared for a
significant amount of development effort.

If you are using an RTOS you will have difficulties with contention between the RTOS
and Angel when handling interrupts. Angel requires control over its own stacks, task
scheduling, and the processor mode when processing an IRQ or FIQ.

An RTOS task scheduler must not perform context switches while Angel is running.
Context switches should be disabled until Angel has finished processing.

For example:

1. An RTOS installs an ISR to perform interrupt-driven context switches.

2. The ISR is enabled when Angel is active (for example, handling a debug request).

3. An interrupt occurs when Angel is running code.

4. The ISR switches the Angel context, not the RTOS context.

That is, the ISR puts values in processor registers that relate to the application, not to
Angel, and it is very likely that Angel will crash.

There are two ways to avoid this situation:

• Detect ISR calls that occur when Angel is active, and do not task switch. The ISR
can run, provided the registers for the other mode are not touched. For example,
timers can be updated.

• Disable either IRQ or FIQ interrupts, the one Angel is not using, while Angel is
active. This is not easy to do.

In summary, the normal process for handling an IRQ under an RTOS is:

1. IRQ exception generated.

2. Do any urgent processing.

3. Enter the IRQ handler.

4. Process the IRQ and issue an event to the RTOS if required.

5. Exit by way of the RTOS to switch tasks if a higher priority task is ready to run.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-19

Under Angel this procedure must be modified to:

1. IRQ exception generated.

2. Do any urgent processing.

3. Check whether Angel is active:

a. If Angel is active then the CPU context must be restored on return, so
scheduling cannot be performed, although for example a counter could be
updated. Exit by restoring the pc to the interrupted address.

b. If Angel is not active, process as normal, exiting by way of the scheduler if
required.

Using Supervisor mode

If you want your application to execute in Supervisor mode at any time, you must set
up your own Supervisor stack. If you call a SWI while in Supervisor mode, Angel uses
four words of your Supervisor stack when entering the SWI. After entering the SWI
Angel uses its own Supervisor stack, not yours.

This means that, if you set up your own Supervisor mode stack and call a SWI, the
Supervisor stack pointer register (sp_SVC) must point to four words of a full
descending stack in order to provide sufficient stack space for Angel to enter the SWI.

Chaining exception handlers

Angel provides exception handlers for the Undefined, SWI, IRQ/FIQ, Data Abort, and
Prefetch Abort exceptions. If you are working with exceptions you must ensure that any
exception handler that you add is chained correctly with the Angel exception handlers.
Refer to the description of processor exceptions in ADS Developer Guide for more
information.

If you are chaining an interrupt handler and you know that the next handler in the chain
is the Angel interrupt handler, you can use the Angel interrupt table rather than the
processor vector table. You do not have to modify the processor vector table. The Angel
interrupt table is easier to manipulate because it contains the 32-bit address of the
handler. The processor vector table is limited to 24-bit addresses.

Note

If your application chains exception handlers (including ISRs) Angel must be reset with
a hardware reset if the application is killed. This ensures that the vectors are set up
correctly when the application is restarted.

Angel

5-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

The consequences of not passing an exception on to Angel from your exception handler
depend on the type of exception, as follows:

Undefined You will not be able to single step or set breakpoints from the debugger.

SWI If you do not implement the EnterSVC SWI, Angel will not work. If you
do not implement any of the other SWIs you will not be able to use
semihosting.

Prefetch Abort
The exception will not be trapped in the debugger.

Data Abort The exception will not be trapped in the debugger. If a Data Abort occurs
during a debugger-originated memory read or write, the operation might
not proceed correctly, depending on the action of the handler.

IRQ This depends on how Angel is configured. Angel will not work if it is
configured to use IRQ as its interrupt source.

FIQ This depends on how Angel is configured. Angel will not work if it is
configured to use FIQ as its interrupt source.

Linking Angel C library functions

The C libraries provided with the ADS use SWIs to implement semihosting requests.
For more information on using libraries, refer to the ADS Tools Guide.

You two options for using ARM C library functionality:

• Use the ARM C library semihosting functions for early prototyping and redefine
individual library I/O functions with your own C functions targeted at your
hardware and operating system environment.

• Support SWIs in your own application or operating system and use the ARM C
libraries as provided.

Using assertions when debugging

To speed up debugging, Angel includes runtime assertion code that checks that the state
of Angel is as expected. The Angel code defines the ASSERT_ENABLED option to enable
and disable assertions.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-21

If you use assertions in your code you should wrap them in the protection of
ASSERT_ENABLED macros so that you can disable them in the final version if required.

#if ASSERT_ENABLED
...
#endif

Angel uses such assertions wherever possible. For example, assertions are made when
it is assumed that a stack is empty, or that there are no items in a queue. You should use
assertions whenever possible when writing device drivers. The ASSERT macro is
available if the code is a simple condition check (variable = value).

Setting breakpoints

Angel can set breakpoints in RAM only. You cannot set breakpoints in ROM or Flash.

In addition, you must be careful when using single step or breakpoints on the UNDEF,
IRQ, FIQ, or SWI vectors. Do not single step or set breakpoints on interrupt service
routines on the code path used to enter or exit Angel.

Changing from little-endian to big-endian Angel

Changing memory byte order is dependent on the ARM development board you are
using. Refer to the documentation that was supplied with the board.

5.2.3 Application communications

Angel requires use of at least one device driver for its own communications
requirements. If you are using Angel on a board with more than one serial port, such as
the ARM development board, you can either:

• use Angel on one serial port and your own device on the other

• use a customized version of Angel that requires no serial port and use either or
both of the serial ports for your application.

The ARM development board Angel port provides examples of raw serial drivers. Refer
to the Angel source code for details of how these are implemented. If you want to use
Angel with your own hardware you must write your own device drivers.

Angel

5-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Angel serial drivers

Figure 5-3 gives an overview of the Angel serial device architecture.

 Figure 5-3 Serial device architecture

Using the Debug Communication Channel

You can use cin and cout in armsd, the channel viewer interface, or the ARM
debugger GUI to access the DCC from the host. You can use the DCC channel to send
ARM DCC instructions to the processor. No other extra channels are supported.

'��
�*

'��
�*

'��
���)

'��
#1�

��
&��
���-

��
&��
1�,-

��
&��
���-

#�"
)� ��

4
�
�
'
�
�
�
0

��
&��
�����
�%���&�2
�

��
��))

��,(�������

��,(�������

��)���)�
��
&��%

��,,�)

�%�%��*��*

�-�

���,,�)%
)� ��

� ��
1����)
'���
�%

������
222�� �,(�)���))�'���
����))

'��
),�2

'��
),�2

�,��)���)�5
�,��-���-5
%���)�*
%�����%

��)���)�5
��-���-5
��)���)�
%�����%

�'
��

�

��
#,
��
��
�

�

�
,(

�)

�
�

&�
�

'
��

�

��
#,
��
��
�

�

�,(�)
#1��4�,-)��

�,(�)

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-23

5.2.4 Downloading new application versions

There are five techniques you can use to move successive versions of your application
onto a ARM development board. Each has advantages and disadvantages:

Using Angel with a serial port
This gives slow downloading, but has the advantage that it requires only
a simple UART on the ARM development board. If your board supports
Flash download you can use this method to fix your image in Flash.

Using Angel with an Ethernet connection
This provides fast downloading, but requires Ethernet hardware on the
ARM development board and Ethernet support software to run on the
ARM development board. If your board supports Flash download you
can use this method to fix your image in Flash.

Flash download
This provides slow to fast downloading, depending on the type of
connection you are using.

This method is only available on boards that have Flash memory and are
supported by a Flash download program (either the boot Flash monitor
on a development board, the ADS Flash download utility, or the ARM
Firmware Suite utility). It has the advantage that, after the Flash is set, the
image is fixed in memory, even if the board is reset.

You can also download application-only images using this method, but
you might not be able to use Angel.

Refer to your ARM development board documentation for more
information on downloading to Flash.

Using a ROM emulator to download a new ROM image
Depending on the development board you are using, you might be able to
download a ROM image with a ROM emulator. See the documentation
that was provided with your board.

If you use one of the ROM replacement methods then you must change from building
application images to building ROM images as soon as the development phase starts.

If you use a simple download method then the transition to the development phase is
easier because you can move to building ROM images when everything else is working
and you are preparing to move to production hardware.

For more information on using the Flash download utility, refer to the ADS Tools Guide.

If you are using an EPROM programmer to program big-endian code into 16-bit
devices, refer to the fromELF utility information in the ADS Tools Guide.

Angel

5-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

5.3 Angel in operation

This section briefly explains Angel operations you should understand before porting
Angel to your own hardware. It contains the following:

• Initialization

• Waiting for debug communications on page 5-25

• Angel debugger functions on page 5-25

• Angel task management on page 5-28

• Context switching on page 5-32

• Example of Angel processing: a simple IRQ on page 5-35.

5.3.1 Initialization

The initialization of the code environment and system is almost identical, whether the
code is to initialize the debugger or to launch an application. The initialization sequence
is:

1. The processor is switched from the current privileged mode to Supervisor mode
with interrupts disabled. Angel checks for the presence of an MMU. If an MMU
is present it can be initialized after switching to Supervisor mode.

2. Angel sets the code execution and vector location, depending on the compilation
addresses generated by the values of ROADDR and RWADDR. Refer to Configuring
where Angel runs on page 5-38 for more information.

3. Code and data segments for Angel are copied to their execution addresses.

4. If the application is to be executed then the runtime system setup code and the
application itself are copied to their execution addresses. If the system has ROM
at address 0 and the code is to be run from ROM, only the Data and Zero
Initialization areas are copied.

5. The stack pointers are set up for each processor mode that Angel operates in.
Angel maintains control of its own stacks separately from any application stacks.
You can configure the location of Angel stacks. Refer to Configuring the memory
map on page 5-37 for more information.

6. Target-specific functions such as MMU or Profiling Timer are initialized if they
are included in the system.

7. The Angel serializer is set up. Refer to the Angel task management on page 5-28
for more information on the Angel serializer.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-25

8. The processor is switched to User mode and program execution is passed to the
high level initialization code for the C library and Angel C functions.

When initialization is complete, program execution is directed to the __main
entry point.

9. At this point, the initialization sequence is executed:

a. The communications channels are initialized for ADP.

b. Any raw data channels installed for the application are set up if you are
using extra channels. The application can set this up itself. Refer to the
Angel source code for details.

c. Angel transmits its boot message through the boot task and waits for
communication from the debugger.

5.3.2 Waiting for debug communications

After initialization, Angel enters the idle loop and continually calls the device polling
function. This ensures that any polled communications device is serviced regularly.
When input is detected, it is placed into a buffer and decoded into packet form to
determine the operation that has been requested. If an acknowledgment or reply is
required, it is constructed in an output buffer ready for transmission.

All Angel operations are controlled by Angel task management. Refer to Angel task
management on page 5-28 and Example of Angel processing: a simple IRQ on
page 5-35 for more information on Angel task management.

5.3.3 Angel debugger functions

This section gives a summary of how Angel performs the basic debugger functions:

• reporting memory and processor status

• downloading a program image

• setting breakpoints.

Reporting processor and memory status

Angel reports the contents of memory and the processor registers as follows:

Memory The memory address being examined is passed to a function that copies
the memory as a byte stream to the transmit buffer. The data is
transmitted to the host as an ADP packet.

Angel

5-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Registers Processor registers are saved into a data block when Angel takes control
of the target (usually at an exception entry point). When processor status
is requested, a subset of the data block is placed in an ADP packet and
transmitted to the host.

When Angel receives a request to change the contents of a register, it
changes the value in the data block. The data block is stored back to the
processor registers when Angel releases control of the target and
execution returns to the target application.

Download

When downloading a program image to your board, the debugger sends a sequence of
ADP memory write messages to Angel. Angel writes the image to the specified memory
location.

Memory write messages are special because they can be longer than other ADP
messages. If you are porting Angel to your own hardware your device driver must be
able to handle messages that are longer than 256 bytes. The actual length of memory
write messages is determined by your Angel port. Message length is defined in
devconf.h with:

#define BUFFERLONGSIZE

Setting breakpoints

Angel uses three Undefined Instructions to set breakpoints. The instruction used
depends on:

• the endianness of the target system

• the processor state (ARM or Thumb).

ARM state In ARM state, Angel recognizes the following words as
breakpoints:

0xE7FDDEFE for little-endian systems.

0xE7FFDEFE for big-endian systems.

Thumb state In Thumb state, Angel recognizes 0xDEFE as a breakpoint.

Note

These are not the same as the breakpoint instructions used by Multi-ICE.

These instructions are used for normal, user interrupt, and vector hit breakpoints. In all
cases, no arguments are passed in registers. The breakpoint address itself is where the
breakpoint occurs.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-27

When you set a breakpoint, Angel:

• stores the original instruction to ensure that it is returned if the area containing it
is examined

• replaces the instruction with the appropriate Undefined Instruction.

The original instruction is restored when the breakpoint is removed, or when a request
to read the memory that contains the instruction is made in the debugger. When you step
through a breakpoint, Angel replaces the saved instruction and executes it.

Note

Angel can set breakpoints only on RAM locations.

When Angel detects an Undefined Instruction it:

1. Examines the instruction by executing an:

• LDR instruction from lr – 4, if in ARM state

• LDR instruction from lr – 2, if in Thumb state.

2. If the instruction is the predefined breakpoint word for the current processor state
and endianness, Angel:

a. halts execution of the application

b. transmits a message to the host to indicate the breakpoint status

c. executes a tight poll loop and waits for a reply from the host.

If the instruction is not the predefined breakpoint word, Angel:

a. reports it to the debugger as an undefined instruction

b. executes a tight poll loop and waits for a reply from the host.

ARM breakpoints are detected in Thumb state. When an ARM breakpoint is executed
in Thumb state, the Undefined Instruction vector is taken whether executing the
instruction in the top or bottom half of the word. In both cases these correspond to a
Thumb Undefined Instruction and result in a branch to the Thumb Undefined
Instruction handler.

Note

Thumb breakpoints are not detected in ARM state.

Angel

5-28 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

5.3.4 Angel task management

All Angel operations are controlled by Angel task management that:

• assigns task priorities and schedules tasks accordingly

• controls the Angel environment processor mode.

Angel task management requires control of the processor mode. This can impose
restrictions on using Angel with an RTOS. Refer to Using Angel with an RTOS on
page 5-18 for more information.

Task priorities

Angel assigns task priorities to tasks under its control. Angel ensures that its tasks have
priority over any application task. Angel takes control of the execution environment by
installing exception handlers at system initialization. The exception handlers enable
Angel to check for commands from the debugger and process application semihosting
requests.

Angel will not function correctly if your application or RTOS interferes with the
execution of the interrupt, SWI or Data Abort exception handlers. Refer to Chaining
exception handlers on page 5-19 for more information.

When an exception occurs, Angel either processes it completely as part of the exception
handler processing, or calls Angel_SerialiseTask() to schedule a task. For
example:

• When a SWI occurs, Angel determines whether the SWI is a simple SWI that can
be processed immediately, such as the EnterSVC SWI, or a complex SWI that
requires access to the host communication system, and therefore to the serializer.
Refer to Input/Output SWIs on page 6-10 for more information.

• When an IRQ occurs, the Angel development board port determines whether or
not the IRQ signals the receipt of a complete ADP packet. If it does, Angel task
management is called to control the packet decode operation. Refer to Example
of Angel processing: a simple IRQ on page 5-35 for more information. Other
Angel ports can make other choices for IRQ processing, provided the relevant
task is eventually run.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-29

The task management code maintains two values that relate to priority:

Task type The task type indicates type of task being performed. For
example, the application task is of type TP_Application, and
Angel tasks are usually TP_AngelCallback. The task type
labels a task for the lifetime of the task.

Task priority The task priority is initially derived from the task type, but
thereafter it is independent. Actual priority is indicated in:

• the value of a variable in the task structure

• the relative position of the task structure in the task queue.

The task priority of the application task changes when an
application SWI is processed, to ensure correct interleaving of
processing.

Table 5-1 shows the relative task priorities used by Angel.

Angel task management is implemented through the following top-level functions:

• Angel_SerialiseTask()

• Angel_NewTask()

• Angel_QueueCallback()

• Angel_BlockApplication()

• Angel_NextTask()

• Angel_Yield()

• Angel_Wait()

• Angel_Signal()

• Angel_TaskID().

 Table 5-1 Task priorities

Priority Task Description

Highest AngelWantLock High priority callback.

- AngelCallBack Callbacks for Angel.

- ApplCallBack Callbacks for the user application.

- Application The user application.

- AngelInit Boot task. Emits boot message on reset and
then exits.

Lowest IdleLoop Waiting for task

Angel

5-30 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Some of these functions call other Angel functions not documented here. The functions
are described in brief below. For full implementation details, refer to the source code in
serlock.h, serlock.c, and serlasm.s.

Angel_SerialiseTask

In most cases this function is the entrance function to Angel task management. The only
tasks that are not a result of a call to Angel_SerialiseTask() are the boot task, the
idle task, and the application. These are all created at startup. When an exception
occurs, Angel_SerialiseTask() cleans up the exception handler context and calls
Angel_NewTask() to create a new high priority task. It must be entered in a privileged
mode.

Angel_NewTask

Angel_NewTask() is the core task creation function. It is called by
Angel_SerialiseTask() to create task contexts.

Angel_QueueCallback

This function:

• queues a packet notification callback task

• specifies the priority of the callback

• specifies up to four arguments to the callback.

The callback executes when all tasks of a higher priority have completed. Table 5-1 on
page 5-29 shows relative task priorities.

Angel_BlockApplication

This function is called to allow or disallow execution of the application task. The
application task remains queued, but is not executed. If Angel is processing an
application SWI when Angel_BlockApplication() is called, the block might be
delayed until just before the SWI returns.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-31

Angel_NextTask

This is not a function, in that it is not called directly. Angel_NextTask() is executed
when a task returns from its main function. This is done by setting the link register to
point to Angel_NextTask() on task entry.

The Angel_NextTask() routine:

• enters Supervisor mode

• disables interrupts

• calls Angel_SelectNextTask() to select the first task in the task queue that
has not been blocked and run it.

Angel_Yield

This is a yield function for polled devices. It can be called:

• by the application

• by Angel while waiting for communications on a polled device

• within processor-bound loops such as the idle loop.

Angel_Yield() uses the same serialization mechanism as IRQ interrupts. Like an
IRQ, it can be called from either User or Supervisor mode and returns cleanly to either
mode. If it is called from User mode it calls the EnterSVC SWI to enter Supervisor
mode, and then disables interrupts.

Angel_Wait

Angel_Wait() works in conjunction with Angel_Signal() to enable a task to wait
for a predetermined event or events to occur before continuing execution. When
Angel_Wait() is called, the task is blocked unless the predetermined event has
already been signalled with Angel_Signal().

Angel_Wait() is called with an event mask. The event mask denotes events that will
result in the task continuing execution. If more than one bit is set, any one of the events
corresponding to those bits will unblock the task. The task remains blocked until some
other task calls Angel_Signal() with one or more of the event mask bits set. The
meaning of the event mask must be agreed beforehand by the routines.

If Angel_Wait() is called with a zero event mask, execution continues normally.

Angel

5-32 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Angel_Signal

Angel_Signal() works in conjunction with Angel_Wait(). This function sends an
event to a task that is now waiting for it, or will in the future wait for it:

• If the task is blocked, Angel_Signal() assumes that the task is waiting and
subtracts the new signals from the signals the task was waiting for. The task is
unblocked if the event corresponds to any of the event bits defined when the task
called Angel_Wait().

• If the task is running, Angel_Signal() assumes that the task will call
Angel_Wait() at some time in the future. The signals are marked in the task
signalWaiting member.

Angel_Signal() takes a task ID that identifies a current task, and signals the task that
the event has occurred. See the description of Angel_Wait() for more information on
event bits. The task ID for the calling task is returned by the Angel_TaskID() macro.
The task must write its task ID to a shared memory location if an external task is to
signal it.

Angel_TaskID

This macro returns the task ID (a small integer) of the task that calls it.

Angel_TaskIDof

This macro takes a task structure pointer and returns the task ID of that task.

5.3.5 Context switching

Angel maintains context blocks for each task under its control through the life of the
task, and saves the value of all current processor registers when a task switch occurs. It
uses two groups of register context save areas:

• The Angel global register blocks. These are used to store the CPU registers for a
task when events such as interrupt and task deschedule events occur.

• An array of available Task Queue Items (TQIs). Each allocated TQI contains the
information Angel requires to correctly schedule a task, and to store the CPU
registers for a task when required.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-33

The global register blocks: angel_GlobalRegBlock

The Angel global register blocks are used by all the exception handlers and the special
functions Angel_Yield() and Angel_Wait(). Register blocks are defined as an
array of seven elements. Table 5-2 shows the global register blocks.

In the case of RB_SWI and RB_Interrupted, the register blocks contain the previous
task register context so that the interrupt can be handled. If the handler function calls
Angel_SerialiseTask(), the global register context is saved into the current task
TQI.

In the case of RB_Yield, the register block is used to store temporarily the context of
the calling task, prior to entering the serializer. The serializer saves the contents of
RB_Yield to the TQI entry for the current task, if required.

The Angel task queue: angel_TQ_Pool

The serializer maintains a task queue by linking together the elements of the
angel_TQ_Pool array. The task queue must contain an idle task entry. Each element
of the array is a TQI. A TQI contains task information such as:

• the register context for the task

• the current priority of the task

• the type of the task (for example, TP_Application)

• the task state (for example, TS_Blocked)

• the initial stack value for the task

• a pointer to the next lower-priority task.

 Table 5-2 Global register blocks

Register block Description

RB_Interrupted Used by the FIQ and IRQ exception handlers.

RB_Desired Used by Angel_SerialiseTask().

RB_SWI Saved on entry to a complex SWI and restored on return to the
application.

RB_Undef Saved on entry to the undefined instruction handler.

RB_Abort Saved on entry to the abort handler.

RB_Yield Used by the Angel_Yield() and Angel_Wait() functions.

RB_Fatal Used only in a debug build of Angel. It saves the context where a fatal
error occurred.

Angel

5-34 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

The elements in the angel_TQ_Pool array are managed by routines within the
serializer and must not be modified externally.

Angel calls Angel_NewTask() to create new tasks. This function initializes a free TQI
with the values required to run the task. When the task is selected for execution,
Angel_SelectNextTask() loads the register context into the CPU. The context is
restored to the same TQI when:

• Angel_SerialiseTask() is called as the result of exception processing or a
call to Angel_Yield()

• Angel_Wait() determines that the task must be blocked.

When the debugger requests information about the state of the application registers, the
Angel debug agent retrieves the register values from the TQI for the application. The
application TQI is updated from the appropriate global register block when exceptions
cause Angel code to be run.

Overview of Angel stacks for each mode

The serialization mechanism described in Angel task management on page 5-28 ensures
that only one task ever executes in Supervisor mode. Therefore, all Angel Supervisor
mode tasks share a single stack, on the basis that:

• it is always empty when a task starts

• when the task returns, all information that was on the stack is lost.

The application uses its own stack, and executes in either User or Supervisor mode.
Callbacks due to application requests to read or write from devices under control of the
Device Driver Architecture execute in User mode, and use the application stack.

The following Angel stacks are simple stacks exclusively used by one thread of control.
This is ensured by disabling interrupts in the corresponding processor modes:

• IRQ stack

• FIQ stack

• UND stack

• ABT stack.

The User mode stack is also split into two cases, because the Application stack and
Angel stack are kept entirely separate. The Angel User mode stack is split into array
elements that are allocated to new tasks, as required. The application stack must be
defined by the application.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-35

5.3.6 Example of Angel processing: a simple IRQ

This section gives an example of processing a simple IRQ from start to finish, and
describes in more detail how Angel task management affects the receipt of data through
interrupts. Refer also to Angel communications architecture on page 5-41 for an
overview of Angel communications.

Figure 5-4 on page 5-35 shows the application running, when an IRQ is made that
completes the reception of a packet.

 Figure 5-4 Processing a simple IRQ

�

�

6

�,(�)�#1�

#�$���)

�,(�)
#,�������7

���)

8

'���#1�

����)���
��9��%�7

0'�7

�,��������%&

'����%��
���

�))��
& 3�*����%&

1�)�
�
3�*����%&

�,��������%&

�

:

;

<

1�)�
��3�*�

�������,�!
��%&

1������,��,�

1����)�.����%& 3�!���%&
��(��%�
������� 7

�*=���

$����

�))��
&

0,-��*=���

��))��
&
,�*�7

�,(�)������,

 �%

 �%

 �%

 �%

 �%

,�

,�

,�
,�

,�

Angel

5-36 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

The IRQ is handled as follows:

1. The Interrupt exception is noticed by the processor. The processor:

• fetches the IRQ vector

• enters Interrupt mode

• starts executing the Angel Interrupt Service Routine.

On entry to the IRQ handler, FIQ interrupts are disabled if
HANDLE_INTERRUPTS_ON_FIQ=1 (the default is 0, FIQ interrupts enabled).
Interrupts are not re-enabled until either:

• Angel_SerialiseTask() is called

• the interrupt completes.

2. The Angel ISR saves the processor state in a register block, uses the GETSOURCE
macro to determine the interrupt source, and jumps to the handler. The processor
state is saved because this data is required by Angel_SerialiseTask().

3. The interrupt handler determines the cause of the IRQ. If the interrupt is not an
Angel interrupt it returns immediately.

If the interrupt is an Angel interrupt and the driver uses polled input, the handler
calls Angel_SerialiseTask() to schedule processing. If the driver does not
use polled input, the handler calls Angel_SerialiseTask() to schedule
processing if:

• the end of packet character is reached

• the end of request is reached for a raw device (determined by length)

• the ring buffer is empty (tx), or full (rx).

4. If Angel_SerialiseTask() is not required, the ISR reads out any characters
from the interrupting device and returns immediately.

5. Angel_SerialiseTask() saves the stored context from step 2 and creates a
new task. It then executes the current highest priority task. The new task is
executed after all tasks of higher priority have been executed.

6. The new task executes in Supervisor mode. It reads the packet from the device
driver to create a proper ADP packet from the byte stream.

7. When the packet is complete, the task schedules a callback task to process the
newly arrived packet.

8. The callback routine processes the packet and terminates. Angel_NextTask()
finds that the application is the highest priority task, and
Angel_SelectNextTask() restarts the application by loading the context
stored at step 2 into the processor registers.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-37

5.4 Configuring Angel

This section describes some of the major configuration changes that you can make to
Angel. All the configuration changes described in this section are static. You must
recompile Angel to implement these changes.

The changes you can make are described in the following sections:

• Configuring the memory map on page 5-37

• Configuring timers and profiling on page 5-38

• Configuring exception handlers on page 5-38

• Configuring where Angel runs on page 5-38

• Configuring SWI numbers on page 5-40.

5.4.1 Configuring the memory map

You can configure the Angel stack positions by editing the value of:

#define Angel_StacksAreRelativeToTopOfMemory

in devconf.h.

By default, the Angel stacks are configured relative to the top of memory. This is the
recommended option. If Angel stacks are configured to start relative to the top of
memory then the Angel code searches for the top of contiguous memory and the stack
pointers are set at this location. This means that you can add memory to your system
without updating the memory map and rebuilding Angel.

You must define the memory map to allow the debugger to control illegal read/writes
using the checks in the PERMITTED macro. These should reflect the permitted access of
the system memory architecture. You must take care with systems that have access to
the full 4GB of memory, because the highest section of memory should equate to
0xffffffff when the base and size are defined as a sum, and it might wrap around to
0.

For example, if there is memory-mapped I/O at 0xffd00000 the definition should be:

#define IOBase (0xFFD00000)
#define IOSize (0x002fffff)
#define IOTop (IOBase + IOSize)

not:

#define IOBase (0xFFD00000)
#define IOSize (0x00300000)
#define IOTop (IOBase + IOSize)

Angel

5-38 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

5.4.2 Configuring timers and profiling

The exact configuration procedure will depend on the development board you are using.
The ARM development board, for example, has two timers available, and by default,
profiling and Ethernet are configured to use the same timer. The ARM development
board uses pc sampling for profiling. This requires a fast interrupt. The interrupt service
routine records where the program was when it was interrupted. If you do not use
profiling or Ethernet you can use the timer for your application.

You can turn off profiling by setting a runtime debugger variable, but this does not free
the timer. In the Angel development board port, profiling is specified in the PROFILE
entry of devconf.h. You must recompile Angel to remove profiling support.

System timers can be initialized by implementing the INITTIMER macro in target.s.
This macro is not implemented by the ARM development board port. It is provided as
a place holder to enable you to initialize your own system timers.

5.4.3 Configuring exception handlers

You can chain your own exception handlers to the Angel exception handlers. Refer to
Chaining exception handlers on page 5-19 for more information.

5.4.4 Configuring where Angel runs

This section describes how to configure Angel to run from:

• ROM

• ROM mapped to address zero

• RAM (the default).

Link addresses

The makefile for angel.rom contains two makefile macros that control the addresses
where Angel is linked:

RWADDR This defines the base address for read/write areas, such as dataseg and
bss (zero-initialized) areas, along with some assembler areas. Angel
requires approximately 24KB of free RAM for its read/write areas.

ROADDR This defines the base address for read-only areas. In general, read-only
areas are code areas. Angel requires between 50 and 100KB of RAM for
its read-only areas.

The target-specific configuration file devconf.h contains a number of macros that
define the memory layout of the target board. It also contains checks to ensure that the
values of RWADDR and ROADDR are sensible.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-39

Most of these macros are only used within devconf.h (for the sanity checks, in the
READ/WRITE_PERMITTED macros, and for defining application stack and heap areas).
In addition, the macro ROMBase is used during startup to calculate the offset between
the code currently executing in ROM and its eventual ROADDR destination.

ROM locations

Angel supports two types of ROM system:

• ROM mapped to address 0 on reset, and mapped out to RAM during Angel
bootstrap

• ROM permanently mapped to address 0.

For the first type:

1. Define ROMBase in devconf.h as the normal (mapped-out) address of the
ROM.

2. Set the ROM-only build variable in target.s to FALSE.

3. Provide an assembler macro called UNMAPROM in target.s that maps the ROM
away from 0.

4. Declare the makefile macro FIRST as ’startrom.o(ROMStartup)’, including
the quote (') characters.

For the second type:

1. Define ROMBase in devconf.h as 0.

2. Set the ROMonly build variable in target.s to TRUE.

3. Declare the makefile macro FIRST as ’except.o(__Vectors)’, including the
single quote (') characters.

Processor exception vectors

Regardless of where you declare RWADDR and ROADDR to be, the ARM processor
requires the exception vector table to be located at zero. There are a number of
situations where this happens by default, for example when RWADDR is set to 0, or in
ROM-at-zero systems.

When this does not happen by default, Angel explicitly copies everything in
AREA __Vectors from RWADDR to zero. All code within the __Vectors area must be
position-independent, because it is linked to run at ROADDR, not zero.

Angel

5-40 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

In most configurations, Angel is able to detect a branch through zero by application
code, and report it as an error. However, this is not possible in ROM-at-zero systems.
In this case, a branch through zero causes:

• a system reboot if the processor is executing in a privileged mode

• a system crash if the processor is not executing in a privileged mode.

5.4.5 Configuring SWI numbers

Angel requires one SWI in order to operate. The SWI is used to:

• change processor mode to gain system privileges

• make semihosting requests

• report an exception to the debugger.

The SWI passes a reason code in r0 to determine the type of request. Depending on the
SWI, additional arguments are passed in r1. Refer to Input/Output SWIs on page 6-10
for more information.

The SWI number is different for ARM state and Thumb state. By default, the SWI
numbers used are:

ARM state 0x123456

Thumb state 0xab

If you want to use either of these SWI numbers for your system you can reconfigure the
SWI to use any of the available SWI numbers. If you change these values you must:

• specify the new SWI value in the Angel definition files.

• recompile the debug agent using the new value.

In C, the SWI numbers are defined in Angel\Source\arm.h as:

#define angel_SWI_ARM (0x123456)
#define angel_SWI_THUMB (0xAB)

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-41

5.5 Angel communications architecture

This section gives an overview of the Angel communications architecture. It describes
how the various parts of the architecture fit together, and how debugging messages are
transmitted and processed by Angel. For full details of the Angel Debug Protocol and
messages, refer to Angel Debug Protocol and Angel Debug Protocol Messages.

5.5.1 Overview of the Angel communications layers

Figure 5-5 shows a conceptual model of the communication layers for Angel. In
practice, some layers might be combined.

 Figure 5-5 Communications layers for Angel

The channels layer includes:

ADP The Angel Debug Protocol channel. This consists of the Host ADP
channel (HADP) and Target ADP channel (TADP).

BOOT The boot channel.

TDCC The Thumb debug communications channel.

CLIB C library support.

At the top level on the target, the Angel agent communicates with the debugger host,
and the user application can make use of semihosting support (CLIB).

�%������)�
����,

�'�

'���
��-�������!����������-���
���,� ��!�-���
��-�����

'���
�%

�,(�)

�>>� �'�� �+#�

��)���)��
���%��,-����������,�(���,�

Angel

5-42 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

All communications for debugging (ADP, BOOT, TDCC, CLIB) require a reliable
channel between the target and the host. The reliable communications and buffer
management layer is responsible for providing reliability, retransmissions, and
multiplexing/demultiplexing for these channels. This layer must also handle buffer
management, because reliability requires retransmission after errors have occurred.

The device driver layer detects and rejects bad packets but does not offer reliability
itself.

5.5.2 Boot support

If there are two or more debug devices (for example, serial and serial/parallel), the boot
agent must be able to receive messages on any device and then ensure that further
messages that come through the channels layer are sent to the correct (new) device.

When the debug agent detects a Reboot or Reset message, it listens to the other channels
using the device that received the message. All debug channels switch to use the newly
selected debug device.

During debugging, each channel is connected through the same device to one host.
Initially, Angel listens on all Angel-aware devices for an incoming boot packet, and
when one is received, the corresponding device is selected for further Angel use. Angel
listens for a reset message throughout a debugging session, so that it can respond to
host-end problems or restarts.

To support this, the channels layer provides a function to register a read callback across
all Angel-aware devices, and a function to set the default device for all other channel
operations.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-43

5.5.3 Channels layer and buffer management

The channels layer is responsible for multiplexing the various Angel channels onto a
single device, and for providing reliable communications over those channels. The
channels layer is also responsible for managing the pool of buffers used for all
transmission and reception over channels. Raw device I/O does not use the buffers.

Although there are several channels that could be in use independently (for example,
CLIB and HADP), the channel layer accepts only one transmission attempt at a time.

Channel restrictions

To simplify the design of the channels layer and to help ensure that the protocols
operating over each channel are free of deadlocks, the following restriction is placed on
the use of each channel.

For a particular channel, all messages must originate from either the Host or the Target,
and responses can be sent only in the opposite direction on that channel. Therefore two
channels are required to support ADP:

• one for host-originated requests (Read Memory, Execute, Interrupt Request)

• one for target-originated requests (Thread has stopped).

Each message transmitted on a channel must be acknowledged by a reply on the same
channel.

Buffer management

Managing retransmission means that the channels layer must keep messages that have
been sent until they are acknowledged. The channel layer supplies buffers to channel
users who want to transmit, and then keeps transmitted buffers until acknowledged.

The number of available buffers might be limited by memory to less than the theoretical
maximum requirement of one for each channel and one for each Angel-aware device.

The buffers contain a header area sufficient to contain channel number and sequence
IDs, for use by the channels layer itself. Any spare bits in the channel number byte are
reserved as flags for future use.

Angel

5-44 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Long buffers

Most messages and responses are short (typically less than 40 bytes), although some can
be up to 256 bytes long. However, there are some situations where larger buffers would
be useful. For example, if the host is downloading programs or configuration data to the
target, a larger buffer size reduces the overhead created by channel and device headers,
by acknowledgment packets and by the line turnaround time required to send each
acknowledgment (for serial links). For this reason, a long (target-defined but suggested
size of 4KB) buffer is available for target memory writes, that are used for program
downloads.

Limited RAM

When RAM is unlimited, the easiest solution is to make all buffers large. There is a
mechanism that allows a single large buffer to be shared, because RAM in an Angel
system is not normally an unlimited resource.

When the device driver has read enough of a packet to determine the size of the packet
being received, it performs a callback asking for a suitably sized buffer. If a small buffer
is adequate, a small buffer is provided. If a large buffer is required, but is not available,
the packet is treated as a bad packet, and a resend request results.

Buffer life cycle

When sending data, the user of a channel must explicitly allocate a buffer before
requesting a write. Buffers must be released either by:

• Passing the buffer to one of the channel transmit functions in the case of reliable
data transmission. In this case, the channels code releases the buffer.

• Explicitly releasing it with the release function in the case of unreliable data
transmission.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-45

Receive buffers must be explicitly released with the release function (Figure 5-6).

 Figure 5-6 Send buffer lifecycle

Channel packet format

Channel packets contain information, including:

• channel ID, such as the HADP ID

• packet number

• acknowledged packet number

• flags used for distinguishing data from control information.

Refer to Angel Debug Protocol for a complete description of the channel packet format.

The length of the complete data packet is returned by the device driver layer. An overall
length field for the user data portion of the packet it not required, because the channel
header is fixed length.

����������������

����
����� ��������������

����
�����

������

���

����

���� ������ !

���

����

���� ������ !

���������

Angel

5-46 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Heartbeat mechanism

Heartbeats must be enabled for reliable packet transmission to work.

The remote_a heartbeat software writes packets using at least the heartbeat rate, and
uses heartbeat packets to ensure this. It expects to see packets back using at least the
packet timeout rate, and signals a timeout error if this is violated.

5.5.4 Device driver layer

Angel supports polled and asynchronous interrupt-driven devices, and devices that start
in an asynchronous mode and finish by polling the rest of a packet. At the boundary of
the device driver layer, the interface offers asynchronous (by callback) read and write
interfaces to Angel, and a synchronous interface to the application.

Support for callback across all devices

This is primarily a channels layer issue, but because the boot channel must listen on all
Angel-compatible devices, the channels layer must determine how many devices to
listen to for boot messages, and which devices those are.

To provide this statically, the devices layer exports the appropriate device table or
tables, together with the size of the tables.

Transmit queueing

Because the core operating mode is asynchronous and more than one thread can use a
device, Angel rejects all but the first request, returns a busy error message, and leaves
the user (channels or the user application) to retry later.

Angel interrupt handlers

Angel interrupt handlers are installed statically, at link time. The Angel interrupt
handler runs off either IRQ or FIQ. It is recommended that it is run off IRQ. The Angel
interrupt is defined in devconf.h.

Control calls

Angel device drivers provide a control entry point that supports the enable/disable
transmit/receive commands, so that Angel can control application devices at critical
times.

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-47

5.6 The Fusion IP stack for Angel

The Ethernet hardware is specific to the development board you are using. The sections
below assume a ARM development board, Fusion IP stack, and Ethernet Adaptor Kit
(No. KPI 0014D).

5.6.1 How Angel, Fusion, and the ARM development board hardware fit together

The Ethernet interface for the ARM development board card is provided by an Olicom
EtherCom PCMCIA Ethernet card installed in either PCMCIA slot. The Olicom card
uses an Intel i82595 Ethernet controller.

The UDP/IP stack is the Pacific Softworks Fusion product, ported to ARM and the
Angel environment. The drivers for PCMCIA and the Ethernet card have been
implemented, as has the Angel device driver to make the whole stack appear as an
Angel device. Figure 5-7 shows how the components fit together.

 Figure 5-7 Angel, Fusion, and ARM development board hardware

Angel

Angel driver framework

Angel
Ethernet driver

Fusion
sockets library

Fusion
UDP

Fusion
IP

i82595
controller

Olicom
card

pcmcia
manager

Ethernet

Angel

5-48 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Initialization

The stack is initialized in the following sequence:

1. devclnt.c:angel_InitialiseDevices() calls
ethernet.c:ethernet_init()to open a socket.

2. fusion:socket() notices that the fusion stack has not been initialized. Fusion
stack initialization calls:

a. olicom.c:olicom_init() calls:

b. pcmcia.c:pcmcia_setup() detects Olicom card and calls:

c. olicom.c:olicom_card_handler() with a card insertion event and
then:

d. olicom.c:read_card_params() to register olicom_isr() with
pcmcia.c.

3. Fusion stack initialization calls:

olicom.c:olicom_updown() and, through olicom_state():

82595.c:i595_bringup() to complete the initialization sequence.

Angel Ethernet device driver

After initialization, the Angel side of the driver is implemented as a polling device. At
every call to Angel_Yield(), angel_EthernetPoll() is invoked, and
non-blocking recv() calls are made to the Fusion stack to see if data is waiting on any
of the sockets.

Outgoing packets are passed to the Fusion stack in a single step by calling sendto().

Angel

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 5-49

Interrupt handling

The bottom of the Fusion stack is driven by interrupts from the Olicom card. Interrupts
are handled in the following sequence:

1. suppasm.s:angel_DeviceInterruptHandler() calls the GETSOURCE
macro in pid/target.s to identify the PCMCIA controller as the source.

2. pcmcia.c:angel_PCMCIAIntHandler() establishes that it is an I/O interrupt
and calls the routine registered during initialization.

3. olicom.c:olicom_isr() checks the interrupt, switches off interrupts from the
Olicom card, and serializes olicom_process() to do the processing with all
other interrupts enabled.

4. olicom.c:olicom_process() identifies the reason for the interrupt and
passes it as an event to olicom_state().

5. olicom.c:olicom_state() calls an appropriate routine in 82595.c to handle
packet reception and transmission.

6. 82595.c routines control the i82595 chip and transfer packets in both directions
between Fusion buffers and the chip. Calls are made to Fusion functions as
appropriate.

7. olicom.c:olicom_process() checks to see whether all interrupt events have
been serviced. If so, Olicom interrupts are re-enabled. If not,
olicom_process() queues itself again and then exits in case another device is
waiting for the serializer lock.

Additionally, the Fusion stack can make calls to olicom_start() (to queue a new
packet for transmission), olicom_ioctl(), and olicom_updown() in response to
socket calls from the Angel Ethernet driver or as a result of packet processing.

Angel

5-50 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-1

Chapter 6
Semihosting SWIs

This chapter describes the semihosting mechanism. Semihosting provides code running
on an ARM target use of facilities on a host computer that is running an ARM debugger.
Examples of such facilities include the keyboard input, screen output, and disk I/O. This
chapter contains the following sections:

• Overview of the C library support SWIs on page 6-2

• Semihosting implementation on page 6-5

• Adding an application SWI handler on page 6-7

• Input/Output SWIs on page 6-10

• Debug agent interaction SWIs on page 6-23.

Semihosting SWIs

6-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

6.1 Overview of the C library support SWIs

Semihosting is a mechanism for ARM targets to communicate input/output requests
from application code to a host computer running a debugger. This mechanism could be
used, for example, to allow functions in the C library, such as printf() and scanf(),
to use the screen and keyboard of the host rather than having a screen and keyboard on
the target system.

Semihosting is implemented by a set of defined software interrupt (SWI) operations.
The application invokes the appropriate SWI and the debug agent then handles the SWI
exception. The debug agent provides the required communication with the host.

In many cases, the semihosting SWI will be invoked by code within library functions.
The application can also invoke the semihosting SWI directly. Refer to the C library
descriptions in the ADS Tools Guide for more information on support for semihosting
in the ARM C library.

Figure 6-1 shows an overview of semihosting.

 Figure 6-1 Semihosting overview

��������������������

1�#

���)�
����,���-�

+����� ���-�

1�#���,-)�-��
-���(��(�,�

�����

�����,
�����,�!���
-���((�����,,�,(
�,���%�

��*��-�%�)� �-
�,���%��%
���,

��%�

�������

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-3

The semihosting SWI interface is common across all debug agents provided by ARM.
Semihosted operations will work under ARMulator, Angel, Multi-ICE, or
EmbeddedICE without any requirement for porting.

6.1.1 The SWI interface

The ARM and Thumb SWI instructions contain a field that encodes the SWI number
used by the application code. This number can be decoded by the SWI handler in the
system. See the chapter on exception handling in ADS Developer Guide for more
information on handlers.

Semihosting operations are requested using a single SWI number in order to leave the
other SWI numbers available for use by the application or operating system. By default
the SWI used for semihosting is:

0x123456 in ARM state

0xAB in Thumb state

You can configure the semihosting SWI number, but this is not advisable because you
must then ensure that all code in your system, including library code, uses the new SWI
number.

The SWI number indicates to the debug agent that the SWI is a semihosting request. In
order to distinguish between operations, the operation type is passed in r0, rather than
being encoded in the SWI number. All other parameters are passed in a block that is
pointed to by r1.

The result is returned in r0, either as an explicit return value or as a pointer to a data
block. Even if no result is returned, assume that r0 is corrupted. The application must
preserve registers r1-r3 (and r0 if used) when a system call is made.

Semihosting SWIs

6-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

The available semihosting operation numbers for operation type are allocated as
follows:

0x00 to 0x31 This is used by ARM.

0x32 to 0xff This is reserved for future use by ARM.

0x100 to 0x1ff This is reserved for user applications. They will not be used by
ARM.

If you are writing your own SWI operations, however, you should
use a different SWI number rather than using the semihosted SWI
number and these operation type numbers.

0x200 to 0xffffffff
This is undefined. They are not currently used and not
recommended for use.

In the following sections, the number in parentheses after the operation name is the
value placed into r0. For example SYS_OPEN (0x01).

If you are calling SWIs from assembly language code it is best to use the operation
names that are defined in arm.h. You can define the operation names with an EQU
directive. For example:

SYS_OPEN EQU 0x01
SYS_CLOSE EQU 0x02

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-5

6.2 Semihosting implementation

The functionality provided by semihosting is basically the same on all debug hosts. The
implementation of semihosting, however, differs between hosts.

6.2.1 ARMulator

When a semihosting SWI is encountered, the semihosted functionality within
ARMulator is automatically invoked. ARMulator traps the SWI directly and the
instruction in the SWI entry in the vector table is not executed.

To turn the support for semihosting off in ARMulator, you should set the variable OS in
your armul.cnf file to None.

See the Peripheral models on page 2-26 for more details.

6.2.2 Angel

Angel installs a SWI handler when the target powers up.

When the target executes a semihosted SWI instruction, the Angel SWI handler carries
out the required communication with the host.

6.2.3 Multi-ICE and EmbeddedICE

When using a protocol convertor such as Multi-ICE, in default configuration, or the
EmbeddedICE interface, semihosting is implemented as follows:

1. A breakpoint is set on the SWI vector.

2. When this breakpoint is hit, the protocol convertor examines the SWI number.

3. If the SWI is recognized, the protocol convertor emulates it and transparently
restarts execution of the application.

If the SWI is not recognized as a semihosting SWI, the protocol convertor halts
the processor and reports an error.

Semihosting SWIs

6-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

This semihosting mechanism can be disabled or changed by the following debugger
internal variables:

$semihosting_enabled
By default, this variable is set to 1 to enable semihosting. Setting it to 0
disables semihosting. This can be useful, for example, when debugging
applications running from ROM. Disabling semihosting in such
situations frees up another watchpoint unit. Enable semihosting by
setting $semihosting_enabled rather than setting the S bit in
$vector_catch.

$semihosting_vector
This variable controls the location of the breakpoint set by the protocol
converter to detect a semihosted SWI. It is set to to the SWI entry in the
exception vector table (0x8) by default. The protocol converter handles
the semihosted SWI and then examines the contents of lr and returns to
the instruction following the SWI instruction in your code. This
completely bypasses the contents of the $semihosting_vector
address.

If this variable is set to 0, this does not imply address 0. Address 8 is used
instead. Regardless of the value of $vector_catch, all exceptions and
interrupts are trapped and reported as an error condition.

For details of how to modify debugger internal variables, see the appropriate debugger
documentation.

6.2.4 Multi-ICE DCC semihosting

Multi-ICE can also use the debug communications channel so that the core is not
stopped while semihosting takes place. This is enabled by setting
$semihosting_enabled to 2. Refer to the Multi-ICE User Guide [ARM DUI 0048]
for more details.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-7

6.3 Adding an application SWI handler

In some circumstances it is useful to have both the semihosted SWIs and your own
application-specific SWIs available. In such cases you must ensure that the two SWIs
cooperate correctly. The way to ensure this depends upon the debug agent in use.

6.3.1 ARMulator

To get your own handler and the semihosting handler to cooperate, simply install your
SWI handler into the SWI entry in the vector table. No other actions are required.

When an appropriate SWI is reached in your code, the semihosting functionality in
ARMulator detects that it is not a semihosting SWI and executes the instruction in the
SWI entry of the vector table instead. This instruction branches to your own SWI
handler.

6.3.2 Angel

Application SWI handlers are added by:

1. Saving the SWI vector (as installed by Angel).

2. Adjusting the contents of the SWI vector to point to the application SWI handler.
(This is called chaining.) This is described in more detail in the exception
handling section of the ADS Developer Guide.

6.3.3 Multi-ICE and EmbeddedICE

To ensure that the application SWI handler will successfully cooperate with the protocol
convertor semihosting mechanism:

1. Install the application SWI handler into the vector table.

2. Modify $semihosting_vector to point to a location at the end of the
application handler. This point in the handler must only be reached if your handler
does not handle the SWI.

At the point Multi-ICE or EmbeddedICE interface traps the SWI, your own SWI
handler must have already restored all registers to the values when your SWI handler
was entered. Typically, this means that your SWI handler should store the registers to a
stack on entry and restore them before falling through to the semihosting vector address.

Semihosting SWIs

6-8 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Caution
It is essential that the actual position $semihosting_vector points to within the
application handler is correct.

See exception handling in the ADS Developer Guide for writing SWI handlers.

For example, a particular SWI handler can detect if it has failed to handle a SWI and
branch to an error handler:

; r0 = 1 if SWI handled
 CMP r0, #1 ; Test if SWI has been handled.
 BNE NoSuchSWI ; Call unknown SWI handler.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12,pc}^ ; Restore registers and return.

This code could be modified for use with Multi-ICE or EmbeddedICE interface
semihosting as follows:

; r0 = 1 if SWI handled
 CMP r0, #1 ; Test if SWI has been handled.
 LDMFD sp!, {r0} ; Unstack SPSR...
 MSR spsr, r0 ; ...and restore it.
 LDMFD sp!, {r0-r12,lr} ; Restore registers.
 MOVEQS pc, lr ; Return if SWI handled.
Semi_SWI
 MOVS pc,lr ; Fall through to Multi-ICE /
 ; EmbeddedICE interface handler.

The $semihosting_vector variable should be set up to point to the address of
Semi_SWI. The instruction at Semi_SWI never gets executed because the protocol
converter returns directly to the application after processing the semihosted SWI (see
Figure 6-2).

Caution
Using a normal SWI return instruction ensures that the application does not crash if the
semihosting breakpoint is not set up. The semihosting action requested is not carried out
and the handler simply returns.

You must also be careful if you modify $semihosting_vector to point to the
fall-through part of the application SWI handler. If $semihosting_vector changes
value before the application starts execution, and semihosted SWIs are invoked before
the application SWI handler is installed, an unknown watchpoint error will occur.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-9

 Figure 6-2 Semihosting with breakpoint

The error occurs because the vector table location for the SWI has not yet had the
application handler installed into it and might still contain the software breakpoint bit
pattern. Because the $semihosting_vector address has moved to a place that cannot
currently be reached, the protocol convertor no longer knows about the triggered
breakpoint. To prevent this from happening, you should change the contents of
$semihosting_vector only at the point in your code where the application SWI
handler is installed into the vector table.

Note

If semihosting is not required at all by an application, this process can be simplified by
setting $semihosting_enabled to 0.

6.3.4 Multi-ICE DCC semihosting

When using the DCC semihosting mechanism, adding an application SWI handler
should be done in exactly the same way as non-DCC semihosting (see Multi-ICE and
EmbeddedICE on page 6-7).

�����

����

����	

���(���
����

1�#

����

���

���	

?�
���
���)�

��%��

1���!����#,�������

������
������-

'���������

��%����-

#�$

"#$

�,-���,�-

����

����

���

���	

����

�����
�)
��,������

����&���,�

1�#�4�,-)��

���
��

	

��

�
��
�

���
���������
���
����������������
���� !����"�

!#$%&!'(
������� ��

@%�����%��,(=�,��)�-�A��
@%�����%��,(=��
����A�	*6�	

Semihosting SWIs

6-10 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

6.4 Input/Output SWIs

The SWIs listed in Table 6-1 implement the semihosted input/output operations. These
operations are used by C library functions such as printf() and scanf(). They can
be treated as an ATPCS function call. However, except for r0 that contains the return
status, they restore the registers they are called with before returning.

 Table 6-1 Semihosting SWIs

SWI Description

SYS_OPEN (0x01) on page 6-11 Open a file on the host.

SYS_CLOSE (0x02) on page 6-12 Close a file on the host.

SYS_WRITEC (0x03) on page 6-12 Write a character to the console.

SYS_WRITE0 (0x04) on page 6-13 Write a null-terminated string to the console.

SYS_WRITE (0x05) on page 6-13 Write to a file on the host.

SYS_READ (0x06) on page 6-14 Read the contents of a file into a buffer.

SYS_READC (0x07) on page 6-14 Read a byte from the console.

SYS_ISERROR (0x08) on page 6-15 Determine if a return code is an error.

SYS_ISTTY (0x09) on page 6-15 Check whether a file is connected to an interactive device.

SYS_SEEK (0x0a) on page 6-16 Seek to a position in a file.

SYS_FLEN (0x0c) on page 6-16 Return the length of a file.

SYS_TMPNAM (0x0d) on page 6-17 Return a temporary name for a file.

SYS_REMOVE (0x0e) on page 6-17 Remove a file from the host.

SYS_RENAME (0x0f) on page 6-18 Rename a file on the host.

SYS_CLOCK (0x10) on page 6-18 Number of centiseconds since execution started.

SYS_TIME (0x11) on page 6-19 Number of seconds since Jan 1, 1970.

SYS_SYSTEM (0x12) on page 6-19 Pass a command to the host command-line interpreter.

SYS_ERRNO (0x13) on page 6-19 Get the value of the C library errno variable.

SYS_GET_CMDLINE (0x15) on page 6-20 Get the command-line used to call the executable.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-11

Note

When used with Angel, these SWIs use the serializer and the global register block, and
they can take a significant length of time to process.

6.4.1 SYS_OPEN (0x01)

Open a file on the host system. The file path is specified either as relative to the current
directory of the host process, or absolutely, using the path conventions of the host
operating system.

The ARM debuggers interpret the special path name :tt as meaning the console input
stream (for an open-read) or the console output stream (for an open-write). Opening
these streams is performed as part of the standard startup code for those applications
that reference the C stdio streams.

Entry

On entry, r1 contains a pointer to a three-word argument block:

word 1 This is a pointer to a null-terminated string containing a file or device
name.

word 2 This is an integer that specifies the file opening mode. Table 6-2 gives the
valid values for the integer, and their corresponding ANSI C fopen()
mode.

word 3 This is an integer that gives the length of the string pointed to by word 1.
The length does not include the terminating null character that must be
present.

SYS_HEAPINFO (0x16) on page 6-21 Get the system heap parameters.

SYS_ELAPSED (0x30) on page 6-22 Get the number of target ticks since execution started.

SYS_TICKFREQ (0x31) on page 6-22 Define a tick frequency.

 Table 6-1 Semihosting SWIs (Continued)

SWI Description

 Table 6-2 Value of mode

mode 0 1 2 3 4 5 6 7 8 9 10 11

ANSI C fopen mode r rb r+ r+b w wb w+ w+b a ab a+ a+b

Semihosting SWIs

6-12 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Return

On exit, r0 contains:

• a nonzero handle if the call is successful

• –1 if the call is not successful.

6.4.2 SYS_CLOSE (0x02)

Closes a file on the host system. The handle must reference a file that was opened with
SYS_OPEN.

Entry

On entry, r1 contains a pointer to a one-word argument block:

word 1 This is a file handle referring to an open file.

Return

On exit, r0 contains:

• 0 if the call is successful

• –1 if the call is not successful.

6.4.3 SYS_WRITEC (0x03)

Writes a character byte, pointed to by r1, to the debug channel. When executed under
an ARM debugger, the character appears on the display device connected to the
debugger.

Entry

On entry, r1 contains a pointer to the character.

Return

None. Register r0 is corrupted.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-13

6.4.4 SYS_WRITE0 (0x04)

Writes a null-terminated string to the debug channel. When executed under an ARM
debugger, the characters appear on the display device connected to the debugger.

Entry

On entry, r1 contains a pointer to the first byte of the string.

Return

None. Register r0 is corrupted.

6.4.5 SYS_WRITE (0x05)

Writes the contents of a buffer to a specified file at the current file position. The file
position is specified either:

• explicitly, by a SYS_SEEK

• implicitly as one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed.

The file operation should be performed as a single action whenever possible. That is, a
write of 16KB should not be split into four 4KB chunks unless there is no alternative.

Entry

On entry, r1 contains a pointer to a three-word data block:

word 1 This contains a handle for a file previously opened with SYS_OPEN

word 2 This points to the memory containing the data to be written

word 3 This contains the number of bytes to be written from the buffer to the file.

Return

On exit, r0 contains:

• 0 if the call is successful

• the number of bytes that are not written, if there is an error.

Semihosting SWIs

6-14 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

6.4.6 SYS_READ (0x06)

Reads the contents of a file into a buffer. The file position is specified either:

• explicitly by a SYS_SEEK

• implicitly one byte beyond the previous SYS_READ or SYS_WRITE request.

The file position is at the start of the file when the file is opened, and is lost when the
file is closed. The file operation should be performed as a single action whenever
possible. That is, a read of 16KB should not be split into four 4KB chunks unless there
is no alternative.

Entry

On entry, r1 contains a pointer to a four-word data block:

word 1 This contains a handle for a file previously opened with SYS_OPEN.

word 2 This points to a buffer.

word 3 This contains the number of bytes to read to the buffer from the file.

word 4 This is an integer that specifies the file mode.

Table 6-2 on page 6-11 gives the valid values for the integer, and their
corresponding ANSI C fopen() modes.

Return

On exit, r0 contains:

• 0 if the call is successful

• the number of bytes not read, if there is an error.

If the handle is for an interactive device (that is, SYS_ISTTY returns 1 for this handle),
a nonzero return from SYS_READ indicates that the line read did not fill the buffer.

6.4.7 SYS_READC (0x07)

Reads a byte from the debug channel. The read is notionally from the keyboard attached
to the debugger.

Entry

Register r1 must contain zero. There are no other parameters or values possible.

Return

On exit, r0 contains the byte read from the debug channel.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-15

6.4.8 SYS_ISERROR (0x08)

Determines whether the return code from another semihosting call is an error status or
not. This call is passed a parameter block containing the error code to examine.

Entry

On entry, r1 contains a pointer to a one-word data block:

word 1 This is the required status word to check.

Return

On exit, r0 contains:

• 0 if the status word is not an error indication

• a nonzero value if the status word is an error indication.

6.4.9 SYS_ISTTY (0x09)

Checks whether a file is connected to an interactive device.

Entry

On entry, r1 contains a pointer to a one-word argument block:

word 1 This is a handle for a previously opened file object.

Return

On exit, r0 contains:

• 1 if the handle identifies an interactive device

• 0 if the handle identifies a file

• a value other than 1 or 0 if an error occurs.

Semihosting SWIs

6-16 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

6.4.10 SYS_SEEK (0x0a)

Seeks to a specified position in a file using an offset specified from the start of the file.
The file is assumed to be a byte array and the offset is given in bytes.

Entry

On entry, r1 contains a pointer to a two-word data block:

word 1 This is a handle for a seekable file object

word 2 This is the absolute byte position to be sought to.

Return

On exit, r0 contains:

• 0 if the request is successful

• A negative value if the request is not successful. SYS_ERRNO can be used to
read the value of the host errno variable describing the error.

Note

The effect of seeking outside the current extent of the file object is undefined.

6.4.11 SYS_FLEN (0x0c)

Returns the length of a specified file.

Entry

On entry, r1 contains a pointer to a one-word argument block:

word 1 This is a handle for a previously opened, seekable file object.

Return

On exit, r0 contains:

• the current length of the file object, if the call is successful

• –1 if an error occurs.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-17

6.4.12 SYS_TMPNAM (0x0d)

Returns a temporary name for a file identified by a system file identifier.

Entry

On entry, r1 contains a pointer to a three-word argument block:

word 1 This is a pointer to a buffer

word 2 This is a target identifier for this filename

word 3 This contains the length of the buffer. The length should be at least the
value of L_tmpnam on the host system.

Return

On exit, r0 contains:

• 0 if the call is successful

• –1 if an error occurs.

The buffer pointed to by r1 contains the filename.

6.4.13 SYS_REMOVE (0x0e)

Deletes a specified file.

Entry

On entry, r1 contains a pointer to a two-word argument block:

word 1 This points to a null-terminated string that gives the pathname of the file
to be deleted

word 2 This is the length of the string.

Return

On exit, r0 contains:

• 0 if the delete is successful

• a nonzero, host-specific error code if the delete fails.

Semihosting SWIs

6-18 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

6.4.14 SYS_RENAME (0x0f)

Renames a specified file.

Entry

On entry, r1 contains a pointer to a four-word data block:

word 1 This is a pointer to the name of the old file.

word 2 This is the length of the old file name.

word 3 This is a pointer to the new file name.

word 4 This is the length of the new file name.

Both strings are null-terminated.

Return

On exit, r0 contains:

• 0 if the rename is successful

• a nonzero, host-specific error code if the rename fails.

6.4.15 SYS_CLOCK (0x10)

Returns the number of centiseconds since the execution started.

Values returned by this SWI can be of limited use for some benchmarking purposes
because of communication overhead or other agent-specific factors. For example, with
the Multi-ICE debug agent the request is passed back to the host for execution. This can
lead to unpredictable delays in transmission and process scheduling.

This function should be used only to calculate time intervals (the length of time some
action took) by calculating the difference in the result on two occasions.

Entry

Register r1 must contain zero. There are no other parameters.

Return

On exit, r0 contains:

• the number of centiseconds since some arbitrary start point, if the call is
successful

• –1 if the call is unsuccessful (for example, because of a communications error).

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-19

6.4.16 SYS_TIME (0x11)

Returns the number of seconds since 00:00 January 1, 1970.

Entry

There are no parameters. Register r1 must contain zero.

Return

On exit, r0 contains the number of seconds.

6.4.17 SYS_SYSTEM (0x12)

Passes a command to the host command-line interpreter. This enables you to execute a
system command such as ls, or pwd. The terminal I/O is on the host, and is not visible
to the target.

Entry

On entry, r1 contains a pointer to a two-word argument block:

word 1 This points to a string that is to be passed to the host command-line
interpreter.

word 2 This is the length of the string.

Return

On exit, r0 contains the return status.

6.4.18 SYS_ERRNO (0x13)

Returns the value of the C library errno variable associated with the host support for
the debug monitor. The errno variable can be set by a number of C library semihosted
functions, including:

• SYS_REMOVE

• SYS_OPEN

• SYS_CLOSE

• SYS_READ

• SYS_WRITE

• SYS_SEEK.

Whether or not, and to what value errno is set is completely host-specific, except
where the ANSI C standard defines the behavior.

Semihosting SWIs

6-20 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Entry

There are no parameters. Register r1 must be zero.

Return

On exit, r0 contains the value of the C library errno variable.

6.4.19 SYS_GET_CMDLINE (0x15)

Returns the command line used to call the executable.

Entry

On entry, r1 points to a two-word data block to be used for returning the command string
and its length:

word 1 This is a pointer to a buffer of at least the size specified in word two.

word 2 This is the length of the buffer in bytes.

Return

On exit:

• Register r1 points to a two-word data block:

word 1 This is a pointer to null-terminated string of the command line.

word 2 This is the length of the string.

The debug agent might impose limits on the maximum length of the string that
can be transferred. However, the agent must be able to transfer a command line
of at least 80 bytes.

In the case of the Angel debug monitor using ADP, the minimum is slightly more
than 200 characters.

• Register r0 contains an error code:

— 0 if the call is successful

— –1 if the call is unsuccessful (for example, because of a communications
error).

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-21

6.4.20 SYS_HEAPINFO (0x16)

Returns the system heap parameters. The values returned are typically those used by the
C library during initialization. These values are defined in the devconf.h header file.
For Multi-ICE, the values returned are the image location and the top of memory.

The C library can override these values, but will do so only if __heap_base is defined
at link time (see ADS Tools Guide for more information on memory management in the
C library). In this case the values of the following symbols are used:

• __heap_base

• __heap_limit

• __stack_base

• __stack_limit

This call returns sensible answers, but the host debugger determines the actual values
by using the $top_of_memory debugger variable.

Entry

On entry, r1 contains the address of a pointer to a four-word data block. Word 1 of the
data block does not have to have a value. The contents of the data block are filled by the
function. See Example 6-1 for the structure of the data block and return values.

Example 6-1

struct block2 {
 int heap_base;
 int heap_limit;
 int stack_base;
 int stack_limit;
 }
struct block2 *mem_block, info;
mem_block = & info;
SemiSWI(SYS_HEAPINFO, (unsigned) &mem_block);

Return

On exit, r1 contains the address of the pointer to the structure.

If one of the values in the structure is 0, the system was unable to calculate the real
value. Typical values for an ARM development board are shown in Example 6-2.

Semihosting SWIs

6-22 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Example 6-2

Heap Base = 0x00000000
Heap Limit = 0x00076e00
Stack Base = 0x00078e00
Stack Limit = 0x00076e00

6.4.21 SYS_ELAPSED (0x30)

Returns the number of elapsed target ticks since the support code started execution.
Ticks are defined by SYS_TICKFREQ. If the target cannot define the length of a tick,
it can supply SYS_ELAPSED.

Entry

Register r1 contains a pointer to a double word for storing the number of elapsed ticks.
The first word is the least significant word. The last word is the most significant word.
This follows the convention used by the ARM compilers for the long long data type.

Return

If the double word pointed to by r1 (low-order word first) does not contain the number
of elapsed ticks, r0 is set to –1.

6.4.22 SYS_TICKFREQ (0x31)

Defines a tick frequency.

Entry

On entry, r0 contains the reason code 0x31

Exit

On exit, r0 contains either:

• the ticks per second

• –1 if the target does not know the value of one tick.

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-23

6.5 Debug agent interaction SWIs

In addition to the C library semihosted functions described in Input/Output SWIs on
page 6-10, the following SWIs support interaction with the debug agent:

• The ReportException SWI. This SWI is used by the semihosting support code as
a way to report an exception to the debugger.

• The EnterSVC SWI. This SWI sets the processor to Supervisor mode.

• The reason_LateStartup SWI. This SWI is obsolete and no longer supported.

These are described below.

6.5.1 angel_SWIreason_EnterSVC (0x17)

Sets the processor to Supervisor (SVC) mode and disables all interrupts by setting both
interrupt mask bits in the new CPSR. Under Angel, the User stack pointer (r13_USR)
is copied to the Supervisor stack pointer (r13_SVC) and the I and F bits in the current
CPSR are set, disabling normal and fast interrupts.

Note

If debugging with ARMulator or Multi-ICE:

• r0 is set to zero indicating that no function is available for returning to User mode

• the User mode stack pointer is not copied to the Supervisor stack pointer.

Entry

On entry, r0 contains 0x17. Register r1 is not used. The CPSR can specify User or
Supervisor mode.

Return

On exit, r0 contains the address of a function to be called to return to User mode. The
function has the following prototype:

void ReturnToUSR(void)

If EnterSVC is called in User mode, this routine returns the caller to User mode and
restores the interrupt flags. Otherwise, the action of this routine is undefined.

If entered in User mode, the Supervisor stack is lost as a result of copying the user stack
pointer. The return to User routine restores r13_SVC to the Angel Supervisor mode
stack value, but this stack should not be used by applications.

Semihosting SWIs

6-24 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

After executing the SWI, the current link register will be r14_SVC, not r14_USR. If the
value of r14_USR is required after the call, it should be pushed onto the stack before
the call and popped afterwards, as for a BL function call.

6.5.2 angel_SWIreason_ReportException (0x18)

This SWI can be called by an application to report an exception to the debugger directly.
The most common use is to report that execution has completed, using
ADP_Stopped_ApplicationExit.

Entry

On entry r0 is set to Angel_SWIreason_ReportException and r1 is set to one of the
values listed in Table 6-3 and Table 6-4 on page 6-25. These values are defined in
adp.h.

ADP_UserInterruption is generated by Angel if the debugger sends an
ADP_InterruptRequest to stop the application. ADP_Breakpoint is generated
when Angel detects attempted execution of a breakpoint instruction. Angel does not
implement watchpoints, although other debug agents do.

The hardware exceptions are generated if the debugger variable $vector_catch is set
to catch that exception type, and the debug agent is capable of reporting that exception
type. Angel cannot report exceptions for interrupts on the vector it uses itself.

 Table 6-3 Hardware vector reason codes

Name (#defined in adp.h) Hexadecimal value

ADP_Stopped_BranchThroughZero 0x20000

ADP_Stopped_UndefinedInstr 0x20001

ADP_Stopped_SoftwareInterrupt 0x20002

ADP_Stopped_PrefetchAbort 0x20003

ADP_Stopped_DataAbort 0x20004

ADP_Stopped_AddressException 0x20005

ADP_Stopped_IRQ 0x20006

ADP_Stopped_FIQ 0x20007

Semihosting SWIs

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. 6-25

* next to values in Table 6-4 indicates that the value is not supported by the ARM
debuggers. The debugger reports an Unhandled ADP_Stopped exception for these
values.

Return

No return is expected from these calls. However, it is possible for the debugger to
request that the application continue by performing an RDI_Execute request or
equivalent. In this case, execution continues with the registers as they were on entry to
the SWI, or as subsequently modified by the debugger.

6.5.3 angel_SWIreason_LateStartup (0x20)

This SWI is obsolete.

 Table 6-4 Software reason codes

Name (#defined in adp.h) Hexadecimal value

ADP_Stopped_BreakPoint 0x20020

ADP_Stopped_WatchPoint 0x20021

ADP_Stopped_StepComplete 0x20022

ADP_Stopped_RunTimeErrorUnknown *0x20023

ADP_Stopped_InternalError *0x20024

ADP_Stopped_UserInterruption 0x20025

ADP_Stopped_ApplicationExit 0x20026

ADP_Stopped_StackOverflow *0x20027

ADP_Stopped_DivisionByZero *0x20028

ADP_Stopped_OSSpecific *0x20029

Semihosting SWIs

6-26 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-1

Glossary

The items in this glossary are listed in alphabetical order, with any symbols and
numerics appearing at the end.

ADP See Angel Debug Protocol.

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

Advanced
Microcontroller Bus
Architecture

On-chip communications standard for high-performance 32-bit and 16-bit embedded
microcontrollers.

ADW See ARM Debugger for Windows.

Glossary-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

AMBA See Advanced Microcontroller Bus Architecture.

Angel Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

Angel Debug Protocol Angel uses a debugging protocol called the Angel Debug Protocol (ADP) to
communicate between the host system and the target system. ADP supports multiple
channels and provides an error-correcting communications protocol.

ARM Debugger for
UNIX

ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Debugger for
Windows

ARM Debugger for Windows (ADW) and ARM Debugger for UNIX (ADU) are two
versions of the same ARM debugger software, running under Windows or UNIX
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Developer Suite A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended
Debugger

The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARMulator ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger providing
high-level debugging support for languages such as C, and low-level support for
assembly language. It is a command-line debugger that runs on all supported platforms.

AXD See ARM eXtended Debugger.

Basic ARM Ten System The Basic ARM Ten System (BATS) is a modelling scheme similar to but separate from
ARMulator. BATS is designed specifically to model systems based on the ARM10
processor. ARMulator models systems based on all earlier ARM processors.

BATS See Basic ARM Ten System.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See also Little-endian.

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-3

Breakpoint A location in the image. If execution reaches this location, the debugger halts execution
of the image. See also Watchpoint.

Configuration TRace
file (CTR)

BATS configuration file. Describes configuration of BATS components, and their
interconnections.

Context The information stored in a block of registers on entry to a subroutine, and held there
until needed for restoring the information on exit from the subroutine.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

CPSR Current Program Status Register. See Program Status Register.

CTR See Configuration TRace file

Debugger An application that monitors and controls the execution of a second application.
Usually used to find errors in the application program flow.

DLL See Dynamic Linked Library.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Dynamic Linked
Library

A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device such
as a printer or keyboard is often packaged as a DLL.

ELF Executable Linkable Format.

Executable image See Image.

Function A C++ method or free function.

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Host A computer which provides data and other services to another computer.

ICE In-circuit Emulator.

Image An file of executable code which can be loaded into memory on a target and executed
by a processor there.

JTAG Joint Test Access Group. Many debug and programming tools use a JTAG interface port
to communicate with processors. For further information refer to IEEE Standard, Test
Access Port and Boundary-Scan Architecture specification 1149.1 (JTAG).

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Glossary-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

Memory management
unit

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Multi-ICE Multi-processor in-circuit emulator. ARM registered trademark.

PID A platform-independent development board designed and supplied by ARM Ltd.

PIE A platform-independent evaluator card designed and supplied by ARM Ltd.

Processor An actual processor, real or emulated running on the target. A processor always has at
least one context of execution.

Processor Status
Register

See Program Status Register.

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on exectution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program Status
Register

Program Status Register (PSR), containing some information about the current
program and some information about the current processor. Often, therefore, also
referred to as Processor Status Register.

Is also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

Program image See Image.

Protection Unit Hardware that controls caches and access permissions to blocks of memory.

PSR See Program Status Register.

PU See Protection Unit

RDI The Remote Debug Interface (RDI) is an open ARM standard procedural interface
between a debugger and the debug agent. The widest possible adoption of this standard
is encouraged.

Remote_A A communications protocol used, for example, between debugger software such as
ARM eXtended Debugger (AXD) and a debug agent such as Angel.

ARM DUI0058B Copyright © 1999, 2000 ARM Limited. All rights reserved. Glossary-5

Saved Program Status
Register

See Program Status Register.

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

Source File A file which is processed as part of the image building process. Source files are
associated with images.

SPSR Saved Program Status Register. See Program Status Register.

SWI Software Interrupt. An instruction that causes the processor to call a
programer-specified subroutine. Used by ARM to handle semihosting.

Target The target processor (real or simulated), on which the target application is running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Task Queue Item Angel context switching information.

Thread A thread of execution on a processor.

A context of execution on a processor. A thread is always related to a processor and may
or may not be associated with an image.

TQI See Task Queue Item.

Tracing Recording diagnostic messages in a log file, to show the frequency and order of
execution of parts of the image. The text strings recorded are those that you specify
when defining a breakpoint or watchpoint. See Breakpoint and Watchpoint. See also
Stack backtracing.

Upcall Also called Callback. ARMulator models can use upcalls if they need to be informed
when state values change.

Veneer A small block of code used with subroutine calls when there is a requirement to change
processor state (ARM to Thumb or Thumb to ARM) or branch to an address that cannot
be reached in the current processor state.

Veneer memory model A memory model that adds its own functionality to another memory model. It calls the
other memory model for part of its functionality.

Watchpoint A location in the image that is monitored. If the value stored there changes, the
debugger halts execution of the image. See also Breakpoint.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Glossary-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI0058B

ARM DUI 0058 Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-1

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A
AddCounterDesc 4-81
AddCounterValue 4-82
AddToSwitch 4-80
ADP 5-41
adp.h 6-24
ADP_Stopped_ApplicationExit 6-24
AMBA 4-116
Angel

adding SWI handler 6-7
and exception handling 5-20
and ARMulator 5-14
Boot channel 5-41
boot support 5-42
breakpoint restrictions 5-27
breakpoint setting 5-21
buffer lifecycle 5-44
buffer management 5-43
C library support 5-20
channel restrictions 5-43
channels layer 5-43
channels packet format 5-45

communications layers 5-41
communications support 5-4, 5-21
component summary 5-7
configuring 5-37
configuring run address 5-38
configuring SWI numbers 5-40
context switching 5-32
debug agent interaction SWIs 6-23
debug support 5-3
debugger functions 5-25
device driver layer 5-46
downloading 5-23
enabling assertions 5-20
Enter SVC mode 6-23
and Ethernet 5-23
Ethernet support 5-47
exception handlers 5-38
exception handling 5-5
exception vectors 5-9
heartbeat mechanism 5-46
initialization 5-24
interrupt handlers 5-49
interrupt table 5-19

memory requirements 5-9
planning development 5-16
prebuilt images 5-11
processor exception vectors 5-39
profiling 5-38
programming restrictions 5-17
raw serial drivers 5-21
Report Exception SWI 6-24
reporting memory and processor

status 5-25
and RTOSes 5-18
semihosting support 5-3, 5-15, 5-17
semihosting SWIs 6-10
setting breakpoints 5-26
stacks 5-10, 5-34
supervisor mode 5-19
supervisor stack 5-17
task management 5-5, 5-25, 5-28,

5-33
task management functions 5-30
task priorities 5-28
task queue 5-33
Task Queue Items 5-32

Index

Index-2 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0058

TDCC 5-22
Thumb debug communications

channel 5-22
timers 5-38
undefined instruction 5-17

angel.hex 5-12
angel.m32 5-12
angel.rom 5-12, 5-38
Angel_BlockApplication() 5-29, 5-30
Angel_NewTask() 5-29, 5-30, 5-34
Angel_NextTask() 5-29, 5-31, 5-36
Angel_QueueCallback() 5-29
Angel_SelectNextTask() 5-31, 5-34,

5-36
Angel_SerialiseTask() 5-28, 5-33,

5-34, 5-36
Angel_Signal() 5-29, 5-31
angel_SWIreason_EnterSVC 6-23
Angel_SWIreason_ReportException

6-24
angel_SWIreason_ReportException

6-24
Angel_TaskID() 5-29, 5-32
angel_TQ_Pool 5-33
Angel_Wait() 5-29, 5-31, 5-33
Angel_Yield() 5-29, 5-31, 5-33, 5-48
armfast.c ARMulator model 2-19
armflat.c ARMulator model 2-18
armmap.c ARMulator model 2-20
armsd.map 2-20
ARMulator

accuracy 1-3, 2-2
adding models 3-2
and Angel 5-14
armul.cnf 4-98
ARMul_State 4-3
benchmarking 1-3, 2-2
byte order 4-12
byte-lane memory 4-12
callback 4-53
clock frequency 2-20
components 2-3
configurable memory model 2-20
configuration 4-58
configuring 3-15
configuring tracer 2-8
coprocessor initialization 4-24,

4-26, 4-27
counters 4-63

cycle count 4-18
cycle length 4-17
data abort 4-65
early models 4-4
elapsed time 4-17
emulation speed 2-19
event scheduling 4-67
events 4-91
exceptions 4-35, 4-38, 4-51, 4-61
floating-point 4-39
functions See Functions, ARMulator
halfword support 4-11
initialization 3-3
initialization sequence 4-4
initializing MMU 2-12
initializing PU 2-13
intercepting SWIs 4-35
internal SWIs 4-37
interrupt controller 4-121
interrupts 4-60
late models 4-6
logging 4-63
map files 4-94
memory access 4-65
memory configuration 4-104
memory interface 4-10
memory model initialization 4-15
memory model interface 4-14
memory models 3-5, 4-6
memory statistics 4-97
memory type variants 4-11
MMU initialization 2-12
model initialization 3-3
model stubs 3-3
models See Models, ARMulator
nTRANS signal 4-10, 4-57
operating system 4-37
overview 2-2
predefined tags 4-99
processor signals 4-14
profiling 4-62
PU initialization 2-13
RDI logging level 2-5
rebuilding 3-11
reference peripherals 4-121
and remote debug interface 4-21,

4-23
remote debug interface 4-62, 4-85
sibling coprocessors 4-27

state 4-41
StrongARM 4-12
stubs 3-3
SWIs 4-37
tags 4-3, 4-99
timer 4-123
ToolConf 4-3, 4-98, 4-108
trace file interpretation 2-6
tracing 4-63
upcalls See Upcalls, ARMulator
user functions 4-4
watchpoints 4-62
yielding control to debuggers 2-30

armul.cnf 4-3, 4-98
ARMul_CPInterface 4-24
ARMul_MemType_

ARM8 4-13
ARM9 4-13
Basic 4-11
BasicCached 4-12
ByteLane 4-12
StrongARM 4-12
Thumb 4-11
ThumbCached 4-12
16Bit 4-11
16BitCached 4-12

ARMv5TM model, BATS 2-35
ARM10 2-31
ARM1020T model, BATS 2-32
ARM1020T_PERIP model, BATS

2-33
ARM740T model, ARMulator 2-15
ARM940T model, ARMulator 2-16
arm.h 5-40, 6-4
Assertions, and Angel debugging 5-20
ASSERT_ENABLED macro 5-20

B
Basic models, ARMulator 4-4
BATS 2-31

AMBA 4-116
configuring 4-114
CTR files 2-31, 4-114
debugger time 4-114
interrupt controller 4-121
memory map 4-117
reference peripherals 4-119, 4-121

Index

ARM DUI 0058 Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-3

system time 4-120
timer 4-123
wait states 4-117, 4-120

BATS models See Models, BATS
Breakpoints

and Angel 5-26
Angel restrictions 5-27
MultiICE and EmbeddedICE 5-26

Byte order
ARMulator 4-12
ARMulator configuration 4-58

Byte-lane memory 4-12

C
C library

and Angel 5-20
errno 6-19
Semihosting SWIs 6-2

Cache memory model, ARMulator 3-7
Callback, ARMulator 4-53
cdp, ARMulator function 4-32
Chaining exception handlers

and Angel 5-19
Channels

Angel channel restrictions 5-43
Communications

Angel communications architecture
5-41

CondCheckInstr 4-80
ConfigChangeUpcall, ARMulator

4-58
Configuration trace files 2-31
Configuration, ARMulator 4-58
Configuring

Angel 5-37
Angel run address 5-38

ConsolePrint 4-86
Context switch

and Angel 5-32
CoProAttach 4-26
Coprocessor

ARMulator model 4-23
Coprocessors

ARMulator models 2-23
Counters, ARMulator 4-63
CPRead, ARMulator function 4-48
CPRegBytes 4-48

CPWrite, ARMulator function 4-49
CTR files, BATS 2-31, 4-114
Cycle count, ARMulator 4-18
Cycle length, ARMulator 4-17

D
Debug interaction SWIs 6-23
Debugger time, BATS 4-114
Debugger variables

$memory_statistics 4-97
$memstate 2-20
$statistics 2-20

Debugging
Angel assertions 5-20

DebugPause 4-87
DebugPrint 4-85
devclnt.c 5-48
devconf.h 5-26, 5-37, 6-21
Device driver layer (Angel) 5-46
DoInstr, ARMulator function 4-84
DoProg, ARMulator function 4-84
dummymmu.c ARMulator model 2-23

E
Early models, ARMulator 4-4, 4-106
Elapsed time, ARMulator 4-17
EndCondition 4-83
Endianness

bigend signal 4-53
errno, C library 6-19
Ethernet

Angel support 5-23
Fusion IP stack for Angel 5-47

Event scheduling, ARMulator 4-67
Events, ARMulator 4-91
EventUpcall, ARMulator 4-64
Exception handlers

and Angel 5-19
Exceptions

and Angel 5-19
and debug agent 6-24
reporting in debug agent 6-24

Exceptions, ARMulator 4-51, 4-61
ExceptionUpcall, ARMulator 4-61
exception, ARMulator function 4-38

ExitUpcall, ARMulator 4-55

F
Files

adp.h 6-24
arm.h 6-4
devclnt.c 5-48
devconf.h 5-26, 6-21
serlasm.s 5-30
serlock.h 5-30
suppasm.s 5-49
target.s 5-38, 5-49

FIQ
and Angel 5-10, 5-18

Flash download
and Angel 5-23

FPEAddressInEmulator 4-40
FPEInstall 4-39
FPEVersion 4-40
Functions, ARMulator

ARMul_AddCounterDesc 4-81
ARMul_AddCounterValue 4-82
ARMul_AddToSwitch 4-80
ARMul_CondCheckInstr 4-80
ARMul_ConsolePrint 4-86
ARMul_CoProAttach 4-26
ARMul_CPRead 4-48
ARMul_CPRegBytes 4-48
ARMul_CPWrite 4-49
ARMul_DebugPause 4-87
ARMul_DebugPrint 4-85
ARMul_DoInstr 4-84
ARMul_DoProg 4-84
ARMul_EndCondition 4-83
ARMul_FPEAddressInEmulator

4-40
ARMul_FPEInstall 4-39
ARMul_FPEVersion 4-40
ARMul_GetCPSR 4-46
armul_GetCycleLength 4-17
armul_GetMemSize 4-22
ARMul_GetMode 4-42
ARMul_GetPC 4-45
ARMul_GetReg 4-43
ARMul_GetR15 4-45
ARMul_GetSPSR 4-47
ARMul_HaltEmulation 4-83

Index

Index-4 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0058

ARMul_HostIf 4-88
ARMul_Hourglass 4-68
ARMul_HourglassSetRate 4-69
ARMul_InstallMemoryInterface

4-8
armul_MemAccess 4-20
ARMul_PrettyPrint 4-86
ARMul_Properties 4-79
ARMul_RaiseError 4-77
ARMul_RaiseEvent 4-93
ARMul_RDILog 4-87
ARMul_ReadByte 4-65
armul_ReadClock 4-17
armul_ReadCycles 4-18
ARMul_ReadHalfWord 4-65
ARMul_ReadWord 4-65
ARMul_ScheduleCoreEvent 4-72
ARMul_ScheduleEvent 4-70
ARMul_SetConfig 4-50
ARMul_SetCPSR 4-46
armul_SetMemSize 4-22
ARMul_SetNfiq 4-51
ARMul_SetNirq 4-51
ARMul_SetNreset 4-52
ARMul_SetPC 4-45
ARMul_SetReg 4-44
ARMul_SetR15 4-45
ARMul_SetSPSR 4-47
ARMul_SWIHandler 4-52
ARMul_Time 4-79
ARMul_WriteByte 4-66
ARMul_WriteHalfWord 4-66
ARMul_WriteWord 4-66
cdp 4-32
exception 4-38
handle_swi 4-37
init 4-27, 4-36
ldc 4-28
mcr 4-31
mrc 4-30
read 4-33
stc 4-29
ToolConf_Cmp 4-113
ToolConf_Lookup 4-112
write 4-34

Fusion IP stack 5-47

G
GetCPSR, ARMulator function 4-46
GetCycleLength 4-17
GetMemSize 4-22
GetMode, ARMulator function 4-42
GetPC, ARMulator function 4-45
GetReg, ARMulator function 4-43
GetR15, ARMulator function 4-45
GETSOURCE macro 5-36, 5-49
GetSPSR, ARMulator function 4-47
Glossary Glossary-1

H
Halfword support, ARMulator 4-11
HaltEmulation 4-83
HANDLE_INTERRUPTS_ON_FIQ

5-36
handle_swi 4-37
Heartbeats (Angel) 5-46
HostIf 4-88
Hourglass 4-68
HourglassSetRate 4-69

I
INITTIMER macro 5-38
init, ARMulator function 4-27, 4-36
Input/Output

semihosting SWIs 6-10
InstallMemoryInterface 4-8
Interrupt controller 4-121
Interrupts

and Angel 5-36
Angel Fusion stack 5-49

Interrupts, ARMulator 4-60
InterruptUpcall, ARMulator 4-60
IRQ

and Angel 5-10, 5-18
Angel processing of 5-35

L
Late models, ARMulator 4-6, 4-107
ldc, ARMulator function 4-28

Linking
Angel C libraries 5-20

Logging level, RDI 2-5
Logging, ARMulator 4-63

M
Map file, ARMulator 4-94
mcr, ARMulator function 4-31
MemAccess 4-20
Memory map

configuring for Angel 5-37
Memory map, BATS 4-117
Memory models, ARMulator 3-5, 4-6
Memory statistics, ARMulator 4-97
$memory_statistics 4-97
MMU initialization, ARMulator 2-12
ModeChangeUpcall, ARMulator 4-56
Models BATS

ARM1020T 2-32
ARM1020T_PERIP 2-33

Models, ARMulator
angel 2-24
basic 4-4
basic model initialization 4-7
bus cycle insertion 4-65
cache memory 3-7
coprocessor 4-23
disabling 4-107
dummy system coprocessor 2-23
early 4-4, 4-106
hierarchy 4-4
late 4-6, 4-107
memory 4-6, 4-65
memory initialization 4-15
memory interface 4-14
memory watchpoints 2-30
pagetab.c 2-12, 3-4
peripherals 3-4, 3-6, 4-105
profiler.c 2-11, 3-4
stackuse.c 3-4
switch 4-105
tracer.c 2-5, 3-4
validate.c 2-30
veneer memory 4-4, 4-8
windows hourglass 2-30

Models, BATS
ARMv5TM 2-35

Index

ARM DUI 0058 Copyright © 1999, 2000 ARM Limited. All rights reserved. Index-5

mrc, ARMulator function 4-30
MultiICE and EmbeddedICE

Breakpoints 5-26
Multi-ICE and EmbeddedICE

DCC 6-9

N
nTRANS signal 4-10, 4-57

O
Olicom 5-47

P
pagetab.c ARMulator model 2-12, 3-4
PCMCIA Ethernet card 5-47
Peripheral models, ARMulator 3-4,

3-6, 4-105
PERMITTED macro 5-37
PID board

and Angel 5-14
Prefetch abort

and Angel 5-19, 5-20, 5-5
PrettyPrint 4-86
Processor exception vectors

and Angel 5-39
Processor mode

and Angel stacks 5-34
Processor signals, ARMulator 4-14
profiler.c 4-62
profiler.c ARMulator model 2-11, 3-4
Properties, ARMulator function 4-79
Protection unit 2-15, 2-16
PU initialization, ARMulator 2-13

R
RaiseError 4-77
RaiseEvent 4-93
RB_ Angel register blocks 5-33
RDI logging level 2-5
RDILog 4-87
ReadByte, ARMulator function 4-65

ReadClock 4-17
ReadCycles 4-18
ReadHalfWord 4-65
ReadWord, ARMulator function 4-65
read, ARMulator function 4-33
Reference peripherals 4-119, 4-121
Remote debug interface

and ARMulator 4-21, 4-23
ARMulator 4-62, 4-85

Reporting exceptions 6-24
Return codes, ARMulator functions

ARMul_BUSY 4-28, 4-29, 4-30,
4-31, 4-32

ARMul_CANT 4-28, 4-29, 4-30,
4-31, 4-32, 4-33, 4-34

ARMul_DONE 4-28, 4-29, 4-30,
4-31, 4-32, 4-33, 4-34

ROADDR (Angel) 5-24, 5-38, 5-39
ROMBase macro 5-39
RTOS

and Angel 5-18
and context switching 5-32

RWADDR (Angel) 5-24, 5-38, 5-39

S
ScheduleCoreEvent 4-72
ScheduleEvent 4-70
Semihosting 5-3

and Angel 5-15
enabling and disabling 5-4, 5-15
and programming restrictions 5-17

Semihosting SWIs 6-10
adding to application 6-7
C library 6-2
implementation 6-5
interface 6-3
intro 6-1
SYS_CLOCK 6-18
SYS_CLOSE 6-12
SYS_ELAPSED 6-22
SYS_ERRNO 6-19
SYS_FLEN 6-16
SYS_GET_CMDLINE 6-20
SYS_HEAPINFO 6-21
SYS_ISERROR 6-15
SYS_ISTTY 6-15
SYS_OPEN 6-11

SYS_READ 6-14
SYS_READC 6-14
SYS_REMOVE 6-17
SYS_RENAME 6-18
SYS_SEEK 6-16
SYS_SYSTEM 6-19
SYS_TIME 6-19
SYS_TMPNAM 6-17
SYS_WRITE 6-13
SYS_WRITEC 6-12
SYS_WRITEO 6-13

serlasm.s 5-30
serlock.h 5-30
SetConfig, ARMulator function 4-50
SetCPSR, ARMulator function 4-46
SetMemSize 4-22
SetNfiq, ARMulator function 4-51
SetNirq, ARMulator function 4-51
SetNreset, ARMulator function 4-52
SetPC, ARMulator function 4-45
SetReg, ARMulator function 4-44
SetR15, ARMulator function 4-45
SetSPSR, ARMulator function 4-47
Sibling coprocessors 4-27
Stacks

Angel 5-34
stackuse.c ARMulator model 3-4
State pointer, ARMulator 4-3
$statistics variable 4-18, 4-63
stc, ARMulator function 4-29
StrongARM1 4-12
Supervisor mode

and Angel 5-19
entering from debug 6-23

suppasm.s 5-49
SWIHandler 4-52
SWIs

ARMulator 4-37
configuring for Angel 5-40
debug interaction SWIs 6-23
0x80 - 0x88 4-37
0x90 - 0x98 4-37

Switch ARMulator model 4-105
System time, BATS 4-120
SYS_CLOCK 6-18
SYS_CLOSE 6-12
SYS_ERRNO 6-19
SYS_FLEN 6-16
SYS_GET_CMDLINE 6-20

Index

Index-6 Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DUI 0058

SYS_GET_ELAPSED 6-22
SYS_GET_HEAPINFO 6-21
SYS_ISERROR 6-15
SYS_ISTTY 6-15
SYS_OPEN 6-11
SYS_READ 6-14
SYS_READC 6-14
SYS_REMOVE 6-17
SYS_RENAME 6-18
SYS_SEEK 6-16
SYS_SYSTEM 6-19
SYS_TIME 6-19
SYS_TMPNAM 6-17
SYS_WRITE 6-13
SYS_WRITEC 6-12
SYS_WRITEO 6-13

T
target.s 5-38, 5-39, 5-49
Task management

Angel 5-28
Task Queue Items 5-32
TDCC 5-41
Terminology Glossary-1
These 4-12
Thumb

Angel breakpoint instruction 5-26
Angel SWI number 5-40
debug communications channel

5-41
Timer 4-123
Time, ARMulator function 4-79
ToolConf 4-3, 4-98, 4-108
ToolConf_Cmp 4-113
ToolConf_Lookup 4-112
TQI 5-32, 5-33
Tracer

configuring 2-8
disabling 2-5
enabling 2-5
events 2-10
output to RDI log window 2-9

Tracer, interpreting output 2-6
tracer.c 4-63
tracer.c ARMulator model 3-4
Tracing, ARMulator 4-63
TransChangeUpcall, ARMulator 4-57

U
UDP/IP 5-47
Unhandled ADP_Stopped exception

6-25
UnkRDIInfoUpcall, ARMulator 4-62
UNMAPROM macro 5-39
Upcalls, ARMulator 4-4, 4-16, 4-53

armul_EventUpcall 4-64
ConfigChangeUpcall 4-58
ExceptionUpcall 4-61
ExitUpcall 4-55
handles 4-54
installing 4-54
InterruptUpcall 4-60
ModeChangeUpcall 4-56
removing 4-54
TransChangeUpcall 4-57
UnkRDIInfoUpcall 4-62

User functions, ARMulator 4-4

V
validate.c ARMulator model 2-30
Variables

errno 6-19
$statistics 4-18
$memory_statistics 4-97
$memstate 2-20
$semihosting_enabled 5-4, 5-15
$statistics 2-20, 4-63
$top_of_memory 6-21
$vector_catch 6-24

Veneer memory models 4-4, 4-8

W
Wait state calculation 2-21
Wait states, BATS 4-117, 4-120
watchpnt.c 4-62
Watchpoints, ARMulator 4-62
WriteByte, ARMulator function 4-66
WriteHalfWord 4-66
WriteWord, ARMulator function 4-66
write, ARMulator function 4-34

Z
Zero wait state memory model 2-18

Symbols
$memory_statistics 4-97
$semihosting_enabled variable 5-4,

5-15
$statistics variable 4-18, 4-63
$top_of_memory debugger variable

6-21
$vector_catch debugger variable 6-24

	Preface
	About this book
	Feedback

	Contents
	Introduction
	1.1 About debug support
	1.2 ARMulator
	1.3 Angel
	1.4 Semihosting SWIs

	ARMulator Basics
	2.1 About ARMulator
	2.2 ARMulator components
	2.3 Tracer
	2.4 Profiler
	2.5 Pagetable module
	2.6 Flat memory model
	2.7 Fast memory model
	2.8 Memory model with memory map
	2.9 DummyMMU
	2.10 Angel
	2.11 Peripheral models
	2.12 Other models
	2.13 Basic ARM ten system

	Writing ARMulator Models
	3.1 Adding models to ARMulator
	3.2 Writing a new peripheral model
	3.3 Writing a new cache model
	3.4 Rebuilding ARMulator
	3.5 Configuring ARMulator to use the example

	ARMulator Reference
	4.1 ARMulator models
	4.2 Basic model interface
	4.3 The memory interface
	4.4 Memory model interface
	4.5 Coprocessor model interface
	4.6 Operating system or debug monitor interface
	4.7 Using the floating-point emulator
	4.8 Accessing ARMulator state
	4.9 Exceptions
	4.10 Upcalls
	4.11 Memory access functions
	4.12 Event scheduling functions
	4.13 General purpose functions
	4.14 Accessing the debugger
	4.15 Tracer
	4.16 Events
	4.17 Map files
	4.18 armul.cnf, the ARMulator configuration file
	4.19 ToolConf
	4.20 Basic ARM ten system configuration trace files
	4.21 Reference peripherals

	Angel
	5.1 About Angel
	5.2 Developing applications with Angel
	5.3 Angel in operation
	5.4 Configuring Angel
	5.5 Angel communications architecture
	5.6 The Fusion IP stack for Angel

	Semihosting SWIs
	6.1 Overview of the C library support SWIs
	6.2 Semihosting implementation
	6.3 Adding an application SWI handler
	6.4 Input/Output SWIs
	6.5 Debug agent interaction SWIs

	Glossary
	Index
	A
	B
	C, D, E, F
	G, H, I, L, M
	N, O, P, R, S
	T, U, V, W, Z, Symbols

