
Open Access

Angel
Debug Protocol Messages

Document number: ARM DUI 0053D

Issued: Sept 1999

Copyright © ARM Ltd 1997-1999

Angel Debug Protocol Messages
ii ARM DUI 0053D

Open Access

Proprietary Notice

Copyright © 1997, 1998, 1999 ARM Ltd.

ARM and the ARM Powered logo are trademarks of ARM Ltd.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed,
including but not limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd shall not be liable for any loss or
damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect
use of the product.

The material in this document is provided for information only. It should not be regarded as being a definitive statement, and
Advanced RISC Machines Ltd shall not be liable for any discrepancies found.

This document may not be supplied to any third party, in any form electronic or otherwise, without prior permission of ARM
Ltd.

Document Status

The document's status is displayed in a banner at the bottom of each page. This describes the document's confidentiality and
its information status.

Confidentiality status is one of:

ARM Confidential Distributable to ARM staff and NDA signatories only

Named Partner Confidential Distributable to the above and to the staff of named partner companies only

Partner Confidential Distributable within ARM and to staff of all partner companies

Open Access No restriction on distribution

Change Log

Issue Date By Change

A Feb 1998 KTB/RI-C First release

B May 1998 RI-C Clarified and updated

C Aug 1998 RI-C Final revisions.

D Sep 1999 RI-C Updated for ADP1.1.

Angel Debug Protocol Messages
ARM DUI 0053D iii

ARM Confidential

Key

Code and other program texts are set in a monospaced font.

Angel Debug Protocol Messages
iv ARM DUI 0053D

Open Access

Angel Debug Protocol Messages
ARM DUI 0053D v

Open Access

Contents

1. Introduction 1-1

1.1 RPC Type Specifications 1-2

2. ADP Remote Procedure Calls 2-1

2.1 Function Signatures and Packet Formation 2-3
2.2 Boot Channel Messages 2-5
2.3 Host ADP Channel Messages 2-14
2.4 Target ADP Channel Messages 2-73
2.5 Target Debug Comms Channel Messages 2-75

3. C Support Library Remote Procedure Calls 3-1

3.1 Function Signatures and Packet Formation 3-2
3.2 Target to Host Messages 3-2

4. Error Codes 4-1

4.1 ADP Error Codes 4-2
4.2 RDI Error Codes 4-4

Contents

Angel Debug Protocol Messages
vi ARM DUI 0053D

Open Access

Angel Debug Protocol Messages
ARM DUI 0053D 1-1

Open Access

1. Introduction

The Angel Debug Protocol (ADP) provides a reliable connection between a debug

target and a host debugger during a debugging session. This document describes

the messages used at the higher levels of the protocol, notably by the debug agent

(the ADP messages) and the C Library. For details of the protocols, ordering

constraints and other information, please refer to the document Angel Debug

Protocol (ARM DUI 0053).

This document describes ADP version 1.0 and the notes the extensions included in

version 1.1.

1

Introduction

Angel Debug Protocol Messages
1-2 ARM DUI 0053D

Open Access

1.1 RPC Type Specifications

Because the protocols define a procedure call interface, albeit with servers at both

ends of the connection, the interface is described here in terms of conventional

function calls. The relevant terminology is presented below:

Syntax element Simple description Example

BYTE An integer type, 8 bits in size.
Often used for character
storage.

BYTE char:

INT16 A signed integer, 16 bits in size. INT16 count:

INT32 A signed integer, 32 bits in size. UINT32 address:

UINT16 An unsigned integer, 16 bits in
size.

UINT16 count:

UINT32 A unsigned integer, 32 bits in
size.

UINT32 address:

[<size>]TYPE The type is an array of <size>
elements; if <size> is missing,
the size is variable.

[32]BYTE message:

RECORD … IS … : A record definition. (see below)

VAL … IS … : A constant specification. VAL Escape IS 27:

<literal>(<type>) Consider <literal> to be of type
<type>. This is a type
decoration, explicitly defining
the interpretation of a literal.

32(UINT32)

(<result>) = <name>(<params>) Define a function called
<name>, returning <result>
when given a parameter list
<params>.

(INT16 x) = sin(INT16
y)

Arrays of BYTEs specifically representing strings will be zero terminated unless

otherwise noted. The size includes the zero terminator byte.

Multiple return values are represented as a list in the same way as multiple

parameters, with a bracketed list of types and names. Where types do not change

between successive items, the type name can be omitted (that is, “UINT32 x, UINT32

y” is the same as “UINT32 x, y”.

Introduction

Angel Debug Protocol Messages
ARM DUI 0053D 1-3

Open Access

Named groups of types can be represented with record definitions. A record is

described with the following syntax:

RECORD <name> IS (<list>):

For example, a point could be represented with the following definition:

RECORD Point IS (UINT32 x, UINT32 y):

Records are used much the same way as ordinary types:

RECORD Point x:

or an array of 32 points:

[32]RECORD Point point.segments:

To represent a variable length array, the following structure should be used:

<inttype> size, [size]<arraytype> name:

Where <inttype> is an integer (BYTE, INT16, UINT32) type containing the size of the

array, and <arraytype> is the type of each element, eg. BYTE. It should be noted that

the name of the size variable also appears in the array bound for the array.

Finally, it should be noted that use is made of the constant –1 as a (usually error)

return value, especially in the Clib requests. This constant is always encoded as

0xFFFFFFFF.

Introduction

Angel Debug Protocol Messages
1-4 ARM DUI 0053D

Open Access

Angel Debug Protocol Messages
ARM DUI 0053D 2-1

Open Access

2. ADP Remote
Procedure Calls

This chapter describes the calls used to boot the target system (the TBOOT and

HBOOT channels) and the calls used by the debugger to debug the target (the HADP

and TADP channels).

2

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-2 ARM DUI 0053D

Open Access

2.1 ADP 1.1

The ADP has been extended in two ways for version 1.1:

� the packets types ADP_ReadExt, ADP_WriteExt have been added, extending the

original calls with an access method parameter

� All memory and file I/O packet types (ADP_Read, ADP_ReadExt, ADP_Write,

ADP_WriteExt, CL_Read, CL_Write, CL_ReadX, CL_WriteX) may use the long

buffer system used only for ADP_Write in previous versions.

There are two ways for a debugger to identify the version of ADP in use:

� In the boot message, the ADP version number for 1.0 is 0x3 – for version 1.1 it

must be 0x4.

� If the agent implements the ADP_ReadExt or ADP_WriteExt functions, it can be

assumed to be conformant to at least version 1.1 of ADP: it may, of course,

implement a higher (as yet unspecified) version.

All other details of ADP are unchanged.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-3

Open Access

2.2 Function Signatures and Packet Formation

As an example of the format used to describe a remote call, the following text

identifies a function called CalcMinMax which accepts a 32-bit integer, a previous

maximum and minimum value found, and returns two values, a new minimum and

maximum. When packetized, a reference number 8 is used to represent the name:

Channel: CI_MISC

Reason Code: 8

Signature:

(UINT32 newmin, UINT32 newmax) = CalcMinMax(UINT32 value, lastmin,
lastmax)

Parameters:

value a new value to check

lastmin the previous minimum value found

lastmax the previous maximum value found

newmin the new minimum value, taking ‘value’ into account

newmax the new maximum value, taking ‘value’ into account

When converted into ADP form, this translates into two packets as shown in the

figures below. The packets are, of course, also wrapped with the data link protocol

used at the time.

Notes:

� There is no length information explicitly present; the function knows there are 3

parameters, and simply extracts them from the packet. Similarly, when returning

the data, it just constructs a packet with two words in it and sends this off to the

caller.

� While the request packet’s reason code has been set to 8, the response code is

set to 0x80000008; this is because the TtoH bit has been set in the response. For

a request originated by the target, this would be reversed.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-4 ARM DUI 0053D

Open Access

0 0 08 ff ff ffff ff ff ffff ff ff ffff 0 0 017 0 0 04 b 0 07f

�� ����� � �����

�	
��

�����	�

��������

�����	�

�
��	

�����	�

��������

�����	�

�	������

�����	�

��

�����	�

�
�

�����	�

Request Packet:

Response Packet:

(Words, decimal)

(Bytes, hex)

(Words, decimal)

(Bytes, hex)

(Name, Size)

(Name, Size)
�	
��

�����	�

��������

�����	�

��������

�����	�

�	������

�����	�

�	����

�����	�

�	���
�

�����	�

�� ���� � ����
 �� �

 �

0 0 808 ff ff ffff ff ff ffff ff ff ffff 0 0 02 b 0 07f

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-5

Open Access

2.3 Boot Channel Messages

2.3.1 ADP_Booted

Channel: CI_TBOOT

Reason Code: 0

Signature:

(UINT32 status) = ADP_Booted(VAL UINT32 bufsize, largesize, angelversion,

adpversion, archinfo, cpuinfo, hwstatus,

bannersize, [bannersize]BYTE banner)

Parameters:

bufsize Angel message default buffer size

largesize Angel message large buffer size (may be same as default)

angelversion Angel version number, including type (eg. boot ROM)

adpversion ADP version number

archinfo ARM architecture information

cpuinfo ARM CPU information, including target endianness.

hwstatus Target hardware status

bannersize Number of bytes in banner message, must be <= 204 bytes.

banner Startup banner message (single-threaded readable descriptive text,
not nul lterminated)

status Adp_ok for success, otherwise indicates an error

Description:

This message is sent by the target after the Angel system has been initialized. This

message also contains information describing the Angel world. The information can

then be used to check that the target debug agent and source debugger are

compatible.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-6 ARM DUI 0053D

Open Access

Angel version word

The Angel version word is formatted as shown below:

����� ���������

Unused

1 Byte

Angel Type

1 Byte

Angel version number

4 BCD digits

[Little Endian]

The version number is stored in BCD, with the least significant digit stored in the least

significant byte of the word. The Type is set according to the following table,

depending on the nature of the Angel code which is running:

Name Code Description

Boot Rom 0 Monitor ROM providing download capability.
Standard type.

Application ROM 1 ROM based application

Application Download 2 Downloaded Angel-based application

Unknown 3 Unknown type.

The unused bits at the top of the word should be ignored on read, and written as zero.

ADP version word

Currently only the least significant 8 bits are used in this word, which contains the

version of ADP being used by this version of Angel.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-7

Open Access

ARM architecture word

This word defines the ARM architecture version of the target CPU. There are only two

bits defined, which are both set when the given architecture feature is present:

�� ���	��

1 = Long Multiply

0 = Otherwise

1 = Thumb State

0 = Otherwise
Unused, set to zero

[Little Endian]

CPU architecture word

The following flags describe the feature set of the processor

Note that if the system can be switched between big-endian and little-endian modes of

operation, both flags can be set at once.

���� �

1 = Big Endian Support

0 = Otherwise

1 = Little Endian Support

0 = Otherwise
Unused, set to zero

[Little Endian]

1 = Cache Support

0 = Otherwise

� � �

1 = MMU Support

0 = Otherwise

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-8 ARM DUI 0053D

Open Access

Target status word

The target status word contains flags which reflect current target hardware status:

1 = cache on

0 = no cache or cache off

1 = big-endian

0 = little-endian
Unused, set to zero

[Little Endian]

1 = MMU on

0 = no MMU or MMU off

�� ���
�� �	

2.3.2 ADP_TargetResetIndication

Channel: CI_TBOOT

Reason Code: 1

Signature:

RECORD Parameter IS (UINT32 param, UINT32 value):

() = ADP_TargetResetIndication(UINT32 status,

UINT32 nparams, [nparams]RECORD Parameter params)

Parameters:

status Always 0 (makes body same as ADP_ParamNegotiate response)

nparams The number of parameters supplied

params The parameter list supplied

Description:

If parameter negotiation is enabled at the target, it configures itself to various likely

parameter settings and sends this message at each configuration. The message

describes the default settings, and after sending at each configuration the target sets

itself to the defaults it has just broadcast, to await either an acknowledgement on

TBOOT or a request or reset indication on HBOOT.

If the host receives this message successfully, it resets to the indicated parameters

and sends a reply. The reply has no associated body, just the normal ADP header.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-9

Open Access

This message is not used in current implementations of Angel.

2.3.3 ADP_Reboot

Channel: CI_HBOOT

Reason Code: 2

Signature:

(UINT32 status) = ADP_Reboot(UINT32 hostfeatures)

Parameters:

hostfeatures Host supported feature word

status Boot acknowledgement code

Description:

This message is sent when the host wants the target system to be completely reset,

back to the boot monitor Angel. This is how a host forces a cold reboot.

Note An acknowledgement message must be sent by the target immediately; this must be

sent before reboot occurs.

The parameter to this function is a bitset of host supported features (the same as for

ADP_Reset below). This can be used by the target system to avoid using debug

channel bandwidth raising messages that will be ignored by the host.

Host feature word

1 = Big Endian
0 = don't care

1 = Little Endian
0 = don't care

Unused, set to zero

[Little Endian]�� ������

If the host sets neither of these in the word sent on a reset or reboot, the host does

not care about the endianess of the target.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-10 ARM DUI 0053D

Open Access

Boot acknowledgement codes

The following codes are defined:

Name Code Description

Normal Ack 0 Will comply, immediate booted message

Late Ack 1 Will comply, late startup

Error 2 Cannot comply

2.3.4 ADP_Reset

Channel: CI_HBOOT

Reason Code: 3

Signature:

(UINT32 status) = ADP_Reset(UINT32 hostfeatures)

Parameters:

hostfeatures Host supported feature word

status Boot acknowledgement code

Description:

This message is a request from the host, which should eventually result in the

"ADP_Booted" message being sent by the target. An acknowledgement message will

be sent immediately; this must be sent before the target can reset. This reset

message is always treated as a warm boot, with the target preserving as much state

as possible. However, the host will expect packet sequence numbers to be reset to

zero, and consequently any unacknowledged packets should be deleted.

The parameter to this function is a bitset of host supported features. This can be used

by the target system to avoid using debug channel bandwitdth raising messages that

will be ignored by the host.

The Host features word, and the Boot acknowledgement status code, are the same as

for ADP_Reboot.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-11

Open Access

2.3.5 ADP_HostResetIndication

Channel: CI_HBOOT

Reason Code: 4

Signature:

RECORD Parameter IS (UINT32 param, UINT32 value):

() = ADP_HostResetIndication(UINT32 status,

UINT32 nparams, [nparams]RECORD Parameter params)

Parameters:

status Always 0 (makes body same as ADP_ParamNegotiate response)

nparams The number of parameters supplied

params The parameter list supplied

Description:

This is as for ADP_TargetResetIndication, but is sent by the host when it first starts up

in case the target is listening at a non-default setting. Having sent at various

configurations, the host then listens at the defaults it has just broadcast, to await either

an acknowledgement on HBOOT or a reset indication on TBOOT.

For arguments and reply, see ADP_TargetResetIndication.

This message is not used in current implementations of Angel.

2.3.6 ADP_ParamNegotiate

Channel: CI_HBOOT

Reason Code: 5

Signature:

RECORD Parameter IS (UINT32 param, UINT32 value):

RECORD ParameterSet IS (UINT32 param, nvalues, [nvalues]UINT32 values):

(UINT32 status, nparams, [nparams]RECORD Parameter params) =

ADP_ ParamNegotiate(UINT32 noptions,

 [noptions]RECORD ParameterSet options)

Parameters:

noptions The number of parameters supplied

options The parameter option list supplied

status Adp_ok if negotiate succeeded, error code otherwise

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-12 ARM DUI 0053D

Open Access

nparams The number of parameters returned

params The parameter option list returned

Description:

The host sends this messages to negotiate new parameters with the target. For each

parameter the host specifies a range of possibilities, starting with the most favoured.

All possible combinations of parameters must be valid.

If the target can operate at a combination of the offered parameters, it will reply with

the parameters it is willing to use. After sending the reply, the target switches to this

combination. On receiving the reply, the host will switch to the new combination and

send a ADP_LinkCheck message (see below).

If the target cannot operate at any combination of the offered parameters, it will reply

with an error status. The reply only contains the new parameters if the status was

Adp_ok.

A list of parameter types currently defined:

Name Value Description

AP_PARAMS_START 0xC000 Base value for parameter names

AP_BAUD_RATE 0xC000 New baud rate when using serial connection. Must be
one of: 1200, 2400, 4800, 9600, 19200, 38400, 57600,
115200, 230400

All Parameter types should have associated semantics which can be represented

within one word per parameter, or an associated enum for choices.

Note There are maximum numbers of parameter types, and parameter options. These

values were increased for Angel 1.04 (SDT2.11a):

Angel 1.03 and before Angel 1.04

Number of Types 1 4

Number of Options per Type 5 12

In addition, Angel 1.04 is more lenient if these limits are exceeded in a message sent

to it; it ignores those items which exceed the limit. Previously, Angel would abort

processing of the message, and thus refuse to boot.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-13

Open Access

2.3.7 ADP_LinkCheck

Channel: CI_HBOOT

Reason Code: 6

Signature:

() = ADP_ LinkCheck()

Description:

This should be the first message that the host sends after a successful parameter

negotiation. It is really just a ‘ping’. There are no associated parameters, but there

must be a reply message.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-14 ARM DUI 0053D

Open Access

2.4 Host ADP Channel Messages

2.4.1 ADP_HADPUnrecognised

Channel: CI_HADP

Reason Code: 0

Signature:

(UINT32 status) = ADP_HADPUnrecognised()

Parameters:

status Reason code which was not recognised

Description:

This message is unusual in that it is normally sent in reply to another message which

is not understood (the normal protocol states that a reply must have the same base

reason code as the original). There is a single reply parameter; the reason code that

was not understood.

This message can also be sent, and the reply is as if the message were

unrecognised.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-15

Open Access

2.4.2 ADP_Info

Channel: CI_HADP

Reason Code: 1

Description:

This is the ADP information message. It is used to interrogate the target debug agent,

and provides information on the processor as well as the state of the debug world.

This allows the host to configure itself to the capabilities of the target.

When the feature set is extended, this can be done in two supported ways:

� If an undivided reason code is to be added with no reason subcodes, such as

ADP_Write, add a new ADP_Info sub-code which responds with a flag indicating

whether that feature is supported by the target. If this has not been implemented

then the reply will be with the ADP_HADPUnrecognised message.

� If a reason code which is subdivided into reason subcodes is added such as

Adp_Info, reason subcode 0 should be set aside to indicate whether the

functionality of that reason code is supported by the target. If it is not

implemented, the reply will be the ADP_HADPUnrecognised message.

The first parameter to ADP_Info is a reason subcode, and subsequent parameters are

defined by that subcode. The same reason subcode is always returned as the first

UINT32 parameter in the reply message.

2.4.2.1 ADP_Info_NOP

Channel: CI_HADP

Reason Code: 1

Subreason Code: 0

Signature:

VAL Info_NOP IS 0(UINT32):

(Info_NOP, UINT32 status) = ADP_ Info(Info_NOP)

Parameters:

status Adp_ok for success, non-zero indicates an error

Description:

This message is used to check for ADP_Info being supported. If an error is returned,

there is no handler for the ADP_Info message. Normal action is to return an OK

status.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-16 ARM DUI 0053D

Open Access

2.4.2.2 ADP_Info_Target

Channel: CI_HADP

Reason Code: 1

Subreason Code: 1

Signature:

VAL Info_Target IS 1(UINT32):

(Info_Target, UINT32 status, UINT32 bitset, UINT32 model) =

 ADP_Info(Info_Target)

Parameters:

status Adp_ok to indicate OK, or non-zero to indicate some sort of error

bitset Described in more detail below, and is mostly compatible with that
used in Demon to avoid excessive changes to the ARM debugger
code

model The target hardware ID word, as returned by the ADP_Booted
message

Description:

This reason code is used to interrogate target system details.

Note The minimum and maximum protocol levels provided under Demon are no longer

supported. It was a design decision that debugging complexity should be shifted to the

host if at all possible. This means that the host debugger should always try to

configure itself to the features available in the target debug agent. This can be done

by checking individual messages, rather than by a blanket version number dictating

the feature set.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-17

Open Access

Bitset is a word with the following bits defined:

1 = Debug agent reloadable

0 = Not reloadable

1 = Can inquire buffer size

0 = Otherwise

Target Speed (IPS):

10**(bits0..3)

Target Type:

1 = Hardware

0 = Emulation

1 = Thumb state supported

0 = Otherwise

1 = Profiling supported

0 = Otherwise

Unused, set to zero

[Little Endian]�� ������ ��������� ������

2.4.2.3 ADP_Info_Points

Channel: CI_HADP

Reason Code: 1

Subreason Code: 2

Signature:

VAL Info_Points IS 2(UINT32):

(Info_Points , UINT32 status, UINT32 breakinfo) = ADP_ Info(Info_Points)

Parameters:

status Adp_ok to indicate OK, or non-zero to indicate some sort of error

breakinfo Described in more detail below

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-18 ARM DUI 0053D

Open Access

Description:

Returns a 32-bit wide bitset of breakpoint and watchpoint features supported by the

target debug agent. Breakinfo is a word with the following bits defined:

1 = info on break/watch

0 = otherwise

[Little Endian]��������	
�����������

Unused, set to zero

1 = trap conditional exprs

0 = otherwise

1 = trap address equal

0 = otherwise

1 = trap address range

0 = otherwise

1 = trap on 8 bit reads

0 = otherwise

1 = trap on 32 bit reads

0 = otherwise

1 = trap on 16 bit reads

0 = otherwise

1 = trap 8 bit writes

0 = otherwise

1 = trap on 32 bit writes

0 = otherwise

1 = trap 16 bit writes

0 = otherwise

1 = thread specific breakpts

0 = otherwise

1 = thread specific watchpts

0 = otherwise

1 = trap on address

bitmask

0 = otherwise

2.4.2.4 ADP_Info_Step

Channel: CI_HADP

Reason Code: 1

Subreason Code: 3

Signature:

VAL Info_Step IS 3(UINT32):

(Info_Step , UINT32 status, UINT32 stepinfo) = ADP_ Info(Info_Step)

Parameters:

status Adp_ok to indicate OK, or non-zero to indicate some sort of error

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-19

Open Access

stepinfo Described in more detail below

Description:

Returns a 32-bit wide bitmask of the single-stepping capabilities of the target debug

agent.

[Little Endian]��������

Unused, set to zero

1 = Can steps multiple instrs.

0 = Otherwise

1 = Can step until next PC change.

0 = Otherwise

1 = Can single step

0 = Otherwise

2.4.2.5 ADP_Info_MMU

Channel: CI_HADP

Reason Code: 1

Subreason Code: 4

Signature:

VAL Info_MMU IS 4(UINT32):

(Info_MMU , UINT32 status, UINT32 meminfo) = ADP_ Info(Info_MMU)

Parameters:

status Adp_ok to indicate OK, or non-zero to indicate some sort of error

meminfo A 32-bit unique ID, or zero if there is no MMU support on the target

Description:

Returns information about the memory management system (if any). The only ID code

currently defined is 0, indicating that no MMU is active. Please contact ARM for more

information on this, as this is likely to change in the near future.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-20 ARM DUI 0053D

Open Access

2.4.2.6 ADP_Info_SemiHosting

Channel: CI_HADP

Reason Code: 1

Subreason Code: 5

Signature:

VAL Info_SemiHosting IS 5(UINT32):

(Info_ SemiHosting, UINT32 status, UINT32 meminfo) =

ADP_ Info(Info_SemiHosting)

Parameters:

status Adp_ok if semihosting info calls are available, non-zero otherwise

Description:

This message is used to check whether semihosting info calls are available on the

target. These calls are described in Section 3 “C Library Remote Procedure Calls”.

2.4.2.7 ADP_Info_CoPro

Channel: CI_HADP

Reason Code: 1

Subreason Code: 6

Signature:

VAL Info_CoPro IS 6(UINT32):

 (Info_CoPro, UINT32 status, UINT32 meminfo) = ADP_ Info(Info_CoPro)

Parameters:

status Adp_ok if CoProcessor info calls are available, non-zero otherwise.

Description:

This message checks whether CoProcessor info calls are supported.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-21

Open Access

2.4.2.8 ADP_Info_Cycles

Channel: CI_HADP

Reason Code: 1

Subreason Code: 7

Signature:

VAL Info_Cycles IS 7(UINT32):

(Info_Cycles, UINT32 status, UINT32 ninstr, scycles, ncycles, icycles, ccycles,
fcycles) = ADP_ Info(Info_Cycles)

Parameters:

status Adp_ok to indicate success, or non-zero if there is no target support
for gathering cycle count information

ninstr The number of instructions executed

scycles The number of S-cycles executed: sequential

ncycles The number of N-cycles executed: nonsequential

icycles The number of I-cycles executed: internal

ccycles The number of C-cycles executed: coprocessor

fcycles The number of F-cycles executed: fast memory

Description:

Returns the number of instructions and cycles executed since the target was

initialized. Please refer to the datasheets of the ARM core in use for more precise

definitions of these terms.

2.4.2.9 ADP_Info_DescribeCoPro

Channel: CI_HADP

Reason Code: 1

Subreason Code: 8

Signature:

VAL Info_DescribeCoPro IS 8(UINT32):

RECORD CoprocessorDesc IS

(BYTE copro, rmin, rmax, nbytes, access, r0, r1, w0, w1):

(Info_DescribeCoPro, UINT32 status) =

ADP_Info(Info_DescribeCoPro, []RECORD CoprocessorDesc desc)

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-22 ARM DUI 0053D

Open Access

Parameters:

status Adp_ok to indicate success or non-zero to indicate an error

cpno The number of the coprocessor to be described

rmin The bottom of a range of registers with the same description

rmax The top of a range of registers with the same description

nbytes The size of the register

access Describes access to the register and is described in more detail
below

r0, r1, w0, w1 See below

Description:

Note The access and descriptor functions for coprocessors are now depreciated, and may

be dropped or radically changed in future revisions of ADP. Any users of these

functions should make their use known to the Angel and Debugger groups at ARM.

Describe the registers of a coprocessor. Use only if ADP_Info_CoPro returns Adp_ok.

The CoprocessorDesc array is terminated by a single byte (value 0xff) in "copro”,

without the rest of that record. The array must fit in a single ADP packet.

The interpretation of the bytes r0, r1, w0, w1 depends on bit 2 in the access byte, as

shown in the diagram below. In the case bit 2 = 0, the byte pair r0, r1 us used when

reading the coprocessor, and w0, w1 when writing to it. In the case bit 2 = 1, the

values of w0, w1 are irrelevant, and r0, r1 are used for both reads and writes.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-23

Open Access

Unused, set to zero
1 = Readable.

0 = Otherwise

1 = Writeable

0 = Otherwise

[Little Endian]��������

���

���
����

���
�	��

�

��
��

�����

���
�����

�����

����

�

�

�����

����

r0, w0

���

r1, w1

Bit 2 = 0

���

r0

���

r1

Bit 2 = 1

access

����

���

�	��

��

��

������

�����

���

�����

���

��

�

�����

����

��

�

��

�

��

�

�

�

CPDT, or LDC/STC instruction

CPRT, or MRC/STC instruction

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-24 ARM DUI 0053D

Open Access

2.4.2.10 ADP_Info_RequestCoProDesc

Channel: CI_HADP

Reason Code: 1

Subreason Code: 9

Signature:

VAL Info_ RequestCoProDesc IS 9(UINT32):

RECORD CoprocessorDesc IS (BYTE copro, rmin, rmax, nbytes, access):

(Info_ RequestCoProDesc, UINT32 status, []RECORD CoprocessorDesc desc) =

ADP_ Info(Info_ RequestCoProDesc, BYTE cpno)

Parameters:

status Adp_ok to indicate success or non-zero to indicate an error

cpno The number of the coprocessor to describe

rmin The bottom of a range of registers with the same description

rmax The top of a range of registers with the same description

nbytes The size of the register(s)

access Describes access to the register and is described in more detail in
DescribeCoPro, above

Description:

Note The access and descriptor functions for coprocessors are now depreciated, and may

be dropped or radically changed in future revisions of ADP. Any users of these

functions should make their use known to the Angel and Debugger groups at ARM.

Requests a description of the registers of a coprocessor.

Use only if ADP_Info_CoPro returns Adp_ok.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-25

Open Access

2.4.2.11 ADP_Info_AngelBufferSize

Channel: CI_HADP

Reason Code: 1

Subreason Code: 10

Signature:

VAL Info_AngelBufferSize IS 10(UINT32):

(Info_AngelBufferSize, UINT32 status,UINT32 defaultsize, maxsize) =

ADP_Info(Info_AngelBufferSize)

Parameters:

status Adp_ok to indicate success or non-zero to indicate an error.

defaultsize The default Angel ADP buffer size in bytes; this must be at least 256
bytes.

maxsize The largest Angel ADP buffer size in bytes. This must be greater
than or equal to defaultsize. The target will accept ADP messages of
up to this length for the ADP_Write packet type.

Description:

This call returns the Angel data packet sizes. This is the amount that the target should

transmit in a single operation. This information is also given in the ADP_Booted

message.

Note The value returned should be the size of the data which can be transported in a

packet, not the size of the packet itself. This is needed to ensure that the transport

protocol information can be wrapped around the data.

Note Packets larger than defaultsize cannot be used for target-to-host messages with the

ARM Host code in SDT2.11a or before. In addition, the same ARM targets can only

handle one large packet at a time.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-26 ARM DUI 0053D

Open Access

2.4.2.12 ADP_Info_ChangeableSHSWI

Channel: CI_HADP

Reason Code: 1

Subreason Code: 11

Signature:

VAL Info_ChangeableSHSWI IS 11(UINT32):

(Info_ChangeableSHSWI, UINT32 status) = ADP_ Info(Info_ChangeableSHSWI)

Parameters:

status Adp_ok to indicate that it is possible to change which SWI is used
for semihosting, or non-zero otherwise

Description:

This message is used to check whether it is possible to change which SWI's are used

for semihosting.

2.4.2.13 ADP_Info_ CanTargetExecute

Channel: CI_HADP

Reason Code: 1

Subreason Code: 12

Signature:

VAL Info_CanTargetExecute IS 12(UINT32):

(Info_CanTargetExecute, UINT32 status) = ADP_Info(Info_CanTargetExecute)

Parameters:

status Adp_ok to indicate that the target is not executing application code
but could do so if asked. Other values indicate why it cannot
execute.

Description:

This message is used to see if the target is currently in an executable state. Typically

this is called after the debugger initializes. If a adp_ok is returned then the user is

allowed to ‘go’ immediately.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-27

Open Access

2.4.2.14 ADP_Info_ AgentEndianess

Channel: CI_HADP

Reason Code: 1

Subreason Code: 13

Signature:

VAL Info_AgentEndianess IS 13(UINT32):

(Info_AgentEndianess, UINT32 status) = ADP_ Info(Info_AgentEndianess)

Parameters:

status See below

Description:

This message is used to determine the endianess of the debug agent (as opposed to

the target). There could be a difference in the case that the debug agent is running on

a distinct processor from the target (for example, with an EmbeddedICE unit).

Status should be RDIError_LittleEndian or RDIError_BigEndian; any other value

indicates the target does not support this request so the debugger will have to make a

best guess.

2.4.2.15 ADP_Info_CanAckHeartbeat

Channel: CI_HADP

Reason Code: 1

Subreason Code: 14

Signature:

VAL Info_CanAckHeartbeat IS 14(UINT32):

(Info_CanAckHeartbeat, UINT32 status) = ADP_ Info(Info_CanAckHeartbeat)

Parameters:

status Adp_ok to indicate heartbeats are acknowledged, non-zero
otherwise

Description:

This message checks whether heartbeat messages sent from the host are

acknowledged (by sending a heartbeat message to the host). Heartbeat

acknowledgements are part of the channel level protocol, but were not implemented in

the versions of Angel prior to 1.03 (EmbeddedICE 2.03).

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-28 ARM DUI 0053D

Open Access

If the target supports heartbeats but they are not enabled by default, this call will

enable them as well.

Angel 1.04 and EmbeddedICE 2.07 support heartbeats by default; the call simply

returns adp_ok.

2.4.3 ADP_Control

Channel: CI_HADP

Reason Code: 2

Description:

This message allows for the state of the debug agent to be manipulated by the host.

The following are subreason codes to ADP control; the first parameter is the

subreason code which defines the format of subsequent parameters.

2.4.3.1 ADP_Ctrl_NOP

Channel: CI_HADP

Reason Code: 2

Subreason Code: 0

Signature:

VAL Ctrl_NOP IS 0(UINT32):

(Ctrl_NOP, UINT32 status) = ADP_ Control(Ctrl_NOP)

Parameters:

status Adp_ok to indicate if ADP_Control messages are supported, non-
zero otherwise

Description:

This message is used to check that ADP_Ctrl messages are supported.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-29

Open Access

2.4.3.2 ADP_Ctrl_VectorCatch

Channel: CI_HADP

Reason Code: 2

Subreason Code: 1

Signature:

VAL Ctrl_VectorCatch IS 1(UINT32):

(Ctrl_VectorCatch, UINT32 status) =
ADP_Control(Ctrl_VectorCatch, UINT32 bitmap)

Parameters:

status Adp_ok if the target has completed the request and will report the
requested exceptions.

bitmap A bit mask of exceptions to be reported, described in more detail
below.

Description:

Specifies which hardware exceptions should be reported to the debugger; a set bit in

‘bitmap’ indicates that the exception should be reported to the debugger, a clear bit

indicates that the corresponding exception vector should be taken.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-30 ARM DUI 0053D

Open Access

[Little Endian]

Unused, set to zero

1 = Interrupt (IRQ)

0 = Otherwise

1 = Fast Interrupt (FIQ)

0 = Otherwise

1 = Error

0 = Otherwise

1 = Address Exception

0 = Otherwise

1 = Data Abort

0 = Otherwise

1 = Prefectch Abort

0 = Otherwise

1 = Undefined instr.

0 = Otherwise

������� �� �	
�

1 = SWI

0 = Otherwise

1 = Branch through

zero (Reset)

0 = Otherwise

2.4.3.3 ADP_Ctrl_PointStatus_Watch

Channel: CI_HADP

Reason Code: 2

Subreason Code: 2

Signature:

VAL Ctrl_PointStatus_Watch IS 2(UINT32):

(Ctrl_PointStatus_Watch, UINT32 status, hwresource, type) =

ADP_Control(Ctrl_PointStatus_Watch, UINT32 handle)

Parameters:

handle A handle to a watchpoint

status Adp_ok to indicate success or non-zero to indicate an error

hwresource The hardware resource number

type The type of the resource

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-31

Open Access

Description:

Returns the hardware resource number and the type of that resource when given a

watchpoint handle. Should only be called if the value returned by ADP_Info_Points

had bit 12, “info on break/watch” set.

2.4.3.4 ADP_Ctrl_PointStatus_Break

Channel: CI_HADP

Reason Code: 2

Subreason Code: 3

Signature:

VAL Ctrl_PointStatus_ Break IS 3(UINT32):

(Ctrl_PointStatus_ Break, UINT32 status, hwresource, type) =

ADP_Control(Ctrl_PointStatus_ Break, UINT32 handle)

Parameters:

handle A handle to a breakpoint

status Adp_ok to indicate success or non-zero to indicate an error

hwresource The hardware resource number

type The type of the resource

Description:

Returns the hardware resource number and the type of that resource when given a

breakpoint handle. Should only be called if the value returned by ADP_Info_Points

had bit 12, “info on break/watch” set.

2.4.3.5 ADP_Ctrl_SemiHosting_SetState

Channel: CI_HADP

Reason Code: 2

Subreason Code: 4

Signature:

VAL Ctrl_SemiHosting_SetState IS 4(UINT32):

(Ctrl_SemiHosting_SetState, UINT32 status) =
ADP_Control(Ctrl_SemiHosting_SetState, UINT32 semihostingstate)

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-32 ARM DUI 0053D

Open Access

Parameters:

semihostingstate If zero, semihosting is enabled, otherwise it is disabled

status Adp_ok to indicate success or non-zero to indicate an error

Description:

Sets whether or not semihosting is enabled. If semihosting is disabled, the debug

agent must treat semihosting calls (for example, to open a file) as undefined

exceptions.

Disabling semihosting does not imply disabling all support for SWI calls from the

application: in Angel, the ReportException and EnterSVC calls are still permitted

(indeed, Angel requires EnterSVC for it’s own operation).

This should only be called if ADP_Info_SemiHosting returns a status of Adp_ok.

2.4.3.6 ADP_Ctrl_SemiHosting_GetState

Channel: CI_HADP

Reason Code: 2

Subreason Code: 5

Signature:

VAL Ctrl_SemiHosting_GetState IS 5(UINT32):

(Ctrl_SemiHosting_GetState, UINT32 status, UINT32 semihostingstate) =

ADP_Control(Ctrl_SemiHosting_GetState)

Parameters:

semihostingstate If zero, semihosting is enabled, otherwise it is disabled

status Adp_ok to indicate success, or non-zero to indicate an
error

Description:

Reads whether or not semihosting is enabled.

Note This should only be called if ADP_Info_SemiHosting returns a status of Adp_ok.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-33

Open Access

2.4.3.7 ADP_Ctrl_SemiHosting_SetVector

Channel: CI_HADP

Reason Code: 2

Subreason Code: 6

Signature:

VAL Ctrl_SemiHosting_SetVector IS 6(UINT32):

(Ctrl_SemiHosting_SetVector, UINT32 status) =

ADP_Control(Ctrl_SemiHosting_SetVector, UINT32 semihostingvector)

Parameters:

semihostingvector The value to which the semihosting vector is to be set.

status Adp_ok to indicate success, or non-zero to indicate an
error

Description:

Sets the semihosting vector. The normal vector to use would be the SWI vector, at

address 8.

Note This should only be called if ADP_Info_SemiHosting returns a status of Adp_ok.

2.4.3.8 ADP_Ctrl_SemiHosting_GetVector

Channel: CI_HADP

Reason Code: 2

Subreason Code: 7

Signature:

VAL Ctrl_SemiHosting_GetVector IS 7(UINT32):

(Ctrl_SemiHosting_GetVector, UINT32 status, UINT32 semihostingvector) =
ADP_Control(Ctrl_SemiHosting_GetVector)

Parameters:

semihostingvector The current value of the semihosting vector

status Adp_ok to indicate success, or non-zero to indicate an
error

Description:

Gets the value of the semi-hosting vector.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-34 ARM DUI 0053D

Open Access

Note This should only be called if ADP_Info_SemiHosting returns a status of Adp_ok.

2.4.3.9 ADP_Ctrl_Log

Channel: CI_HADP

Reason Code: 2

Subreason Code: 8

Signature:

VAL Ctrl_Log IS 8(UINT32):

(Ctrl_Log, UINT32 status, UINT32 logbits) = ADP_Control(Ctrl_Log)

Parameters:

logbits A bitmap specifying the current level of protocol logging

status Adp_ok to indicate success, or non-zero to indicate an error

Description:

Returns the logging state for code running on the host.

‘logsetting’ is a bitmap specifying the level of logging desired. The state is a

combination of the following bits.

[Little Endian]��������

Unused, set to zero
1 =Log RDI Level operations

0 = Otherwise

1 = Log ADP packets by byte

0 = Otherwise

1 = Log Internal operations

0 = Otherwise

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-35

Open Access

2.4.4 ADP_Ctrl_SetLog

Channel: CI_HADP

Reason Code: 2

Subreason Code: 9

Signature:

VAL Ctrl_Log IS 9(UINT32):

(Ctrl_Log, UINT32 status) = ADP_Control(Ctrl_Log, UINT32 logbits)

Parameters:

logbits A bitmap specifying the current level of protocol logging. See
ADP_Ctrl_Log above for details

status Adp_ok to indicate success or non-zero to indicate an error

Description:

Sets the logging state for code running on the host. See above for details of the bits

which can be set.

Note The ARM debuggers do not issue the set log command until several packets into the

boot sequence; if the default log state for the host is to log nothing, then no logging

information will be added to the log for the open sequence and initial packet transfers.

2.4.4.1 ADP_Ctrl_SemiHosting_SetARMSWI

Channel: CI_HADP

Reason Code: 2

Subreason Code: 10

Signature:

VAL Ctrl_ SemiHosting_SetARMSWI IS 10(UINT32):

(Ctrl_ SemiHosting_SetARMSWI, UINT32 status) =

ADP_Control(Ctrl_SemiHosting_SetARMSWI, UINT32 swinumber)

Parameters:

swinumber The new SWI number

status Adp_ok to indicate success, or non-zero to indicate an error

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-36 ARM DUI 0053D

Open Access

Description:

Sets the number of the ARM SWI used for semihosting The debug agent will interpret

ARM SWI's with the SWI number specified as semihosting SWI's.

The Angel libraries supplied with the toolkit, and the Angel ROM’s installed on ARM

Development Boards, use SWI number 0x123456 in ARM code and 0xAB in Thumb

code.

Note This should only be called if ADP_Info_ChangeableSHSWI does not return an error.

2.4.4.2 ADP_Ctrl_SemiHosting_GetARMSWI

Channel: CI_HADP

Reason Code: 2

Subreason Code: 11

Signature:

VAL Ctrl_ SemiHosting_GetARMSWI IS 11(UINT32):

(Ctrl_SemiHosting_GetARMSWI, UINT32 status, UINT32 swinumber) =

ADP_Control(Ctrl_ SemiHosting_GetARMSWI)

Parameters:

swinumber The current SWI number

status Adp_ok to indicate success or non-zero to indicate an error

Description:

Returns the number of the ARM SWI used for semihosting.

This should only be called if ADP_Info_SemiHosting returns a status of Adp_ok.

2.4.4.3 ADP_Ctrl_SemiHosting_SetThumbSWI

Channel: CI_HADP

Reason Code: 2

Subreason Code: 12

Signature:

VAL Ctrl_SemiHosting_SetThumbSWI IS 12(UINT32):

(Ctrl_SemiHosting_SetThumbSWI, UINT32 status) =

ADP_Control(Ctrl_SemiHosting_SetThumbSWI, UINT32 swinumber)

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-37

Open Access

Parameters:

swinumber The current SWI number.

status Adp_ok to indicate success, or non-zero to indicate an error

Description:

The debug agent will interpret Thumb SWI's with the SWI number specified as

semihosting SWI's.

The Angel libraries supplied with the toolkit, and the Angel ROM’s installed on ARM

Development Boards, use SWI number 0x123456 in ARM code and 0xAB in Thumb

code.

Note This should only be called if ADP_Info_ChangeableSHSWI returns a status of

Adp_ok.

2.4.4.4 ADP_Ctrl_SemiHosting_GetThumbSWI

Channel: CI_HADP

Reason Code: 2

Subreason Code: 13

Signature:

VAL Ctrl_SemiHosting_GetThumbSWI IS 13(UINT32):

(Ctrl_SemiHosting_GetThumbSWI, UINT32 status, UINT32 swinumber) =

ADP_Control(Ctrl_ SemiHosting_GetThumbSWI)

Parameters:

swinumber The current SWI number

status Adp_ok to indicate success or non-zero to indicate an error

Description:

Reads the number of the Thumb SWI used for semihosting.

Note This should only be called if ADP_Info_SemiHosting returns a status of Adp_ok.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-38 ARM DUI 0053D

Open Access

2.4.4.5 ADP_Ctrl_Download_Supported

Channel: CI_HADP

Reason Code: 2

Subreason Code: 14

Signature:

VAL Ctrl_Download_Supported IS 14(UINT32):

(Ctrl_Download_Supported, UINT32 status) =
ADP_Control(Ctrl_Download_Supported)

Parameters:

status Adp_ok to indicate that download is possible or non-zero otherwise.

Description:

Asks whether a new Debug Agent can be downloaded. Use

ADP_Ctrl_Download_Agent to initiate the actual download.

2.4.4.6 ADP_Ctrl_Download_Data

Channel: CI_HADP

Reason Code: 2

Subreason Code: 15

Signature:

VAL Ctrl_Download_Data IS 15(UINT32):

(Ctrl_Download_Data, UINT32 status) =

ADP_Control(Ctrl_Download_Data, UINT32 nbytes, [nbytes]BYTE data)

Parameters:

status Adp_ok to indicate that download is possible or non-zero otherwise

nbyes The number of bytes of configuration data

data The configuration data

Description:

Loads configuration data to the debug agent. The message follows

ADP_Ctrl_Download_Agent.

Note nbytes must not cause the packet size to exceed the standard packet size (256 bytes).

Should only be used if ADP_ICEM_AddConfig didn't return an error.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-39

Open Access

2.4.4.7 ADP_Ctrl_Download_Agent

Channel: CI_HADP

Reason Code: 2

Subreason Code: 16

Signature:

VAL Ctrl_Download_Data IS 16(UINT32):

(Ctrl_Download_Data, UINT32 status) =
ADP_Control(Ctrl_Download_Agent, UINT32 loadadress, UINT32 size)

Parameters:

loadaddress The address where the new debug agent code should be loaded

size The number of bytes of debug agent code to be loaded

status Adp_ok to indicate success, non-zero otherwise

Description:

Prepares debug agent to receive configuration data which it should interpret as a new

version of the debug agent code.

The message follows ADP_Ctrl_Download_Supported. The data will be downloaded

using one or more ADP_Ctrl_Download_Data messages. The new agent is started

with ADP_Ctrl_Start_Agent.

2.4.4.8 ADP_Ctrl_Start_Agent

Channel: CI_HADP

Reason Code: 2

Subreason Code: 17

Signature:

VAL Ctrl_Download_Data IS 17(UINT32):

(Ctrl_Download_Data, UINT32 status) =
ADP_Control(Ctrl_Download_Agent, UINT32 startaddress)

Parameters:

startaddress the address where the new debug agent should begin execution.

status Adp_ok to indicate success, non-zero otherwise.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-40 ARM DUI 0053D

Open Access

Description:

Instruct the debug agent to begin execution of new agent, which has previously been

downloaded by ADP_Ctrl_Download_Agent and ADP_Ctrl_Download_Data.

The startaddress must satisfy the condition:

(loadaddress <= startaddress <= (loadaddress + size))

where loadaddress and size were specified in the ADP_Ctrl_Download_Agent

message.

Note Immediately after sending the host should reinitialise it’s buffers and sequence

numbers and wait for the target to boot. There should be a timeout on this waiting

period of at least 2 seconds.

2.4.4.9 ADP_Ctrl_SetTopMem

Channel: CI_HADP

Reason Code: 2

Subreason Code: 18

Signature:

VAL Ctrl_SetTopMem IS 18(UINT32):

(Ctrl_SetTopMem, UINT32 status) =
ADP_Control(Ctrl_SetTopMem, UINT32 memtop)

Parameters:

memtop The address where the new debug agent should begin execution

status Adp_ok to indicate success, non-zero otherwise

Description:

Sets the top of target memory in systems where the debug agent is distinct from the

target, and thus doesn’t know the target memory layout. This enables the C Library to

allocate the stack and heap in the correct place on startup (via the SYS_HEAPINFO

system calls).

This request is supported by EmbeddedICE, and not by debug agents running on the

target which should return an error such as HADPUnrecognised.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-41

Open Access

2.4.5 ADP_Read

Channel: CI_HADP

Reason Code: 3

Signature:

(UINT32 status, mbytes, [mbytes]BYTE data) =

ADP_Read(INT32address, UINT32 nbytes)

Parameters:

address The target address from which memory transfer should start

nbytes The number of bytes to transfer

status Adp_ok to indicate success, non-zero otherwise

mbytes Holds the number of requested bytes not read (ie. zero indicates
success, non-zero a partial success or failure)

data The data requested, less “mbytes” at the end

Description:

This is a request by the host for a transfer of memory contents from the target to the

debugger. The debug agent is free to perform this transfer in whatever way it chooses.

That is, it should not be assumed that the transfer will use target byte or half-word

writes, even when reading single bytes or half words. However, it should stop reading

data as soon as it can if a data abort occurs.

The call returns the number of bytes which the debug agent has definitely not read,

rounded up so that the read data is definitely correct. It is possible that the agent may

have actually read more data, but is not able to determine how much (for example, it

was reading the data using LDM instructions).

Transfers of 1, 2 and 4 bytes should be written to the destination memory as a single

byte, short and word quantity, architecture permitting.

2.4.6 ADP_Write

Channel: CI_HADP

Reason Code: 4

Signature:

(UINT32 status, mbytes) =
ADP_Write(INT32address, UINT32 nbytes, [nbytes]BYTE data)

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-42 ARM DUI 0053D

Open Access

Parameters:

address The target address from which memory transfer should start

nbytes The number of bytes to transfer

status Adp_ok to indicate success, non-zero otherwise

mbytes Holds the number of requested bytes not written (that is, zero
indicates success, non-zero a partial success or failure). Note that
this field is only present if status is not adp_ok.

data The bytes of data to write.

Description:

This is a request by the host for a transfer of memory contents from the debugger to

the target. The debug agent is free to perform this transfer in whatever way it chooses.

That is, it should not be assumed that the transfer will use target byte or half-word

writes, even when writing single bytes or half words. However, it should stop writing

data as soon as it can if a data abort occurs.

The call returns the number of bytes which the debug agent has definitely not written,

rounded up to the unit of data transfer. It is possible that the agent may have actually

written more data, but is not able to determine how much (for example, it was writing

the data using STM instructions).

Transfers of 1, 2 and 4 bytes should be written to the destination memory as a single

byte, short and word quantity, architecture permitting.

2.4.7 ADP_CPUread

Channel: CI_HADP

Reason Code: 5

Signature:

(UINT32 status, []BYTE data) = ADP_CPUread(BYTE mode, UINT32 mask)

Parameters:

mode Defines the processor mode from which the transfer should be
made. It is described in more detail below.

mask Indicates which registers should be transferred. Setting a bit to one
will cause the designated register to be transferred. The details of
mask are specified below.

status Adp_ok to indicate success, non-zero otherwise.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-43

Open Access

data Holds the values of the registers on successful completion. The
lowest numbered register is transferred first. Note that data must not
cause the buffer size to exceed the maximum allowed buffer size.

Description:

This is a request to read values in the CPU for the application task when it was last

running. These values must be saved as part of the execution interrupt sequence

(caused either by a breakpoint, single step, unhandled exception, application exit or

debugger interrupt request).

The mode number is the same as the mode number used by an ARM CPU core (in

the PSR) with the exception that a value of 0xFF indicates the current mode. It is valid

to make multiple CPUread requests,although for efficiency this should be kept to a

minimum.

Name Code Description

ADP_CPUmode_Current 0xFF Used to specify the current mode.

ADP_CPUread_26bitUser 0x0 26-bit User mode.

ADP_CPUread_26bitFIQ 0x1 26-bit FIQ mode.

ADP_CPUread_26bitIRQ 0x2 26-bit IRQ mode.

ADP_CPUread_26bitSVC 0x3 26-bit Supervisor mode.

ADP_CPUread_32bitUser 0x10 32-bit User mode.

ADP_CPUread_32bitFIQ 0x11 32-bit FIQ mode.

ADP_CPUread_32bitIRQ 0x12 32-bit IRQ mode.

ADP_CPUread_32bitSVC 0x13 32-bit Supervisor mode.

ADP_CPUread_32bitAbort 0x17 32-bit Abort mode.

ADP_CPUread_32bitUndef 0x1B 32-bit Undefined mode.

ADP_CPUread_32bitSystem 0x1F 32-bit System mode.

Note 32-bit System mode was added in Architecture 4 ARM CPU cores eg.ARM7TDMI.

Some CPU cores (e.g. StrongARM) do not implement the 26 bit modes.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-44 ARM DUI 0053D

Open Access

The bitmask is defined as follows:

[Little Endian]������ ����

Unused, set to zero

PC, with mode/flags

in 26 bit state

PC, without mode/

flags in 26 bit state
CPSR

Register map:

bit0 is r0, bit14 is r14

��

SPSR

���	�

2.4.8 ADP_CPUwrite

Channel: CI_HADP

Reason Code: 6

Signature:

(UINT32 status) = ADP_CPUwrite(BYTE mode, UINT32 mask, []BYTE data)

Parameters:

mode Defines the processor mode from which the transfer should be
made. It is described in more detail in ADP_CPUread.

mask indicates which registers should be transferred. Setting a bit to one
will cause the designated register to be transferred. The details of
mask are specified below.

status Adp_ok to indicate success, non-zero otherwise.

data Holds the values of the registers on successful completion. The
lowest numbered register is transferred first. Note that data must not
cause the buffer size to exceed the maximum allowed buffer size.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-45

Open Access

Description:

This is a request to write values to the CPU register block for the application task.

When the debugger next requests the application execute (using ADP_Execute),

these values will be loaded into the CPU registers.

If made, multiple CPUwrite requests are cumulative. It is not defined
1
 what state the

application task registers are in when the target is initialised; the debugger should

write all registers which the application is likely to care about.

2.4.9 ADP_CPread

Channel: CI_HADP

Reason Code: 7

Signature:

(UINT32 status, []BYTE data) = ADP_CPread(BYTE cpno, UINT32 mask)

Parameters:

cpno The number of the co-processor to transfer values from.

mask Specifies which registers to transfer and is co-processor specific.

status Adp_ok to indicate success, non-zero otherwise.

data holds the registers specified in 'mask' if successful, otherwise just
rubbish. The lowest numbered register is transferred first.

Description:

This message requests a co-processors internal state. The only coprocessor currently

defined by ARM is the system coprocessor, in which the bits of ‘mask’ relate directly to

the registers of the coprocessor, starting with the least significant bit being register 0.

The semantics of reading coprocessor register values are as for reading the CPU

registers in ADP_CPUread; the request reads the registers as they were when the

application stopped.
 2

Note The size of the ‘data’ array must not cause the buffer size to exceed the maximum

allowed buffer size.

1
 Angel 1.04 initialises the CPSR to USR mode. Future versions of Angel may initialise the CPSR

to SVC mode instead. Interrupts are disabled.

2
 If the debug agent knows that the coprocessor state cannot change as a result of its activity, it

can optimise application context switching by reading from and writing to the coprocessor
directly.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-46 ARM DUI 0053D

Open Access

2.4.10 ADP_CPwrite

Channel: CI_HADP

Reason Code: 8

Signature:

(UINT32 status) = ADP_CPread(BYTE cpno, UINT32 mask, []BYTE data)

Parameters:

cpno The number of the coprocessor to transfer values to.

mask specifies which registers to transfer and is coprocessor specific.

status Adp_ok to indicate success, non-zero otherwise.

data holds the registers specified in ‘mask' if successful. The lowest
numbered register is transferred first.

Description:

This message requests a write to a coprocessors internal state. See the comments for

ADP_Cpread for the coprocessor definition.

The semantics of writing coprocessor register values are as for writing the CPU

registers in ADP_CPUwrite; the request writes (cumulatively) to a store of the registers

which will be restored to the coprocessor when the application is (re)started.

Note The size of the ‘data’ array must not cause the buffer size to exceed the maximum

allowed buffer size.

2.4.11 ADP_SetBreak

Channel: CI_HADP

Reason Code: 9

Signature:

(UINT32 status, pointhandle, raddress, rbound) =
ADP_SetBreak(UINT32 address, BYTE type, UINT32 bound)

Parameters:

address The address of the instruction to set the breakpoint on.

type Specifies the sort of breakpoint and is described in more detail
below.

bound Only present in the message if the least significant 4 bits of ‘type’
are set to 5 or above.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-47

Open Access

status Adp_ok to indicate success, non-zero otherwise.

pointhandle Returns a handle to the breakpoint, it will be valid if bit 7 of ‘type' is
set.

raddress Valid depending on ‘type' (see below, always included).

rbound Valid depending on ‘type' (see below, always included).

Description:

Sets a breakpoint at the specified address. If the debug agent allows multiple

application threads and the requests DebugID is set to a valid thread identifier, it

should selectively place the breakpoint only when that thread is running.

The interpretation of “type” is as shown in the figure below. Bits 5,6 and 7 are used as

follows :

� Bit 5 set indicates that the breakpoint is on a 16-bit (Thumb) instruction rather

than a 32-bit (ARM) instruction.

� Bit 6 set indicates that the breakpoint should be conditional (execution halts only

if the breakpointed instruction is executed, not if it is conditionally skipped). If not

set, execution halts whenever the breakpointed instruction is reached (whether

executed or skipped).

� Bit 7 set requests a dry run: the breakpoint is not set, and the ‘raddress', and if

appropriate the ‘rbound', that would be used, are returned (for comparison and

range breakpoints the address and bound used need not be exactly as

requested).

A returned adp_ok status indicates that resources are currently available to set the

breakpoint, non-zero indicates an error, while the error code RDIError_NoMorePoints

indicates that the required breakpoint resources are not currently available

Note It is possible that a NoMorePoints error could occur because watchpoints are using

the required resources.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-48 ARM DUI 0053D

Open Access

[Little Endian]��� ���

1 = Dry run only

0 = Set break

Value Condition

0 pc == addr

1 pc > addr

2 pc >= addr

3 pc < addr

4 pc <= addr

5 addr <= pc <= bound

6 pc < addr /\ pc > bound

7 (pc & bound) == addr

1 = Conditional

0 = Always

1 = Thumb break

0 = ARM break

If a breakpoint is set on a location which already has a breakpoint, the first breakpoint

will be removed before the new breakpoint is set.

2.4.12 ADP_ClearBreak

Channel: CI_HADP

Reason Code: 10

Signature:

(UINT32 status) = ADP_ClearBreak(UINT32 pointhandle)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

pointhandle A handle to the breakpoint returned from a previous call to
ADP_SetBreak.

Description:

Clears a breakpoint, releasing whatever resources it was using. Once completed,

‘pointhandle’ becomes invalid.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-49

Open Access

2.4.13 ADP_SetWatch

Channel: CI_HADP

Reason Code: 11

Signature:

(UINT32 status, UINT32 pointhandle, raddress, rbound) =

ADP_ SetWatch(UINT32 address, BYTE type, BYTE datatype, UINT32
bound)

Parameters:

address The address at which to set the watchpoint.

type The type of watchpoint to set and is described in detail below.

datatype Defines the sort of data access to watch for and is described in
more detail below.

bound Included depending on the value of type (see description of type
below).

status Adp_ok to indicate success, non-zero otherwise.

pointhandle Valid depending on the value of type (see description of type below).

raddress Valid depending on the value of type (see description of type below).

rbound Valid depending on the value of type (see description of type below).

Description:

This call sets a watchpoint. If the debug agent allows multiple application threads and

the requests DebugID is set to a valid thread identifier, it should place the watchpoint

only when that thread is running.

The type byte is interpreted as shown in the figure below. Bits 6 and 7 are used as

follows:

� Bit 6 set requests a dry run: the watchpoint is not set, and the ‘address' and, if

appropriate, the ‘bound', that would be used are returned (for range and

comparison watchpoints, the ‘address' and 'bound' used need not be exactly as

requested). A adp_ok status indicates that resources are currently available to set

the watchpoint; RDIError_NoMorePoints indicates that the required watchpoint

resources are not currently available.

� Bit 7 set requests that a handle should be returned for the watchpoint by which it

will be identified subsequently. If bit 7 is set, a handle will be returned

(‘pointhandle'), whether or not the request succeeds or fails (but, obviously, it will

only be meaningful if the request succeeds).

Note Bits 6 and 7 must not be simultaneously set. Note also that the ‘dry run’ bit is in a

different place in the byte from that used for breakpoints.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-50 ARM DUI 0053D

Open Access

The ‘type' argument is laid out as shown:

[Little Endian]��� ���

1 = Dry run only

0 = Set watch

Value Condition

0 ea == addr

1 ea > addr

2 ea >= addr

3 ea < addr

4 ea <= addr

5 addr <= ea <= bound

6 ea < addr /\ ea > bound

7 (ea & bound) == addr

ea is the effective address of a data ref.

1 = Always return handle.

0 = Handle only if watch set.

Unused, set to

zero

The ‘datatype' argument defines the sort of data access to watch for:

[Little Endian]

1 = 16 bit Writes

0 = Ignore

1 = 8 bit Writes

0 = Ignore

1 = 32 bit Reads

0 = Ignore

1 = 16 bit Reads

0 = Ignore

1 = 8 bit Reads

0 = Ignore1 = 32 bit Writes

0 = Ignore

������ � ��

Unused, set to

zero

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-51

Open Access

On successful completion an Adp_ok status byte is returned. If the request fails, Angel

returns the value RDIError_NoMorePoints if there are no more watchpoint registers of

the requested type, or a non-zero error code byte.

If a watchpoint is set on a location which already has a watchpoint, the first watchpoint

will be removed before the new watchpoint is set.

2.4.14 ADP_ClearWatch

Channel: CI_HADP

Reason Code: 12

Signature:

(UINT32 status) = ADP_ClearWatch(UINT32 pointhandle)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

pointhandle A handle to the watchpoint returned from a previous call to
ADP_SetWatch.

Description:

Clears a watchpoint.

2.4.15 ADP_Execute

Channel: CI_HADP

Reason Code: 13

Signature:

(UINT32 status) = ADP_ Execute()

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

Description:

This message requests that the target starts executing from the stored CPU state (set

with ADP_CPUwrite and possibly ADP_CPwrite). The target must respond

immediately with the ADP_Execute reply message before initiating execution.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-52 ARM DUI 0053D

Open Access

Execution will stop when allowed system events occur. This will be one of:

1 The application terminated normally and returned control to the debugger

2 The application caused an exception (e.g. a data abort) which it provided no

handler for

3 The debugger requested the debug agent to interrupt the application

4 The application hit a predefined watchpoint or breakpoint

The host will be notified that the application has stopped executing via a

ADP_Stopped message (described below), even in the case of an interrupt request

from the debugger. The CPU registers and, if appropriate the coprocessor state, at the

point the application stopped should be stored ready for examination by the debugger

via subseuent calls to ADP_CPUread and ADP_CPUread.

Note Execution may cause the processor to enter any legal CPU state, and may cause the

processor to enter illegal states as well (such as the PC or SP pointing at aborting

memory, the CPSR specifying an undefined mode). The effect of these situations

should be considered carefully.

2.4.16 ADP_Step

Channel: CI_HADP

Reason Code: 14

Signature:

(UINT32 status) = ADP_Step(UINT32 ninstr)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

ninstr The number of instructions to execute.

Description:

Execute ‘ninstr' instructions.

The number of instructions to execute should be interpreted starting at the address

currently loaded into the CPU program counter. If ‘ninstr’ is zero, the target should

execute instructions up to the next instruction that explicitly alters the Program

Counter. ie. a branch or ALU operation with the PC as the destination.

If the debug agent only supports stepping by one instruction at a time, it is permissible

to return the HADP_Unrecognised reply when ‘ninstr’ is non-zero. In this case

however the debug agent must return 0 in the ‘can step multiple instructions’ bit for an

ADP_Info_Step.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-53

Open Access

The ADP_Step function will always return an acknowledging reply immediately. A

subsequent ADP_Stopped message will be delivered from the target to the host when

the ADP_Step operation has completed.

See ADP_Execute for comments on how the application can return control to the

debug agent.

2.4.17 ADP_InterruptRequest

Channel: CI_HADP

Reason Code: 15

Signature:

(UINT32 status) = ADP_InterruptRequest()

Parameters:

status Adp_ok to indicate success, non-zero otherwise

Description:

This requests the debug agent interrupt execution of the target. It must only be called

between an ADP_Execute or ADP_Step request and the corresponding ADP_Stopped

message from the target.

Once execution of the target program has halted, the reply message (type

ADP_InterruptRequest) to the interrupt must be sent. Some time after this, the target

must send an ADP_Stopped message which indicates that execution has completed.

Note It is possible that a debug agent might receive an ADP_InterruptRequest after sending

an ADP_Stopped message resulting from a target breakpoint or exception. If this

happens, the InterruptRequest should just return the error RDIError_NoError.

2.4.18 ADP_HW_Emulation

Channel: CI_HADP

Reason Code: 16

Description:

The first parameter to ADP_HW_Emulation is a Reason Subcode, and subsequent

parameters are defined by that subcode.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-54 ARM DUI 0053D

Open Access

2.4.18.1 ADP_HW_Emul_Supported

Channel: CI_HADP

Reason Code: 16

Subreason Code: 0

Signature:

VAL HWEm_Supported IS 1(UINT32):

(HWEm_Supported, UINT32 status) = ADP_ HW_Emulation(HWEm_Supported)

Parameters:

status Adp_ok to indicate that the messages are available, non-zero
otherwise.

Description:

This request enquires whether the four messages MemoryAccess, MemoryMap,

Set_CPUspeed and ReadClock are understood.

2.4.18.2 ADP_HW_Emul_MemoryAccess

Channel: CI_HADP

Reason Code: 16

Subreason Code: 1

Signature:

VAL HWEm_MemoryAccess IS 0(UINT32):

(HWEm_MemoryAccess, UINT32 status,

UINT32 nreads, nwrites, sreads, swrites, nsecs, secs) =

ADP_ HW_Emulation(HWEm_MemoryAccess, UINT32 handle)

Parameters:

handle A handle to a memory block.

status Adp_ok to indicate success, non-zero otherwise.

nreads The number of non-sequential reads.

nwrites The number of non-sequential writes.

sreads The number of sequential reads.

swrites The number of sequential writes.

nsecs Time in nano seconds.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-55

Open Access

secs Time in seconds.

Description:

Get memory access information for memory block with specified handle.

2.4.19 ADP_HW_Emul_MemoryMap

Channel: CI_HADP

Reason Code: 16

Subreason Code: 2

Signature:

VAL HWEm_ MemoryMap IS 2(UINT32):

RECORDRegionInfo IS (UINT32 handle, start, limit, BYTE width, access,

UINT32 nread_ns, nwrite_ns, sread_ns, swrite_ns):

(HWEm_ MemoryMap, UINT32 status) =
ADP_ HW_Emulation(HWEm_ MemoryMap,

UINT32 nregions, [nregions]RECORD RegionInfo regions)

Parameters:

nregions The number of memory regions in the memory map.

handle A handle to the region.

start The start of this region.

limit The end (limit) of this region.

width The memory width, described in detail below.

access Described in detail below.

nread_ns The access time for non-sequential read cycles in nano seconds.

nwrite_ns The access time for non-sequential write cycles in nano seconds.

sread_ns The access time for sequential read cycles in nano seconds.

swrite_ns The access time for sequential write cycles in nano seconds.

status Adp_ok to indicate success, non-zero otherwise.

Description:

Sets memory characteristics for the given area of memory.

Width should be one of:

Name Code Description

MemoryMap_Width8 0 8 bit memory width.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-56 ARM DUI 0053D

Open Access

MemoryMap_Width16 1 16 bit memory width.

MemoryMap_Width32 2 32 bit memory width.

Access is some combination of:

[Little Endian]������

1 = Write Access

0 = Otherwise

1 = Read Access

0 = Otherwise

1 = Latched

0 = Otherwise

2.4.19.1 ADP_HW_Emul_SetCPUSpeed

Channel: CI_HADP

Reason Code: 16

Subreason Code: 3

Signature:

VAL HWEm_ SetCPUSpeed IS 3(UINT32):

 (HWEm_ SetCPUSpeed, UINT32 status) =
ADP_ HW_Emulation(HWEm_ SetCPUSpeed, UINT32 speed)

Parameters:

speed The speed of the CPU core in nano-seconds per clock cycle.

status Adp_ok to indicate success, non-zero otherwise.

Description:

Sets the speed of the CPU, for use when returning clock time.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-57

Open Access

2.4.19.2 ADP_HW_Emul_ReadClock

Channel: CI_HADP

Reason Code: 16

Subreason Code: 4

Signature:

VAL HWEm_ReadClock IS 4(UINT32):

(HWEm_ReadClock, UINT32 status, UINT32 ns, s) =
ADP_ HW_Emulation(HWEm_ReadClock)

Parameters:

ns The time in nano-seconds.

s The time in seconds.

status Adp_ok to indicate success, non-zero otherwise.

Description:

Reads the time in seconds and nano-seconds since some arbitrary starting point.

2.4.20 ADP_ICEbreakerHADP

Channel: CI_HADP

Reason Code: 17

Description:

The first parameter to ADP_ICEbreaker is a Reason Subcode, and subsequent

parameters are defined by that subcode.

2.4.20.1 ADP_ICEB_Exists

Channel: CI_HADP

Reason Code: 17

Subreason Code: 0

Signature:

VAL ICEB_Exists IS 0(UINT32):

(ICEB_Exists, UINT32 status) = ADP_ ICEbreakerHADP(ICEB_Exists)

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-58 ARM DUI 0053D

Open Access

Parameters:

status Adp_ok to indicate there is an Embedded ICE unit (or equivalent),
non-zero otherwise.

Description:

Determines if the target debug agent is using the ARM hardware EmbeddedICE

debug unit or not, and thus whether the ADP_ICEB calls are implemented.

2.4.20.2 ADP_ICEB_GetLocks

Channel: CI_HADP

Reason Code: 17

Subreason Code: 1

Signature:

VAL ICEB_GetLocks IS 1(UINT32):

(ICEB_GetLocks, UINT32 status, locked) =
ADP_ ICEbreakerHADP(ICEB_GetLocks)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

locked A bitmap of the Embedded ICE registers locked against use by the
debug agent (because they are being explicitly written by the user).

Description:

Returns which Embedded ICE registers are locked. Bit n of the bitmap ‘locked’

represents hardware breakpoint unit n, and if set the unit is locked.

This request may be used in conjunction with ADP_ICEB_SetLocks by a user or by

the debug agent to reserve breakpoint units against use by the debugger.

Note Should only be used if ADP_ICEB_Exists does not return an error.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-59

Open Access

2.4.20.3 ADP_ICEB_SetLocks

Channel: CI_HADP

Reason Code: 17

Subreason Code: 2

Signature:

VAL ICEB_ SetLocks IS 2(UINT32):

(ICEB_SetLocks, UINT32 status) =
ADP_ICEbreakerHADP(ICEB_SetLocks, UINT32 locked)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

locked A bitmap of the Embedded ICE breakpoint registers

Description:

Sets which Embedded ICE registers are locked. Bit n of the bitmap ‘locked’ represents

hardware breakpoint unit n, and if set the unit is to be locked against use by the debug

agent.

Note Should only be used if ADP_ICEB_Exists does not return an error.

2.4.20.4 ADP_ICEB_CC_Exists

Channel: CI_HADP

Reason Code: 17

Subreason Code: 3

Signature:

VAL ICEB_ CC_Exists IS 3(UINT32):

(ICEB_ CC_Exists, UINT32 status) = ADP_ ICEbreakerHADP(ICEB_ CC_Exists)

Parameters:

status Adp_ok to indicate there is a Debug Comms Channel, non-zero
otherwise.

Description:

Asks whether there is an EmbeddedICE Debug Comms Channel (DCC).

Note Should only be used if ADP_ICEB_Exists does not return an error.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-60 ARM DUI 0053D

Open Access

2.4.20.5 ADP_ICEB_CC_Connect_ToHost

Channel: CI_HADP

Reason Code: 17

Subreason Code: 4

Signature:

VAL ICEB_ CC_Connect_ToHost IS 4(UINT32):

 (ICEB_ CC_Connect_ToHost, UINT32 status) =

ADP_ ICEbreakerHADP(ICEB_ CC_Connect_ToHost, BYTE connect)

Parameters:

status Adp_ok to indicate there is a Comms Channel, non-zero otherwise.

connect 1 or 0; controls transmission of messages from EmbeddedIce to the
host.

Description:

Connect Comms Channel in ToHost direction. If ‘connect’ is true, the debug agent

must enable transmission of data read from the DCC into the debug agent on to the

host over the TDCC channel. If it is false, it should disable such transmission.

Note Should only be used if ADP_ICEB_CC_Exists does not return an error.

2.4.20.6 ADP_ICEB_CC_Connect_FromHost

Channel: CI_HADP

Reason Code: 17

Subreason Code: 5

Signature:

VAL ICEB_ CC_Connect_FromHost IS 5(UINT32):

(ICEB_ CC_Connect_FromHost, UINT32 status) =

ADP_ ICEbreakerHADP(ICEB_ CC_Connect_FromHost, BYTE connect)

Parameters:

status Adp_ok to indicate there is a Comms Channel, non-zero otherwise.

connect 1 or 0; controls transmission of messages from EmbeddedIce to the
host.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-61

Open Access

Description:

Connect Comms Channel in FromHost direction. If ‘connect’ is true, the debug agent

must enable forwarding of data from the host TDCC channel to the target over DCC. If

it is false, it should disable such transmission.

Note Should only be used if ADP_ICEB_CC_Exists does not return an error.

2.4.21 ADP_ICEman

Channel: CI_HADP

Reason Code: 18

Description:

The first parameter to ADP_ICEman is a reason subcode, and subsequent

parameters are defined by that subcode.

The requests allow the manipulation of “configurations” held within the EmbeddedICE

unit. A configuration is used to describe the ARM CPU which the unit will expect to see

on the end of the JTAG link. In current ARM EmbeddedICE units, two types are

defined: ARM7DI and ARM7TDMI.

The configuration block format is not published.

2.4.21.1 ADP_ICEM_AddConfig

Channel: CI_HADP

Reason Code: 18

Subreason Code: 0

Signature:

VAL ICEM_AddConfig IS 0(UINT32):

(ICEM_AddConfig, UINT32 status) =
ADP_ ICEman(ICEM_AddConfig, UINT32 nbytes)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

nbytes The number of bytes in the complete configuration block.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-62 ARM DUI 0053D

Open Access

Description:

Prepares target to receive configuration data block. The data must follow in blocks

described by the ADP_Ctrl_DownloadData request; it is complete when the length of

data read in the DownloadData blocks equals the ‘nbytes’ value provided in the

AddConfig request.

2.4.21.2 ADP_ICEM_SelectConfig

Channel: CI_HADP

Reason Code: 18

Subreason Code: 1

Signature:

VAL ICEM_SelectConfig IS 1(UINT32):

 (ICEM_SelectConfig, UINT32 status, UINT32 version_sel) =

ADP_ICEman(ICEM_SelectConfig, BYTE aspect, namelen, matchtype,

UINT32 version_req, [namelen]BYTE name)

Parameters:

aspect One of two values defined below.

namelen The number of bytes in ‘name'.

matchtype Specifies how the selected version must match that specified, and
takes one of the values defined below.

version_req The requested version of the named configuration.

name The name of the configuration.

status Adp_ok to indicate success, non-zero otherwise.

version_sel The version number of the configuration selected on success.

Description:

Selects one of the sets of configuration data blocks and reinitialises to use the new

configuration. Aspect defines what the scope of the configuration data is, and is one of

the following constants
1
:

Description Code

Configure CPU 0

1
 Current ARM EmbeddedICE units do not implement the Configure System request.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-63

Open Access

Configure System 1

Matchtype defines whether any version of the configuration is acceptable, or whether

a particular revision is needed. Version numbers are compared numerically using

unsigned comparison. Select one of:

Description Code

Match Any 0

Match Exactly 1

Match No Earlier 2

The version actually selected is returned.

2.4.21.3 ADP_ICEM_ConfigCount

Channel: CI_HADP

Reason Code: 18

Subreason Code: 2

Signature:

VAL ICEM_ConfigCount IS 2(UINT32):

 (ICEM_ConfigCount, UINT32 status, UINT32 count) =
ADP_ICEman(ICEM_ConfigCount)

Parameters:

count Returns the number of configurations if status is zero.

status Adp_ok to indicate success, non-zero otherwise.

Description:

Return number of known ICEman configurations. The details can be retrieved with the

ADP_ICEM_ConfigNth request.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-64 ARM DUI 0053D

Open Access

2.4.21.4 ADP_ICEM_ConfigNth

Channel: CI_HADP

Reason Code: 18

Subreason Code: 3

Signature:

VAL ICEM_ ConfigNth IS 3(UINT32):

 (ICEM_ ConfigNth, UINT32 status, UINT32 version, BYTE namelen,
[namelen]BYTE name) =

ADP_ ICEman(ICEM_ ConfigNth, UINT32 confignum)

Parameters:

confignum The number of the configuration, starting at 1.

status Adp_ok to indicate success, non-zero otherwise.

version The configuration version number.

namelen The number of bytes in ‘name'.

name The name of the configuration.

Description:

Gets the name of the n
th
 processor configuration. See ICEM_ConfigCount to

determine the number of available configurations and thus the range of confignum.

2.4.22 ADP_Profile

Channel: CI_HADP

Reason Code: 19

Description:

The first parameter to ADP_Profile is a reason subcode, and subsequent parameters

are defined by that subcode.

The Profiling codes are used to control the code profiling abilities of the debug agent.

A possible sequence of events would be:

if (profile_supported())

profile_writemap()

profile_start()

<<wait for event>>

profile_stop()

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-65

Open Access

profile_readmap()

profile_clearcounts()

2.4.22.1 ADP_Profile_Supported

Channel: CI_HADP

Reason Code: 19

Subreason Code: 0

Signature:

VAL Profile_Supported IS 0(UINT32):

(Profile_Supported, UINT32 status) = ADP_ Profile(Profile_Supported)

Parameters:

status Adp_ok to indicate profiling is supported, non-zero otherwise.

Description:

Checks whether profiling is supported.

Note Can also be determined using Info_Target.

2.4.22.2 ADP_Profile_Stop

Channel: CI_HADP

Reason Code: 19

Subreason Code: 1

Signature:

VAL Profile_Stop IS 1(UINT32):

(Profile_Stop, UINT32 status) = ADP_ Profile(Profile_Stop)

Parameters:

status Adp_ok to indicate profiling has been stopped, non-zero otherwise.

Description:

Stops collecting application profile data, leaving the results in the count array intact.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-66 ARM DUI 0053D

Open Access

Note There is no mechanism for the debugger to signal that the profiling data is no longer

required, and that the memory used for the address map and count arrays (map[] and

c[]) can be reclaimed, although the arrays may be reused.

2.4.22.3 ADP_Profile_Start

Channel: CI_HADP

Reason Code: 19

Subreason Code: 2

Signature:

VAL Profile_ Start IS 2(UINT32):

 (Profile_ Start, UINT32 status) = ADP_ Profile(Profile_Start, UINT32 interval)

Parameters:

status Adp_ok to indicate profiling is supported, non-zero otherwise.

interval The period of PC sampling in microseconds.

Description:

Starts profiling. The map of PC interval values must have been written to the debug

agent first using the ADP_Profile_WriteMap request.

2.4.22.4 ADP_Profile_WriteMap

Channel: CI_HADP

Reason Code: 19

Subreason Code: 3

Signature:

VAL Profile_WriteMap IS 3(UINT32):

(Profile_WriteMap, UINT32 status) =

ADP_Profile(Profile_WriteMap, UINT32 len, size, offset, []UINT32
map_data)

Parameters:

len The number of elements in the entire map array being downloaded.

size The number of words being downloaded in this message, ie. the
length of map_data.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-67

Open Access

offset The offset into the entire map array which this message starts from,
in words.

map_data Consists of size words of map data.

status Adp_ok to indicate success, non-zero otherwise.

Description:

Downloads (part of) a PC interval map array, which describes the instruction address

ranges for profiling. The whole profile map will be sent as a number of WriteMap

messages.

Each map entry represents the PC value for the start of a code block to be profiled;

the end address is assumed to be just before the next start address. There should

therefore be an extra entry to mark the end of the last routine in a block.

Note The map as a whole must be in ascending address order.

Once the address map entries map[x] to map[x+n] are written, the equivalent counts

c[x] to c[x+n] are zeroed. It is thus possible to:

1 selectively zero counts in the map (ADP_Profile_ClearCounts will clear all

count values)

2 selectively add to or change the profile map, on the fly if necessary.

During application execution, if at some time (map[x] <=PC < map[x+1) where PC

represents the address of an executed instruction at that time, the value c[x] is

incremented.

The count array can be zeroed as a whole with ADP_Profile_ClearCounts and read by

the host with ADP_Profile_ReadMap.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-68 ARM DUI 0053D

Open Access

2.4.22.5 ADP_Profile_ReadMap

Channel: CI_HADP

Reason Code: 19

Subreason Code: 4

Signature:

VAL Profile_ReadMap IS 4(UINT32):

(Profile_ReadMap, UINT32 status, [size]UINT32 counts) =

ADP_Profile(Profile_ReadMap, UINT32 offset, size)

Parameters:

offset The offset in the profile data array to begin reading, in words.

size The number of words to read (<= 54).

status Adp_ok to indicate success, non-zero otherwise.

counts The size words of profile counts.

Description:

Uploads a set of profile counts to the host. The number of words transferred must not

cause the message size to exceed 256 bytes, which limits the number of words to 54.

The offsets within the returned array correspond to the current profile map, as loaded

into the target with ADP_Profile_WriteMap.

2.4.22.6 ADP_Profile_ClearCounts

Channel: CI_HADP

Reason Code: 19

Subreason Code: 5

Signature:

VAL Profile_ClearCounts IS 5(UINT32):

(Profile_ClearCounts, UINT32 status) = ADP_Profile(Profile_ClearCounts)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-69

Open Access

Description:

Requests that profiling sample counts be set to zero. This would typically be used to

start a new profiling session.

2.4.23 ADP_InitialiseApplication

Channel: CI_HADP

Reason Code: 20

Signature:

 (UINT32 status) = ADP_InitialiseApplication()

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

Description:

Requests the debug agent or target operating system to set up the “application”

(typically a task or thread) so that it can be executed.

2.4.24 ADP_End

Channel: CI_HADP

Reason Code: 21

Signature:

 (UINT32 status) = ADP_End()

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

Description:

Sent by the host to tell the target debug agent this debugging session is finished. The

debug agent should free any session-related resources and make ready to resume

with a new session.

Note After ADP_End has been processed, the ARM debuggers (Angel, EmbeddedICE and

Remote_A) explicitly reset the communications link back to default values, but only

where there are negotiated parameters to change. Consequently, connections using

Serial or Serial/Parallel devices where the baud rate chosen is not 9600 baud finish

with ADP_End, ParameterNegotiate and LinkCheck, while those using the Ethernet

device always finish with just ADP_End.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-70 ARM DUI 0053D

Open Access

2.4.25 ADP_ReadExt [ADP 1.1 Only]

Channel: CI_HADP

Reason Code: 22

Signature:

(UINT32 status, mbytes, [mbytes]BYTE data) =

ADP_Read(INT32address, UINT32 nbytes, UINT32 access)

Parameters:

address The target address from which memory transfer should start

nbytes The number of bytes to transfer

status Adp_ok to indicate success, non-zero otherwise

mbytes Holds the number of requested bytes not read (ie. zero indicates
success, non-zero a partial success or failure)

data The data requested, less “mbytes” at the end

access The memory access method, from the following table:

Symbolic Name Value Description

ADP_Data 0 Access a range of data memory of
arbitrary size: the debugger does not
mind what granularity of access is used.

ADP_Data8 1 Access data 1 byte at a time, using LDRB
or equivalent.

ADP_Data16 2 Access data 2 bytes at a time, using
LDRH or equivalent.

ADP_Data32 3 Access data 4 bytes at a time, using LDR
or equivalent.

ADP_Data64 4 Access data 8 bytes at a time.

ADP_Code 8 Access a range of code memory of
arbitrary size: the debugger does not
mind what granularity of access is used.

ADP_Code8 9 Access code 1 byte at a time, using
LDRB or equivalent.

ADP_Code16 10 Access code 2 bytes at a time, using
LDRH or equivalent.

ADP_Code32 11 Access code 4 bytes at a time, using LDR
or equivalent.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-71

Open Access

Description:

This is a request by the host for a transfer of memory contents from the target to the

debugger.

See ADP_Read for general comments.

This message extends ADP_Read by specifying the method by which the agent is to

perform the transfer.

If the data cannot be transferred in the method specified, the error code

RDIError_UnimplementedSize must be returned. If access is not one of the values

listed in the table above, the error code RDIError_UnimplementedType must be

returned.

It may assumed that if ADP_ReadExt is implemented, then ADP_WriteExt is also, and

vice versa.

If a target does not implement this call (for example, because it is an ADP1.0 target)

then it must return RDIError_UnimplementedMessage [this is the standard return

status for any unrecognised call]. Hence, a debugger which wishes to write memory

may call ADP_ReadExt with the details, and if it gets back the error

RDIError_UnimplementedMessage it should default to using ADP_Read with the

same parameters. Once such an error is returned, it can be assumed to last for the

complete session.

2.4.26 ADP_WriteExt [ADP 1.1 Only]

Channel: CI_HADP

Reason Code: 4

Signature:

(UINT32 status, mbytes) =
ADP_Write(INT32address, UINT32 nbytes, [nbytes]BYTE data)

Parameters:

address The target address from which memory transfer should start

nbytes The number of bytes to transfer

status Adp_ok to indicate success, non-zero otherwise

mbytes Holds the number of requested bytes not written (that is, zero
indicates success, non-zero a partial success or failure). Note that
this field is only present if status is not adp_ok.

data The bytes of data to write.

access The memory access method, from the table given in ADP_ReadExt

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-72 ARM DUI 0053D

Open Access

Description:

This is a request by the host for a transfer of memory contents from the debugger to

the target.

See ADP_Write for general comments. This message extends ADP_Write by

specifying the method by which the agent is to perform the transfer.

If the data cannot be transferred in the method specified, the error code

RDIError_UnimplementedSize must be returned. If access is not one of the values

listed in the table above, the error code RDIError_UnimplementedType must be

returned.

It may assumed that if ADP_WriteExt is implemented, then ADP_ReadExt is also, and

vice versa.

If a target does not implement this call (for example, because it is an ADP1.0 target)

then it must return RDIError_UnimplementedMessage [this is the standard return

status for any unrecognised call]. Hence, a debugger which wishes to write memory

may call ADP_WriteExt with the details, and if it gets back the error

RDIError_UnimplementedMessage it should default to using ADP_Write with the

same parameters. Once such an error is returned, it can be assumed to last for the

complete session.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-73

Open Access

2.5 Target ADP Channel Messages

2.5.1 ADP_TADPUnrecognised

Channel: CI_TADP

Reason Code: 0

Signature:

 (UINT32 code) = ADP_TADPUnrecognised()

Parameters:

code Reason code which was not recognised.

Description:

This message is unusual in that it is normally sent in reply to another message which

is not understood. This is an exception to the normal protocol that a reply must have

the same base reason code as the original. There is a single reply parameter which is

the reason code which was not understood.

As well as being a reply, this message can also be sent and will return as if this

message were unrecognised.

2.5.2 ADP_Stopped

Channel: CI_TADP

Reason Code: 1

Signature:

 (UINT32 status) = ADP_Stopped (UINT32 reason, …)

Parameters:

status Adp_ok to indicate success, non-zero otherwise.

Description:

This message is sent to the host when the application stops.

Execution may stop when the end of the application has been reached, or as the

result of an exception. It can also be the return from an ADP_Step process, when the

requested number of instructions have been executed, or a breakpoint or watchpoint

has been hit etc.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-74 ARM DUI 0053D

Open Access

The first set of stopped subreason codes are for the ARM hardware vectors. These

events will be raised if the ADP_Control_Vector_Catch has been set to enable this

(and the exception can be caught).

Name Code Description Parameter

Stopped_BranchThroughZero 0 Vector Exceptions None.

Stopped_UndefinedInstr 1 Vector Exceptions None

Stopped_SoftwareInterrupt 2 Vector Exceptions None

Stopped_PrefetchAbort 3 Vector Exceptions None

Stopped_DataAbort 4 Vector Exceptions None

Stopped_AddressException 5 Vector Exceptions None

Stopped_IRQ 6 Vector Exceptions None

Stopped_FIQ 7 Vector Exceptions None

Stopped_BreakPoint 32 Breakpoint was reached UINT32 Breakpoint
handle

Stopped_Watchpoint 33 Watchpoint was reached UINT32
Watchpoint handle

Stopped_StepComplete 34 End of ADP_Step None

Stopped_RunTimeErrorUnknown 35 Non-specific fatal runtime
support error

None

Stopped_InternalError 36 Angel internal error UINT32 Error code

Stopped_UserInterruption 37 Host requested interruption None

Stopped_ApplicationExit 38 Application has exited via
exit(), a code of zero indiactes
successful termination

UINT32 exit() code

Stopped_StackOverflow 39 Software stack overflow None

Stopped_DivisionByZero 40 Division by zero None

Stopped_OSSpecific 41 OS requested that execution
stops.

Note Stopped_InternalError: An internal error in the debug agent has happened. The error

number should be displayed for the user to report to his software supplier. Once this

error has been received the internal state of the debug agent can no longer be trusted.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 2-75

Open Access

2.6 Target Debug Comms Channel Messages

2.6.1 ADP_TDCC_ToHost

Channel: CI_TTDCC

Reason Code: 0

Signature:

 (UINT32 status) = ADP_TDCC_ToHost(UINT32 nbytes, [nbytes/4]UINT32 data)

Parameters:

nbytes Number of bytes to be transferred from the target to the host via the
Debug Comms channel.

data Data to be transferred from the target to the host via the Debug
Comms channel.

status Adp_ok to indicate success, non-zero otherwise.

Description:

Transfer data by reading the processor Debug Communications Channel and

returning those word(s) to the host. The data being will be in target endianness.

Note Current implementations only support single word transfers (nbytes = 4).

2.6.2 ADP_TDCC_FromHost

Channel: CI_TTDCC

Reason Code: 1

Signature:

 (UINT32 status, UINT32 nbytes, [nbytes/4]UINT32 data) =
ADP_TDCC_FromHost()

Parameters:

nbytes Number of bytes to be transferred from the target to the host via the
Debug Comms channel.

data Data to be transferred from the target to the host via the Debug
Comms channel.

status Adp_ok to indicate success, non-zero otherwise.

ADP Remote Procedure Calls

Angel Debug Protocol Messages
2-76 ARM DUI 0053D

Open Access

Description:

Transfer data using the processor Debug Communications Channel from the host to

the target. The data being sent must be in the correct endianness for the target

processor.

Note Current implementations only support single word transfers (nbytes = 4).

Angel Debug Protocol Messages
ARM DUI 0053D 3-1

Open Access

3. C Support Library Remote
Procedure Calls

This section describes the C support library remote procedure calls. These calls

mirror the semihosting SWI calls for the semihosting functions which the target

debug agent is unable to perform.

3

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
3-2 ARM DUI 0053D

Open Access

3.1 Function Signatures and Packet Formation

These are as described for ADP RPC. It should be noted that C library packets have

never had the channel number encoded in the reason word.

3.2 Target to Host Messages

3.2.1 CL_Unrecognised

Channel: CI_CLIB

Reason Code: 0

Signature:

(UINT32 code) = CL_Unrecognised()

Parameters:

code The reason code which was not understood.

Description:

This message is used as a response to a packet whose message was not

understood. The return parameter, code, is the reason code which was not

understood.

3.2.2 CL_WriteC

Channel: CI_CLIB

Reason Code: 1

Signature:

(UINT32 status) = CL_WriteC(BYTE char)

Parameters:

char The character to write.

status Adp_ok if character write successful.

Description:

This message writes a single character to the debugger’s console window, or similar,

on the host. The character is encoded in ASCII. Some systems assume that

CL_WriteC and CL_Write0 write to the same device or file.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 3-3

Open Access

3.2.3 CL_Write0

Channel: CI_CLIB

Reason Code: 2

Signature:

(UINT32 status) = CL_Write0(UINT32 nbytes, [nbytes+1]BYTE string)

Parameters:

string The string of characters to write.

nbytes The number of bytes in ‘string’ excluding the null terminator

status adp_ok if write successful.

Description:

This message writes a null terminated string to the debugger’s console window, or

similar, on the host. The number of bytes in the supplied string is nbytes+1, as

nbytes is the number of bytes to write. The text is encoded in ASCII.

Some systems assume that CL_WriteC and CL_Write0 write to the same device or

file.

3.2.4 CL_ReadC

Channel: CI_CLIB

Reason Code: 4

Signature:

(UINT32 status, BYTE char) = CL_ReadC()

Parameters:

status Adp_ok if read successful.

char The character which was read.

Description:

This message reads a single character from the host’s keyboard as an ASCII

encoded value.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
3-4 ARM DUI 0053D

Open Access

3.2.5 CL_System

Channel: CI_CLIB

Reason Code: 5

Signature:

(UINT32 code, BYTE exitcode) =
CL_System(UINT32 nbytes, [nbytes+1]BYTE command)

Parameters:

nbytes The length of the command string, excluding the null termination
byte.

command The command string to pass to the host’s command interpreter.
Null terminated.

exitcode The exit code returned by the host OS from running ’command’.

char The character which was read.

Description:

This message invokes the host’s command line interpreter in a manner similar to the

ANSI function system(). The command string is null terminated.

3.2.6 CL_GetCmdLine

Channel: CI_CLIB

Reason Code: 16

Signature:

(UINT32 status, UINT32 nbytes, [nbytes+1]BYTE args) = CL_GetCmdLine()

Parameters:

status Adp_ok if read successful

nbytes The length of the command argument string, excluding the null
termination byte.

args The command line arguments used to invoke the program. Null
terminated.

Description:

This message reads the null terminated string used to invoke the program. No

interpretation is performed on this string. The command string is null terminated.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 3-5

Open Access

3.2.7 CL_Clock

Channel: CI_CLIB

Reason Code: 97

Signature:

(UINT32 status, UINT32 ticks) = CL_Clock()

Parameters:

status Adp_ok if read successful

ticks The number of clock ticks, in centiseconds.

Description

This request returns the number of centiseconds since the support code’s process

was started on the host. Only the difference between calls has any meaning, and it

should be remembered that over slower communications links, a significant variance

can be expected in the results due to packet transmission delays.

3.2.8 CL_Time

Channel: CI_CLIB

Reason Code: 99

Signature:

(UINT32 status, UINT32 time) = CL_Time()

Parameters:

status Adp_ok if read successful.

time The time in seconds since 00:00 on the 1 Jan 1970.

Description:

This request returns the time of day, in seconds since the start of January 1
st
 1970;

this is the same as the standard Unix time() function. It should be remembered that

over slower communications links, a variance can be expected in the results due to

packet transmission delays.

Whether the value can exceed 2^31 seconds depends on the implementation of the

host C library time() function; if it cannot, the value will wrap around during the year

2038.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
3-6 ARM DUI 0053D

Open Access

3.2.9 CL_Remove

Channel: CI_CLIB

Reason Code: 100

Signature:

(UINT32 status) = CL_ Remove(UINT32 nbytes, [nbytes+1]BYTE filename)

Parameters:

status Adp_ok if read successful.

filename The name of the file to delete. Null terminated.

nbytes The length of filename, excluding the null termination.

Description:

This request deletes the file with the given name from the host’s file system.

The null terminated file name is not interpreted in any way, but is limited in length by

the ADP packet size.

3.2.10 CL_Rename

Channel: CI_CLIB

Reason Code: 101

Signature:

(UINT32 status) = CL_Rename(UINT32 nbytes1, [nbytes1+1]BYTE filename1,

UINT32 nbytes2, [nbytes2+1]BYTE filename2)

Parameters:

status Adp_ok if read successful

filename1 The old name of the file. Null terminated.

filename2 The new name of the file. Null terminated.

nbytes1 The length of filename1, excluding the null termination.

nbytes2 The length of filename2, excluding the null termination.

Description:

This requests the host to rename filename1 to have the name filename2. Both

filenames must be contained within a single ADP packet.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 3-7

Open Access

3.2.11 CL_Open

Channel: CI_CLIB

Reason Code: 102

Signature:

(UINT32 handle) =
CL_Open(UINT32 nbytes, [nbytes+1]BYTE filename, UINT32 mode)

Parameters:

handle The file handle which will be used in subsequent file operations, or
zero if the open failed.

mode The open mode; see below

nbytes The length of filename1, excluding the null termination

filename The name of the file to open. Null terminated.

Description:

This message attempts to open the named file in the fashion requested by ‘mode’.

The name “:tt” is used to reference the standard input or standatd output streams on

the host (e.g. in “C”, the value of “stdin” or “stdout”. Which of the streams is opened

is dependent on the value of “mode”. Implementations for which there is no standard

input or output should either treat the name as a file or return a failure code.

Note The ARM C library will try to open “:tt” three times to generate it’s stdin, stdout and

stderr streams on application startup.

The open mode is one of the values shown below. Other values are undefined:

Mode: 0 1 2 3 4 5 6 7 8 9 10 11

ANSI fopen(): r rb r r+ r+b w w+ w+b a ab a+ a+b

The file handle is an opaque integer which is used by the host to identify the file in

subsequent read, write etc. operations.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
3-8 ARM DUI 0053D

Open Access

3.2.12 CL_Close

Channel: CI_CLIB

Reason Code: 104

Signature:

(UINT32 status) = CL_Close(UINT32 handle)

Parameters:

status Adp_ok if close successful.

handle The file handle to close.

Description:

This message closes a file opened with CL_Open above. The ‘handle’ should be

non-zero. The close operation can fail; the result should always be checked.

3.2.13 CL_Write

Channel: CI_CLIB

Reason Code: 105

Signature:

(UINT32 nwritten) =
CL_Write(UINT32 handle, UINT32 nbtotal, nbytes, [nbytes]BYTE data)

Parameters:

status Adp_ok if close successful

nbtotal The total number of bytes to write.

nbytes The number of bytes in this packet.

data The data to write to the file.

handle An open, writable file handle.

nwritten The number of bytes not written to the file.

Description:

This message writes a block of data to the file identified by handle.

If the number of bytes to write exceeds the maximum packet size, a number of

CL_WriteX packets will follow this packet. If nbtotal is less than the space left in the

packet, then nbtotal == nbytes and nwritten is the number of bytes not written to the

file (ie. nwritten == 0 is a successful write). Otherwise, the return code from CL_Write

can be ignored.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 3-9

Open Access

The data should be written as a single block of ‘nbtotal’ bytes wherever possible even

when the data is transmitted using CL_WriteX packets.

Note Both CL_Write and CL_WriteX packets expect acknowledgements from the host for

every packet sent.

3.2.14 CL_WriteX

Channel: CI_CLIB

Reason Code: 106

Signature:

(UINT32 status) = CL_WriteX(UINT32 nbytes, [nbytes]BYTE data)

Parameters:

nbytes The number of bytes in this packet.

data The data to write to the file.

nwritten The number of bytes not written to the file.

status Adp_ok if close successful.

Description:

This message continues a write request started with a CL_Write; it is an invalid

operation to make this call at any other time than after a CL_Write or CL_WriteX.

If this is the last packet of the write (ie. the accumulated value of nbytes from

previous CL_Write and CL_WriteX calls, is equal to the value of nbtotal in the original

CL_Write) then the return value nwritten is the number of bytes not written to the file.

Otherwise, the value can be ignored.

3.2.15 CL_Read

Channel: CI_CLIB

Reason Code: 107

Signature:

(UINT32 status, nread, nbmore, [nread]BYTE data) =
CL_Read(UINT32 handle, UINT32 nbytes)

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
3-10 ARM DUI 0053D

Open Access

Parameters:

status Adp_ok if close successful.

nread The number of bytes read in this packet.

nbmore The number of bytes which are following in CL_ReadX packets.

handle An open, readable file handle.

data The data read in this packet.

Description:

This message reads nbytes bytes of data from the file handle provided. If the number

of bytes to read is less than the space left in the packet, then the reply packet will

contain the bytes read, nread will be this number and nbmore will be zero. Otherwise,

nread will be the number of bytes returnable in this reply packet, nbmore will be the

number of bytes left to return, and the replies to following CL_ReadX packets will

contain the rest of the data.

The reader should never send a CL_ReadX request unless there is data waiting to

be sent, as indicated by a previous CL_Read or CL_ReadX reply.

3.2.16 CL_ReadX

Channel: CI_CLIB

Reason Code: 108

Signature:

(UINT32 status, nread, nbmore, [nread]BYTE data) = CL_ReadX()

Parameters:

nread the number of bytes read in this packet.

nbmore the number of bytes which are following in CL_ReadX packets.

data the data read in this packet

status adp_ok if close successful

Description:

This message continues a read request started with a CL_Read; it is an invalid

operation to make this call at any other time than after a CL_Read or CL_ReadX.

If this is the last packet of the read (ie. the value of nbmore from the last CL_Read or

CL_ReadX call is zero) then the return value nwritten is the number of bytes not

written to the file. Otherwise, the value can be ignored.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
ARM DUI 0053D 3-11

Open Access

3.2.17 CL_Seek

Channel: CI_CLIB

Reason Code: 109

Signature:

(UINT32 status) = CL_Seek(UINT32 handle, UINT32 position)

Parameters:

status Adp_ok if close successful.

handle An open, seekable file handle.

position The offset in bytes from the start of the file represented by handle.

Description:

This message positions the file’s read/write pointer to ‘position’ bytes from the start of

the file. If the file is shorter than this, or if the position when considered as a signed

number is negative, the behavior is host operating system dependant.

3.2.18 CL_FLen

Channel: CI_CLIB

Reason Code: 110

Signature:

(UINT32 status, len) = CL_FLen(UINT32 handle)

Parameters:

status Adp_ok if close successful.

len The length of the file.

handle An open file handle.

Description:

This message returns the length of the file specified by ‘handle’. If the file cannot be

considered to have a length (eg. a terminal or pipe) then the returned value is -1

(0xFFFFFFFF). If a file larger than 2^31 is examined, the length value is undefined.

C Support Library Remote Procedure Calls

Angel Debug Protocol Messages
3-12 ARM DUI 0053D

Open Access

3.2.19 CL_IsTTY

Channel: CI_CLIB

Reason Code: 111

Signature:

(UINT32 status) = CL_IsTTY(UINT32 handle)

Parameters:

status Adp_ok if close successful.

handle An open file handle.

Description:

This message returns adp_ok if the file handle given represents an interactive

device, such as a console or terminal, and non-zero otherwise.

3.2.20 CL_TmpNam

Channel: CI_CLIB

Reason Code: 112

Signature:

(UINT32 status, UINT32 nbytes, [nbytes+1]BYTE filename) =
CL_TmpNam(UINT32 maxlength, UINT32 targetid)

Parameters:

status Adp_ok if close successful.

Description:

This message returns a temporary host file name. The maximum length of a filename

is passed to the host. The TargetID is some identifier from the target for this

particular temporary filename. This value could be used directly in the generation of

the filename.

If the host cannot create a suitable name, or the generated name is too long, then an

error code is returned in status.

Angel Debug Protocol Messages
ARM DUI 0053D 4-1

Open Access

4. Error Codes
4

Error Codes

Angel Debug Protocol Messages
4-2 ARM DUI 0053D

Open Access

4.1 ADP Error Codes

ADP Error codes are used to describe errors which relate to the comminucation

channel between target and host. Errors relating to the debug agent, or the

operation of the application program (for example, reporting an exception) are

reported using the ARM RDI error codes, which are reproduced in the next section.

Name Code Description

adp_ok 0 Success; no error

adp_failed 256 Generic error

adp_malloc_failure 257 Failed to allocate dynamic memory (host side)

adp_illegal_args 258 Invalid parameter value or combination

adp_device_not_found 259 The device name specified was not found in the list
of known devices.

adp_device_open_failed 260 Could not open comms device required

adp_device_already_open 261 Comms device already open, cannot share

adp_device_not_open 262 Operation requested which requires comms with
target, but device not opened

adp_bad_channel_id 263 Channel ID provided outside the valid range

adp_callback_already_registered 264 Channel already has a registered callback; it must
be removed

adp_write_busy 265 (another) write in progress; cannot write data at this
time

adp_bad_packet 266 Bad (e.g. CRC error) packet received

adp_seq_high 267 Packet sequence number invalid – too high

adp_seq_low 268 Packet sequence number invalid – too low

adp_timeout_on_open 269 Couldn’t initiate target comms; target failed to
respond

adp_abandon_boot_wait 270 On initialisation, the target did not respond to the
host. This is an internal code which is translated to

adp_late_startup 271

adp_new_agent_starting 272

 Error Codes

Angel Debug Protocol Messages
ARM DUI 0053D 4-3

Open Access

adp_resend_failed 273

adp_timeout 274 general timeout

adp_bootmessage 275 Boot message at inappropriate time

Error Codes

Angel Debug Protocol Messages
4-4 ARM DUI 0053D

Open Access

4.2 RDI Error Codes

The RDI Error codes defined below are used by the RDI interface on the host, and

are described in more detail in the RDI Protocol Specifications. They are also used

by the target debug agent to report errors over ADP, saving the host debug agent

from having to perform a translation.

Name Code Description

RDIError_NoError 0 Success; no error. Alternatively, the ‘no’ answer
of a Yes/No RDI Info question.

RDIError_Reset 1 Processor has hit the Reset vector

RDIError_UndefinedInstruction 2 Processor has hit the Undefined instruction vector

RDIError_SoftwareInterrupt 3 Processor has hit the Software Interrupt vector

RDIError_PrefetchAbort 4 Processor has hit the Prefectch Abort vector

RDIError_DataAbort 5 Processor has hit the Data Abort vector

RDIError_AddressException 6 Processor has hit the Address Exception vector
(should only happen on 26 bit systems)

RDIError_IRQ 7 Processor has hit the IRQ vector (may be
masked by Angel use of this vector)

RDIError_FIQ 8 Processor has hit the Fast Interrupt vector (may
be masked by Angel use of this vector)

RDIError_Error 9 An unclassified error has occurred. Alternatively,
the ‘no’ answer of a Yes/No RDI Info question.

RDIError_BranchThrough0 10 [For Angel]: A prefetch abort occurred.

RDIError_NotInitialised 128 Debug session initiated before Agent initialisation
complete.

RDIError_UnableToInitialise 129 [For Angel]: Not used. (e.g. Armulator: no
processor specification available)

RDIError_WrongByteSex 130 Debugger asked for initialisation with one byte
sex, but the target was another.

RDIError_UnableToTerminate 131 Not currently used.

RDIError_BadInstruction 132

RDIError_IllegalInstruction 133

 Error Codes

Angel Debug Protocol Messages
ARM DUI 0053D 4-5

Open Access

RDIError_BadCPUStateSetting 134

RDIError_UnknownCoPro 135 Attempt to use a coprocessor which has not been
defined, or which is not present in the hardware.

RDIError_UnknownCoProState 136 Attempt to use an undefined coprocessor register.

RDIError_BadCoProState 137 Coprocessor register not writable for read op, or
readable for write op.

RDIError_BadPointType 138 Not used in Angel.

RDIError_UnimplementedType 139 Break or Watch-point type (condition or address
codes) not implemented.

RDIError_BadPointSize 140 Size of break/watch point not implemented.

RDIError_UnimplementedSize 141

RDIError_NoMorePoints 142 Limit on the number of watch/break points has
been reached.

RDIError_BreakpointReached 143 Program stopped as a result of reaching a
breakpoint.

RDIError_WatchpointAccessed 144 Program stopped as a result of reaching a
watchpoint.

RDIError_NoSuchPoint 145 Break or Watch-point reference, e.g. in
ClearBreak, does not refer to a current watch or
breakpoint

RDIError_ProgramFinishedInStep 146 Step over the exit SWI
(ADP_Stopped_ApplicationExit) attempted.

RDIError_UserInterrupt 147 User requested an application program
interruption, which has now occurred.

RDIError_CantSetPoint 148 The debug agent was unable to set a break or
watchpoint.

RDIError_IncompatibleRDILevels 149 A specific RDI definition was requested which the
target does not support.

RDIError_CantLoadConfig 150 Response to ADP_Ctrl_DownloadSupported:
debug agent cannot load new processor
configurations.

RDIError_BadConfigData 151 The processor config data selected by
ADP_ICEM_SelectConfig is in error.

RDIError_NoSuchConfig 152 ADP_ICEM_SelectConfig called with a pattern
which matches no currently loaded configuration.

Error Codes

Angel Debug Protocol Messages
4-6 ARM DUI 0053D

Open Access

RDIError_BufferFull 153

RDIError_OutOfStore 154 No more memory available for requested
operation. This may indicate a system shortage,
but many items are allocated from individual
memory pools.

RDIError_NotInDownload 155 ADP_Ctrl_DownloadData called without a prior
ADP_Ctrl_LoadAgent or ADP_ICEM_AddConfig.

RDIError_PointInUse 156

RDIError_BadImageFormat 157 Load file not in correct executable image format.

RDIError_TargetRunning 158 Could not stop target to perform requested
operation.

RDIError_DeviceWouldNotOpen 159 Requested target communications device found,
but failed to open.

RDIError_NoSuchHandle 160

RDIError_ConflictingPoint 161

RDIError_LinkTimeout 200 A timeout error occurred on the communications
link to the target; the target is not responding.

RDIError_OpenTimeout 201 A timeout error occurred when attempting to
contact the target for the first time; is there a
target there?

RDIError_LinkDataError 202 A data error (CRC, format etc) occurred for a data
packet on the link, and automatic recovery was
disabled or not implemented.

RDIError_Interrupted 203

RDIError_LittleEndian 240 [Not an error]: Initialisation of target succeeded,
and the target is now operating little-endian.

RDIError_BigEndian 241 [Not an error]: Initialisation of target succeeded,
and the target is now operating big-endian.

RDIError_SoftInitialiseError 242 Recoverable error during initialisation of a (host)
debug agent.

RDIError_InsufficientPrivilege 253 Operation not permitted: In Angel, memory read
or write to Angel code or data space.

RDIError_UnimplementedMessage 254 Request not implemented by target.

RDIError_UndefinedMessage 255 Request not understood by target.

