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1. Introduction

The Angel Debug Protocol, (ADP) was designed to provide a reliable connection
between a debug target and a host debugger during a debugging session. The
protocol had to provide sufficient and flexible access to the target from the host, and
be resilient. In addition, two constraints were placed on the target end of the
connection; the target could not be assumed to have a timer, and the software
resident on the target was of limited size. Finally, it was beneficial if the high level
operations which the protocol implemented were similar to those of the previous RDP
protocol, to facilitate the transition.

The protocol does not address issues of routing, as the data link layer is assumed to
be implemented as a point-to-point link.

ADP implements the basic operations in typical client server fashion, using a request–
response style typical of remote procedure call systems. Both sides can act as client
or server, different data streams (channels) being used to distinguish these roles. The
underlying layers implement packetization of requests onto identified channels,
recovery from simple packet loss and a simple data link protocol suitable for use over
serial and parallel links. A data link layer suitable for use over TCP/IP networks is
supported, using the UDP protocol and connection addresses.

1
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2.  The Protocol Suite

The basic unit of communication in Angel is a packet. Within each packet received or
transmitted by Angel, there are at least three levels of protocol. These are: Data
Provider (higher level), Channel Layer and Device Layer (lower level)

The data provider protocol is an application-layer protocol; the channel layer is the
transport protocol and the device level is the data link layer. The protocol is
deliberately assymetric; Figure 1, below, shows the host end view, while Figure 2
shows the target view.

2
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2.1 Data Provider Level

The data provider level protocols are used by two different services, using different

request and response formats conforming to a common base specification.

� Angel Debug Agents using ADP.

� Angel C semihosting support code using the C Library Support protocol.

The differentiation of which protocol is being used depends upon the channel number,

in the same way that an FTP and a Telnet connection can be set up simultaneously

over a TCP/IP link.  It is important to note that other agents, including for example

other debug agents, may use different data provider protocols over the same channel

layer link.

For both ADP and the C Library support protocol, the packet formats are based on the

same structure with slight differences in the reason code. This structure is:

� reason code

� information describing host debug world; private to host

� target OS information to identify process/thread world, etc. (target defined)

� data in a format defined by the message “reason” code.

Figures 3 and 4 below show these structures in detail:
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The Protocol Suite

Angel Debug Protocol
ARM DUI 0052A 2-5

Open Access

������

��	
���

��������

��	
���

������������

����	
���

��������

��	
���

��	�����

��	
���

��
���	 ���������	
��	�

Protocol

Request

Code

Direction:

0 = HtoT

1 = TtoH

Reserved,

must be zero

�
���

Figure 4: C support library protocol packet definition

2.1.1 Reason code

The reason code defines the operation being requested of the recipient, usually the

target, and allows responses to be checked against requests; the response code in

the reply to a message will differ from the request only in that the Direction bit will be

flipped.

Bits 16-27 of this word contain the channel number of the channel over which this

packet is travelling.

Note This also applies to the subreason codes used in, eg. ADP_Info, and the

ADP_Stopped reasons.

The multi-thread bits are interpreted according to the following table:

Bit # Name Description

30 DisableFIQ Disable FIQ whilst processing message.

29 DisableIRQ Disable IRQ whilst processing message.

28 DisablePreemption Disable O/S pre-emption whilst processing message.
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These bits are used to control how the target system executes whilst processing

messages. This allows for O/S specific host-based debug programs to interrogate

system structures whilst ensuring that the access is atomic within the constraints

imposed by the target O/S. They must be set to zero in messages sent from the target

to the host.

2.1.2 Debug ID

The debug ID is a field provided for the use of the host software; the target guarantees

that for a given host request, the response to that request will have the same debug ID

value as the request.

For systems which have no need of this (for example, single threaded debuggers) it

must be set to 0xFFFFFFFF. Messages originated by the target (eg. the boot

message) also set this field to 0xFFFFFFFF.

2.1.3 OSInfo 1, OSInfo 2

These fields can be used by multi-threaded target operating systems, etc, to identify

the thread or context information in which the call is being made. Host originated

messages, and target originated messages on singly-threaded targets should set both

of these values to 0xFFFFFFFF.

2.1.4 Flow control

Each service has been allocated a request channel and a response channel. A

response packet must be received on the response channel for every request sent on

the request channel.

Thus flow control is implemented by program control, rather than explicit action of the

channel layer below.

2.1.5 Byte ordering

In both ADP and C Library Support Protocol, data is transmitted little-endian. The byte

format of other application data is defined by those applications.

The transport protocol must deliver the data to the receiver in the order presented by

the transmitter.

2.1.6 Startup and shutdown

Startup of the link is defined by the boot protocol, which is outlined in the Boot Agent

section.
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Targets should protect against receiving a new startup request before a previous link

has been closed down, unless the target specifically services multiple sessions – for

example, when debugging a multi-threaded target.

2.1.7 Reliability and error detection

The high level protocols assume that, as a result of the actions of the channels

protocol, the channel is error free. They make little allowance for recovery if this is not

in fact the case. About the only instance of such allowance is the ADP_LinkCheck

packet which is sent in response to parameter negotiation.

2.1.8 Predefined channel numbers

The following channels have been predefined for the Angel debug agent. Each service
has a full duplex channel assigned to it. There are two debug channels because each
end acts sometimes as an RPC server (carries out requests) and sometimes as client
(makes requests).

Name Channel # Description

CI_HADP 1 ADP (debugger), host originated

CI_TADP 2 ADP (debugger), target originated

CI_HBOOT 3 Boot, host originated

CI_TBOOT 4 Boot, target originated

CI_TLOG
1

10 Target debug/logging

Angel debugging channels

                                                          

1
 The TLOG channel is only used if the Angel ROM debugging method is set to “logadp” which

tells Angel to send ROM debugging messages over ADP to the host; normal builds of Angel use
“panicblk”, in which these messages are stored in a small area of host memory.
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In addition, there are a number of other channels, shown in the following table:

Name Channel # Description

CI_PRIVATE 0 Channel protocol control messages

CI_CLIB 5 Semihosting C library support

CI_HUDBG 6 User debug support, host originated

CI_TUDBG 7 User debug support, target originated

CI_HTDCC 8 Thumb debug comms channel, host originated

CI_TTDCC 9 Thumb debug comms channel, target originated

Predefined angel channels

2.1.9 Operations

The operation (reason) codes are defined by the relevant component protocol (ADP,

Boot, Clib). There is no danger of a valid C Library Support packet being mistaken for

an ADP packet as they are sent down different channels. The channel identifiers are

specified in the channels protocol.

The top bit of the reason code is used to indicate whether the message is a host to

target message or a target to host message. Note that the same basic reason code is

used for each direction, but depending on the direction, the packets may have

differing data formats.

Details of the requests, responses and error numbers can be found in a separate

document Angel Debug Protocol Messages (ARM DUI0053).
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2.2 Channel Layer

The channel level protocol is responsible for delivering packets from one end of the

communications medium to the other along numbered channels. Channels are

conceptually equivalent to ports in the world of TCP/IP, although in the current

implementation the mapping of port numbers to services is statically defined. An ADP

Channel is bidirectional.

The interface above this layer is packet based; calls to the layer present a data packet

for transmission, with the guarantee that it will be delivered, if at all, in the order

presented and intact. Note that the channel layer only guarantees that packets arrive if

it has specifically been asked to give this guarantee when the packet was passed to it.

The interface below this layer is to a communications medium, such as a serial line,

which is capable of delivering packets to the destination without additional addressing

information; the channel layer considers that all communications are point-to-point.

The medium is also expected to deliver packet contents in the order transmitted, and

although the protocol is capable of packet reordering it is very inefficient at doing so;

the protocol basically expects packets to arrive in the order sent.

2.2.1 Data formats

The channel level protocol is used to distinguish which channel a packet is destined

for. It was also envisaged as the protocol which contained the information for packet

sequencing. The current protocol header is 4 bytes long. The bytes (in transmission

order) are:

� Channel ID

� Host packet sequence number

� Target packet acknowledge number

� Flags byte
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Figure 4: Channel packet data format

2.2.1.1 Channel ID

The Channel ID is checked for validity very early on in receipt of the packet. It must be

less than a predefined limit (the sender and receiver must agree on a specific subset

of channel ID numbers and their meanings).

2.2.1.2 Sequence numbers

The host and acknowledge sequence numbers are used to determine the relative

state of “progress” between sender and receiver (eg. To determine whether the sender

is “ahead” of the receiver, which would imply the receiver needs to request a resend).

Sequence numbers are global (that is, they are not affected by the channel number)

and not limited by the protocol window size.

Both host and target sequence numbers start at zero on initial boot or application

initialise and are incremented by one until the byte they are held in wraps around to

zero again. At various times in the protocol the values are reset to zero.

When viewed on a per-channel basis, however, the protocol is a simple Stop-and-

Wait protocol. That is, for any particular channel there can only be one outstanding

packet.
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The sequence numbers are used as follows:

When a packet is to be sent:

1 It is marked with the current values of the transmit and acknowledge

sequence numbers.

2 If and only if the packet is a reliable data packet, the transmit packet

sequence number is incremented by one and a reference to the packet itself

stored in the resend packet list.

3 The packet is written to the output device.

When a packet is received:

� If the packet was considered ‘bad’ by the device layer, a resend packet may

be sent, requesting retransmission of the packet the receiver was expecting

next (current Angels do not request a resend). The packet is thrown away

and no further action is taken.

A packet is bad if it has been incompletely received, if the packet length is

too short, if it fails the CRC, or if a packet framing error occurred.

� If the packet’s flags indicate this is a resend request packet, the packet’s

acknowledge sequence number is taken to be the last packet correctly

received, and all stored packets after this are resent.

� If the packet’s flags indicate this is a heartbeat packet, the packet sequence

number from the packet is checked against the receiver’s idea of this value:

- If the packet’s value is lower (mod 255) than expected, then the packet’s

transmitter lost the last packet sent to it for that channel. An

acknowledge heartbeat is returned.

- If the packet’s value is higher than expected then the receiver has

missed a packet on that channel and it should request a resend of the

missing packet. The current packet is thrown away.

- If the packet’s value matches the expected value, a further check must

be made:

- If a data packet has already been received with this sequence

number, an acknowledge heartbeat is returned; otherwise, a resend

message is sent for the expected sequence number–the host sent a

packet which has been lost.

The current packet is thrown away and no further action is taken.
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� If the packet’s flags indicate this is not a reliable packet, then the packet is

delivered and no further action is taken.

� The packet sequence number from the packet is recorded (for heartbeat

checks, 2.11a only) and checked against the receiver’s idea of this value:

- If the packet’s value is lower than expected, then this packet is a

duplicate of the last received packet on the same channel. The current

packet is thrown away.

- If the packet’s value is higher than expected then the receiver has

missed a packet and it requests a resend of the missing packet. The

current packet is thrown away.

- If the packet’s value matches the expected value, the next expected

sequence number is incremented, all stored packets with sequence

numbers lower (mod255) than the current packet’s acknowledge

sequence number are removed from the resend buffer, and the packet is

delivered to the appropriate service.

Note It is suggested that a list of currently-unacknowledged packets is maintained, rather

than one per channel.

2.2.1.3 Flags values

The Flags byte is used to distinguish various packet types from each other. The three

flag bits used are mutually exclusive; a resend request packet cannot be reliable, and

neither can a heartbeat. Thus there are four packet types available:

� Resend

� Heartbeat

� Reliable data

� Unreliable data (“Datagram”).

See the later descriptions of packet types for more information about these packets.

2.2.1.4 Flow control

Flow control is not implemented in this layer.

2.2.1.5 Byte ordering

Data is transmitted in little-endian format, although this is effectively irrelevant as the

only fields are single bytes.



The Protocol Suite

Angel Debug Protocol
ARM DUI 0052A 2-13

Open Access

2.2.1.6 Startup and shutdown

On startup, code at each end of the link initializes the values used for the host

sequence numbers to zero, and the expected frame number to one (the sequence

number is incremented before sending). The device driver is initialized and the state

(of the target) set to BootAvailable.

Note It should be noted that Angel sends a boot message on startup, which is usually not

received by the host. This means that during the boot phase, a host cannot tell if the

first packet it receives will be numbered one or two. Other problems, notably when

restarting sessions, mean that a host should not strictly police packet sequence

numbers on the ADP Boot channel, as there are occasions when packets must be

accepted with sequence numbers which would normally be considered invalid.

2.2.1.7 Reliability and error detection

The channels protocol attempts to deliver packets with the reliable flag set in a

reliable way. That is, it attempts to ensure that once the packet is presented to the

channel layer it does actually reach the destination without error. There are two

mechanisms which are used to implement this:

� checking of the packet length (packets must be long enough to contain the 4

byte protocol header)

� checking packet sequence numbers against the expected range

If the reliable flag is not set, the channel layer simply delivers packets to the data

link layer for transfer; the application is responsible for any error recovery actions.

When the reliable flag is set, the transmitter must keep a copy of every packet sent

with the flag sent (including it’s sequence number); such packets may be freed when a

packet is received from the opposite end of the link with an acknowledge sequence

number which is higher (mod 255) than the saved packet number. Resend requests

use the packet store to resend lost packets.

2.2.1.8 Packet length

Packets are formed in buffers which are either standard size (256 byte) or long (often
7KB, but variable) length. For any particular request, the packet sent is the length of
the data in it, not the length of the buffer. Packets are never padded.

Note When performing block data transfers (for example, the ADP_Write request), larger

buffers are used to reduce the overheads incurred in packet transfer and subsequent

processing. Note that use of large buffers is restricted (by convention) in ADP 1.0 to

the ADP_Write operation.
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Note ADP1.1: ADP_Read, ADP_ReadExt, ADP_WriteExt, CL_Write and CL_Read may

also use long packets.

Maximum long packet lengths must be agreed between the sender and receiver, so
the target boot message contains both the standard and long buffer sizes – the host is
assumed to be able to cope with anything the target can.

When using ADP and the C library, many requests or responses are in fact
significantly less than 256 bytes; the most common length is around 32 bytes,
inclusive of the packet headers.

2.2.1.9 Packet types: resend requests

A resend request packet contains no data; the acknowledge sequence number

received in a resend packet defines the start of the resend sequence (as the last

packet successfully received), and the end is defined as the “current” packet. All

packets within this range will be resent in order, from earliest to latest. The receiving

system interprets the packets as normal and sends back acknowledge packets as

appropriate. A resend request is completed when the last packet has been sent.

A resend request is initiated as described in section 2.2.1.2.

New packet sequence numbers are only allocated to packets which can be resent; the

current sequence number is included in other packet types, but only in order that

receipt of these packet types can cause a resend request (of a previous, resendable

packet).

A resend request packet must not cause a resend request.

The behavior of the system is currently undefined if a resend request is received

which cannot be satisfied because the packet is not available. Care should be taken in

the implementation of the packet store and the generation of resend requests to

ensure this does not happen. The suggested action is to detect the attempt and ignore

the resend request.

2.2.1.10 Heartbeats

A heartbeat packet contains nothing, other than the sequence numbers, which is

required by the protocol; its mere existence is what is needed. Its purpose is to ensure

that the target end of the link is still alive, even if no other data transfer is occurring.

Heartbeats are initiated by the host system, and merely reflected by the target

(including a copy of the time stamp, see below). Heartbeats do not count in the normal

sequencing of packets (ie. the sending of a heartbeat packet, while it does include

host and opposite sequence numbers, does not imply the incrementing of those

numbers).
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A time stamp, measured in centiseconds, is stored in little-endian format in the

“Packet Data” (see section 2.2.1) of the packet, which allows the host to determine the

current round trip delay.

The absolute value of the timestamp is not useful, and targets should not assume any

interpretation of it other than it is a monotonically increasing value.

2.2.1.11 Reliable data

A reliable data packet is remembered until acknowledged by the receipt of a reliable

data packet from the opposite end of the link which has the next higher sequence

number in its acknowledge sequence number field.

Packets sent in this manner are recorded on the resend list. A resend request

examines the resend list to identify the packets which can be resent, and resends

them in order. Packets are removed from the resend list when a packet is received

from the target in response (ie. it has a sequence number one (or more) higher).

2.2.1.12 Unreliable data

An unreliable data packet is a traditional datagram; it is up to the application to

determine whether the packet has been lost or corrupted, and what to do if it has

been. Few higher level services use this level of service. The channel layer still checks

packets have not been corrupted in transit and delivers this information with what it got

of the packet.

Note While a bad packet indication may be received if a packet is corrupted, there are

occasions when this will not happen, even if a partial packet is received. No not rely

on bad packet receipts.
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2.3 Boot agent

The boot agent uses the channel layer reliable packet stream, and must establish

communication between the host and the target. This involves determining the device

used for data transport, getting the host and target into sync and agreeing on the

parameters (such as maximum message size) which will be used for the session.

At the end of the session, the boot agent must return the system to a state where

another session can be initiated.

The boot agent only supports a few messages. All Angel systems with host

communications must provide the boot agent, even if they do not have support for

semihosting or debug agents.

If at any point during the bootup sequence ADP messages are sent down the

CI_HADP channel then they should be responded to with the error status

RDI_NotInitialised.

An ADP_Booted or ADP_Reboot message should be accepted at any point, since it

is possible for a catastrophe to occur (such as disconnecting the host and target

during a debug message) which requires that one or other end be reset.

Note If a incompatible parameters from the defaults have been negotiated for a session,

subsequent messages will not be received correctly. This issue has not yet been

resolved.

2.3.1 Target board powered up before the host

After switching on the target and initialization is completed the target will send an
ADP_Booted message.  The debugger has not been started yet so this message will

not be received. In a serial world this makes it important that any buffers on the host

side are flushed during initialization of the debugger, and in an Ethernet world it

makes it important that the target can cope with the message not being received.

Eventually the debugger will be started up and will send an ADP_Reboot or

ADP_Reset request
1
.  The target will respond to this with an ADP_Reboot or

ADP_Reset acknowledge and will then reboot, finally sending an ADP_Reboot when

it has done all it needs to do (very little in the case of ADP_Reset, but completely

rebooting in the case of ADP_Reboot).

                                                          

1
 Currently, Remote_A always sends ADP_Reset. Do not rely on this behaviour.
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2.3.2 The target board powered up after the host

The debugger will send an ADP_Reboot or ADP_Reset request, but will receive no

reply until the target is powered up. When the target is powered up then it will send an
ADP_Booted message to the debugger.  The debugger should accept this message

even though it has received no ADP_Reboot or ADP_Reset acknowledge message

from the target. ARM host debuggers will then proceed to reset the target (with
ADP_Reset), prompting another ADP_Booted message prior to initiating the debug

session.

2.3.3 Packet sequences: Session Startup

For serial links, the initial baud rate must be set to 9600, although it may be
renegotiated to a higher (or lower) value by an initial ADP_ParameterNegotiate

request. These packets are shaded gray in the startup sequences 1 to 5, below. It is

assumed in the protocol that the parameters being negotiated are in response to user

request, and are thus initiated by the host. It is not currently possible for the target to

initiate renegotiation of parameters.

Note Some targets need a short pause (in the region of 1ms) between the host issuing the

boot acknowledge packet and issuing the first packet of the debug session, to allow

the target time to complete it’s operations.

Host Direction Target Channel

<– Boot message BOOT

(wait)

Parameter negotiate –> BOOT

<– Parameter negotiate acknowledge BOOT

Link check –> BOOT

<– Link check acknowledge BOOT

Reset –> BOOT

<– Reset acknowledge BOOT

<– Boot message BOOT

Boot acknowledge. –> BOOT

(Debug session) –> DEBUG

Sequence 1: Serial or serial/parallel startup sequence when target boots first
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Host Direction Target Channel

Parameter negotiate –> BOOT

<– Parameter negotiate acknowledge BOOT

Link check –> BOOT

<– Link check acknowledge BOOT

Reset –> BOOT

<– Boot message BOOT

Boot acknowledge –> BOOT

(Debug session) –> DEBUG

Sequence 2: Serial or serial/parallel startup sequence when host boots first

Host Direction Target Channel

Reset –> BOOT

<– Boot message BOOT

Boot acknowledge –> BOOT

(Debug session) –> DEBUG

Sequence 3: Ethernet startup sequence when host boots first

2.3.4 Packet sequences: Session Shutdown

The session is terminated with an End request, which results in the session moving

back to the ‘can connect’ state, as shown below. Following the End request, if the link

parameters were changed, the link must be returned to the default state by sending
another ADP_ParameterNegotiate request.

Host Direction Target Channel

End –> DEBUG

<– End DEBUG
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Host Direction Target Channel

Parameter negotiate –> BOOT

<– Parameter negotiate acknowledge BOOT

Link check –> BOOT

<– Link check acknowledge BOOT

Sequence 4: Shutdown sequence with Renegotiation

Host Direction Target Channel

End –> DEBUG

<– End acknowledge DEBUG

Sequence 5: Shutdown sequence without Renegotiation

2.3.5 Sequence Number Resetting

There are a number of points in the sequences when packet sequence and
acknowledgement numbers must be reset and outstanding stored packets freed. This
must happen:

� On initially booting, and before the target boot message, if any, has been sent.

� As part of the ADP_Reset action, after the acknowledge to the reset has been

sent.

� As part of the ADP_LinkCheck action, after the ADP_LinkCheck acknowledge has

been sent.
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2.4 Device Level

The device level protocol will differ depending upon the device to be used. For
example in an ethernet implementation, the device level protocol is UDP. On devices
where the device driver communicates directly with the hardware other protocols can
be used. The one used by the serial device driver is as follows and is also used on
other byte-serial point to point connections.

One special requirement is placed upon the device level interface by the Channel
level; that the device level knows how much data is being transferred in the data
portion and can reliably inform the channel layer of this on receipt. This condition
would not, for example, be met by raw Ethernet (IEEE 802.3 etc.).

It never the case that a null packet (ie. a device level packet with no data in it) is
transmitted. Such support is not a requirement of the device protocol.

2.4.1 Byte serial devices

2.4.1.1 Data formats

The data packet is used to transmit channel level packets, adding framing, error

detection and byte escaping to the channel’s data block. The end of packet byte

transmitted as the last byte in the packet terminates the current packet.

To avoid the data values in a packet being mistaken for these values, the driver

escapes the data values (and some others) by transmitting an escape character

(value 0x1B) followed by the data value ORed with the value 0x40. So a data byte with

the value 0x11 will be transmitted as the byte pair 0x1B 0x51. Clearly data bytes of the

value 0x1B will also need to be escaped, becoming 0x1B 0x5B.

Also there are two bytes than can be (but in current implementations, are not) used for

software flow control, 0x11 (XON) and 0x13 (XOFF). These characters are also

escaped. The implementation of the protocol should not assume that these values are

unchanging; the current implementation defines them in the invocation of the device.

Note also that it is possible that other characters may need to be escaped.
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The current default control bytes are:

Name Hex Value

Start of Packet 0x1C

End of Packet 0x1D

Escape 0x1B

Stop Sending (XOFF) 0x13

Start Sending (XON) 0x11

As well the start and end bytes the device driver prepends an 8-bit type and 16-bit

length field and appends a 32-bit CRC value to the channel packet. So both packet

types are of the form:
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�����	

Figure 5: Byte Serial Device Data Format

All values in the packet between the start and end packet bytes are escaped if

appropriate.

If an error occurs whilst processing a packet (such as receiving an unescaped start of

packet byte) then the protocol aborts processing the previous packet, delivers the bad

packet to the channel layer, and starts processing the new packet. If an overrun error

is detected, the serial driver may (in 2.11a) indicate this and cause packet processing

to search for a start of packet byte again, irrespective of the current state.

2.4.1.2 Byte ordering

Data is transmitted in little-endian format. This affects the CRC and length fields of the

packet.

2.4.1.3 Packet length

Data packets are used to transfer data from the channel layer to or from the

destination. The data being transferred varies from a few bytes to a few kilobytes, and

although the length field allows for much larger packets no current implementation

uses packets more than 16KB. Most packets are from 32-64 bytes in length.
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2.4.1.4 Reliability and error detection

The protocol makes no effort to improve the reliability of the connection. A number of

different error types are detected and reported to the higher layers as bad packets:

� Packet framing

� Bad packet length

� Checking a calculated CRC32 the data against the transmitted value

The CRC checks allow the receipt of packets which have become corrupted to be

detected. The algorithm used is the IEEE 802.3 32-bit CRC algorithm for byte data. In

the case where a packet fails the CRC check, the packet may be transmitted to the

upper layers with a ‘bad frame’ type code.

When receiving bad frames whether detected by framing errors or by CRC, the
channel protocol simply requests the currently expected packet be transmitted again.

2.4.1.5 Flow control

Byte level flow control is not implemented in the current serial device drivers. Both

XON/XOFF software, and RTS/CTS hardware flow control can be implemented as

appropriate. Parallel port “strobe/ack” handshaking is implemented.

2.4.1.6 Startup and shutdown

Transmitter startup involves initiation of the physical link (eg. setting up the serial data

registers, or opening the host operating system’s serial communication port). This

layer never initiates data transfer on its own.

Receiver startup involves a similar initiation of the physical link.

The receiver state should be waiting for start-of-packet on the link. The transmitter

state should be waiting for a packet to send.

2.4.2 Other devices

Other devices and drivers can be used to connect the channel layers together.

Examples include processor bus interfaces such as PCI and Ethernet, via UDP/IP.

Device drivers for these interfaces need to conform to the following requirements:

� Data is received in the same byte order it was transmitted within a packet;

� Data within a packet is either delivered correctly, not delivered at all, or a bad

packet indication is given on delivery.

� Data block boundaries are maintained, and the length of the data block

actually sent is available at the receiver;
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� The maximum data block length is at least 256 bytes, as seen from the driver

interface.

� In the normal sequence of events, data blocks are delivered in the order

presented. Although the channel layer can reorder packets where necessary,

because it is not efficient at doing so the driver should attempt to deliver

packets in the correct order.
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3. Protocol State Machines

This protocol description is written from the perspective of the target (ie. send means

write to host (MASTER) and receive means read from host (MASTER).

3
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ADP

{
    Receive Messages
    {
        -- CI_HADP

        ADP_TargetResetIndication_HtoT();
        ADP_Reboot_HtoT();
        ADP_Reset_HtoT();
        ADP_HostResetIndication_HtoT();
        ADP_ParamNegotiate_HtoT();
        ADP_LinkCheck_HtoT();
        ADP_Info_HtoT();
        ADP_Control_HtoT();
        ADP_Read_HtoT();
        ADP_Write_HtoT();
        ADP_CPUread_HtoT();
        ADP_CPUwrite_HtoT();
        ADP_CPread_HtoT();
        ADP_CPwrite_HtoT();
        ADP_SetBreak_HtoT();
        ADP_ClearBreak_HtoT();
        ADP_SetWatch_HtoT();
        ADP_ClearWatch_HtoT();
        ADP_Execute_HtoT();
        ADP_Step_HtoT();
        ADP_InterruptRequest_HtoT();
        ADP_HW_Emulation_HtoT();
        ADP_ICEbreakerHADP_HtoT();
        ADP_ICEman_HtoT();
        ADP_Profile_HtoT();
        ADP_InitialiseApplication_HtoT();
        ADP_End_HtoT();

        doReset();              -- perform a target reset
        doReboot();             -- perform a target reboot
    }
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    Send Messages
    {
        -- CI_TADP

        ADP_Booted_TtoH();
        ADP_TargetResetIndication_TtoH();
        ADP_Reboot_TtoH();
        ADP_Reset_TtoH();
        ADP_HostResetIndication_TtoH();
        ADP_ParamNegotiate_TtoH();
        ADP_LinkCheck_TtoH();
        ADP_HADPUnrecognised_TtoH();
        ADP_Info_TtoH();
        ADP_Control_TtoH();
        ADP_Read_TtoH();
        ADP_Write_TtoH();
        ADP_CPUread_TtoH();
        ADP_CPUwrite_TtoH();
        ADP_CPread_TtoH();
        ADP_CPwrite_TtoH();
        ADP_SetBreak_TtoH();
        ADP_ClearBreak_TtoH();
        ADP_SetWatch_TtoH();
        ADP_ClearWatch_TtoH();
        ADP_Execute_TtoH();
        ADP_Step_TtoH();
        ADP_InterruptRequest_TtoH();
        ADP_HW_Emulation_TtoH();
        ADP_ICEbreakerHADP_TtoH();
        ADP_ICEman_TtoH();
        ADP_Profile_TtoH();
        ADP_InitialiseApplication_TtoH();
        ADP_End_TtoH();

        ADP_TADPUnrecognised();
        ADP_Stopped();

        -- CI_TTDCC

        ADP_TDCC_ToHost();
        ADP_TDCC_FromHost();
    }
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    Protocol
    {
        States
        {
            BootStartup,
            BootAvailable,
            BootResetting,
            Connected,
        }
        Transitions
        {
            BootStartup:    -ADP_Booted_TtoH                -> BootAvailable;
            BootAvailable:  +ADP_Booted_HtoT                -> Connected;

            -- These messages exist, but are not used! They were intended to
            -- allow each end of the link to say it had reset "spontaneously"
            Connected:      +ADP_TargetResetIndication      ->
            Connected:      +ADP_HostResetIndication        ->

            -- a reboot request returns a reply, then a complete reinitialisation
            Connected:      +ADP_Reboot_HtoT                -> RebootAck;
            BootAvailable:  +ADP_Reboot_HtoT                -> RebootAck;
            BootStartup:    +ADP_Reboot_HtoT                -> RebootAck;
            BootResetting:  +ADP_Reboot_HtoT                -> RebootAck;
            RebootAck:      -ADP_Reboot_TtoH                -> BootStartup;

            Connected:      +ADP_Reset_HtoT                 -> ResetAck;
            BootAvailable:  +ADP_Reset_HtoT                 -> ResetAck;
            ResetAck:       -ADP_Reset_TtoH                 -> BootResetting;
            BootResetting:  -doReset                        -> Connected;

            -- this s just saying a reset, while in reset state, is ignored
            BootResetting:  +ADP_Reset_HtoT                 -> ResetAck;

            Connected:      +ADP_ParamNegotiate_HtoT        -> ParamNegAck;
            ParamNegAck:    -ADP_ParamNegotiate_TtoH        -> ExpectLinkCheck;
            ExpectLinkCheck:+ADP_LinkCheck_HtoT             -> LinkCheckAck;
            Connected:      +ADP_LinkCheck_HtoT             -> LinkCheckAck
            LinkCheckAck:   -ADP_LinkCheck_TtoH             -> Connected;

            -- these two messages are sent if the sender doesn't recognise
            -- a message
            Connected:      +ADP_HADPUnrecognised_HtoT      -> Connected;
            Connected:      -ADP_TADPUnrecognised_TtoH      -> Connected;
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            -- info subtype defines op; reply contains result of op
            Connected:      +ADP_Info_HtoT                  -> InfoAck;
            InfoAck:        -ADP_Info_TtoH                  -> Connected;

            -- control subtype defines op; reply contains result of op
            Connected:      +ADP_Control_HtoT               -> ControlAck;
            ControlAck:     -ADP_Control_TtoH               -> Connected;

            Connected:      +ADP_Read_HtoT                  -> ReadAck;
            ReadAck:        -ADP_Read_TtoH                  -> Connected;

            Connected:      +ADP_Write_HtoT                 -> WriteAck;
            WriteAck:       -ADP_Write_TtoH                 -> Connected;

            Connected:      +ADP_CPUread_HtoT               -> CpuReadAck;
            CpuReadAck:     -ADP_CPUread_TtoH               -> Connected;

            Connected:      +ADP_CPUwrite_HtoT              -> CpuWriteAck;
            CpuWriteAck:    -ADP_CPUwrite_TtoH              -> Connected;

            Connected:      +ADP_CPread_HtoT                -> CPReadAck;
            CPReadAck:      -ADP_CPread_TtoH                -> Connected;

            Connected:      +ADP_CPwrite                    -> CPWriteAck;
            CPWriteAck:     -ADP_CPwrite_TtoH               -> Connected;

            Connected:      +ADP_SetBreakHtoT               -> SetBreakAck;
            SetBreakAck:    -ADP_SetBreak_TtoH              ->

            Connected:      +ADP_ClearBreak                 ->
            Connected:      +ADP_SetWatch_HtoT              -> SetWatchAck;
            SetWatchAck:    -ADP_SetWatch_TtoH              -> Connected;

            Connected:      +ADP_ClearWatch_HtoT            -> ClearWatchAck;
            ClearWatchAck:  -ADP_ClearWatch_TtoH            -> Connected;

            Connected:      +ADP_Execute_HtoT               -> ExecuteAck;
            ExecuteAck:     -ADP_Execute_TtoH               -> Executing;

            Connected:      +ADP_Step_HtoT                  -> StepAck;
            StepAck:        -ADP_Step_TtoH                  -> Executing;

            Connected:      +ADP_InterruptRequest_HtoT      -> InterruptAck;
            InterruptAck:   -ADP_InterruptRequest_TtoH      -> Connected;
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            -- subtype defines op; reply contains result of op
            Connected:      +ADP_HW_Emulation_HtoT          -> HWEMAck;
            HWEMAck:        -ADP_HW_Emulation_TtoH          -> Connected;

            -- subtype defines op; reply contains result of op
            Connected:      +ADP_ICEbreaker_HADP_HtoT       -> IceBrkAck;
            IceBrkAck:      -ADP_ICEbreaker_HADP_TtoH       -> Connected;

            -- subtype defines op; reply contains result of op
            Connected:      +ADP_ICEman_HtoT                -> IceManAck;
            IceManAck:      -ADP_ICEman_TtoH                -> Connected;

            -- subtype defines op; reply contains result of op
            Connected:      +ADP_Profile_HtoT               -> ProfileAck;
            ProfileAck:     -ADP_Profile_TtoH               -> Connected;

            Connected:      +ADP_InitialiseApplication_HtoT -> InitAppAck;
            InitAppAck:     -ADP_InitialiseApplication_TtoH -> Connected;

            Connected:      +ADP_End                        -> EndAck
            EndAck:         -ADP_End                        -> BootAvailable;

            Executing:      -ADP_Stopped                    -> Connected;
            Executing:      +ADP_InterruptRequest_HtoT      -> InterruptAck;
        }
    }
}
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3.1 Channel Level Protocol

The channel level protocol is mostly (but not perfectly) symmetric due to the

master-slave relationship in the protocol. The slave (target hardware, etc.) is not

assumed to have a timer, and so merely bounces a heartbeat. There is no good

reason why the boot packet has no mirror on the master. The master can reset the

slave, but the slave cannot reset the master; again, this is not necessarily justified.

Channel
{
    Receive Messages
    {
        ReadHeartbeatPacket(Channel&, HomeSeq&, OppSeq&, Timestamp&);
        ReadResendPacket(Channel&, HomeSeq&, OppSeq&);
        ReadDataPacket(Channel&, HomeSeq&, OppSeq&, Data&);
        TransferFromHost(Data);                         -- get data packet from host
        Timeout();                                      -- timeout detected on link
        Heartbeat(Timestamp&);                          -- heartbeat event
        CheckSequenceNumbers();
        BadPacket();                                    -- get invalid packet from line

        -- ADP PACKETs used by CHANNEL protocol! }
        ReadBootPacket(Channel&, HomeSeq&, OppSeq&, BootInfo&);
        ReadResetPacket(Channel&, HomeSeq&, OppSeq&, Resetinfo);
    }
    Send Messages
    {
        WritePacket(Channel, HomeSeq, OppSeq, Data);
        WriteBootPacket(Channel, HomeSeq, OppSeq, BootInfo);
        WriteResendPacket(Channel, HomeSeq, OppSeq);
        WriteHeartbeatPacket(Channel, HomeSeq, OppSeq, timestamp);
        TransferToHost(Data);                           -- transfer data packet to user
    }

    Protocol
    {
        States
        {
            Start(init),
            Wait,                   -- waiting for some event
            SentPacket,             -- have sent a packet out
            SendHeartbeat,          -- write a heartbeat with current sequence number
            GotResendPacket,        -- got a resend request packet
            GotHeartbeatPacket,     -- got a heartbeat packet
            GotReliablePacket,      -- got a packet flagged "reliable"
            HandleReliablePacket,   -- determine whether the packet is ok
            GotDatagram,            -- got a datagram -- an unchecked packet
            GotBadPacket,           -- received packet with CRC error
            ResendNextPacket        -- resend one or more previously sent packets
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            Error                   -- "no recovery" state
        }
        Transitions
        {
            -- initialisation: boot packet is not, however, part of the
            -- Channel protocol!

#ifdef MASTER
            Start:                  -ReadBootPacket             -> Wait;
#else
            Start:                  +WriteBootPacket            -> Wait;
#endif
            -- receive incoming packet
            Wait:                   +ReadDataPacket             -> GotDataPacket;
            Wait:                   +ReadResendPacket           -> GotResendPacket;
            Wait:                   +ReadHeartbeatPacket        -> GotHeartbeatPacket;
            Wait:                   +BadPacket                  -> GotBadPacket;

#ifdef MASTER
            -- receiving a boot packet signals that the SLAVE has reset;
            -- we must do so too!
            -- THIS ACTION IS NOT PART OF ANY CURRENT PROTOCOL OR IMPLEMENTATION
            Wait:                   +ReadBootPacket             -> Reset;
            Reset:                  +(doChannelReset)           -> Wait;
#else

            -- Again, a reset packet is not part of the channel protocol!
            Wait:                   +ReadResetPacket            -> Reset;
            Reset:                  +WriteBootPacket            -> Wait;
#endif

            -- handle incoming packet, see also heartbeat below
            GotBadPacket:           -WriteResendPacket          -> Wait;
            GotDatagram:            -TransferToHost             -> Wait;

            GotReliablePacket:      -CheckSequenceNumbers       -> HandleReliablePacket;
            HandleReliablePacket:   +TransferToHost             -> Wait;
            HandleReliablePacket:   +WriteResendPacket          -> Wait;

            -- resend zero or more packets as requested
            GotResendPacket:                                    -> Wait;
            GotResendPacket:        -WritePacket                -> ResendNextPacket;
            ResendPacket:           -WritePacket                -> ResendNextPacket;

            -- handle packet from local application
            Wait:                   +TransferFromHost           -> SentPacket;

            -- handle timeout and heartbeat
            Wait:                   +Timeout                    -> Error;  -- non-auto: Start
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#ifdef MASTER
            Wait:                   +Heartbeat                  -> SendHeartbeat;
            SendHeartbeat           +WriteHeartbeatPacket       -> Wait;
            GotHeartbeatPacket:                                 -> Wait;
#else
            GotHeartbeatPacket:     -WriteHeartBeatPacket       -> Wait;
#endif
        }
    }
}
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3.2 Serial Data Link Level Protocol

The data level protocol given below is intended to operate over character-orientated

devices such as serial and parallel lines. Two protocols are given, one instance of

each running in parallel on each end of the link to allow full duplex access to the link.

The protocol defines the startup state of the line as a set of default parameters which

can be renegotiated by the application using the ADP_ParamNegotiate request.

ChannelReceive
{
    Receive Messages
    {
        RecieveIntr();          -- Input Characters Available
        GotSTX();               -- got Start-Of-Packet character
        GotETX();               -- got End-Of-Packet character
        GotChar();              -- got a character in field
        GotLast();              -- got last character in field
        hasData();              -- is receive packet len > 0
        noData();               -- is receive packet len == 0
        invalidLen();           -- is receive packet len invalid (too big?)
    }
    Send Messages
    {
        BadPacketToHost();      -- deliver bad packet
        PacketToHost();         -- deliver completed packet to host
    }

    Protocol
    {
        States
        {
            Start(Init),
            Wait,

            WantSTX,
            WantTYP,
            WantLEN,
            WantDAT,
            WantCRC,
            WantETX,
            CheckCRC,
            BadPacket_STX,
            BadPacket_TYP
        }
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        Transitions
        {
            Start:                                  -> Wait;

            Wait:           +ReceiveIntr            -> WantSTX;

            WantSTX:        +GotSTX                 -> WantTYP;
            WantSTX:        +GotETX                 -> WantSTX;
            WantSTX:        +GotChar                -> WantSTX;
            WantSTX:        +GotLast                -> WantSTX;

            BadPacket_STX   -BadPacketToHost        -> WantSTX;
            BadPacket_TYP   -BadPacketToHost        -> WantTYP;

            WantTYP:        +GotSTX                 -> BadPacket_TYP;
            WantTYP:        +GotETX                 -> BadPacket_STX;
            WantTYP:        +GotChar                -> BadPacket_STX;
            WantTYP:        +GotLast                -> WantLEN;

            WantLEN:        +GotSTX                 -> BadPacket_TYP;
            WantLEN:        +GotETX                 -> BadPacket_STX;
            WantLEN:        +GotChar                -> WantLEN;
            WantLEN:        +GotLast                -> CheckCRC;

            WantDAT:        +GotSTX                 -> BadPacket_TYP;
            WantDAT:        +GotETX                 -> BadPacket_STX;
            WantDAT:        +GotChar                -> WantDAT;
            WantDAT:        +GotLast                -> WantCRC;

            WantCRC:        +GotSTX                 -> BadPacket_TYP;
            WantCRC:        +GotETX                 -> BadPacket_STX;
            WantCRC:        +GotChar                -> WantCRC;
            WantCRC:        +GotLast                -> WantETX;

            WantETX:        +GotSTX                 -> BadPacket_TYP;
            WantETX:        +GotETX                 -> CheckCRC;
            WantETX:        +GotChar                -> BadPacket_STX;
            WantETX:        +GotLast                -> BadPacket_STX;

            CheckCRC:       -goodCRC                -> DeliverPacket;
            CheckCRC:       -badCRC                 -> BadPacket_STX;

            DeliverPacket:  -PacketToHost           -> Wait
        }
    }
}
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ChannelTransmit
{
    Receive Messages
    {
        WriteChar(Char);        -- write a character to the line
        finished();             -- have we got to the end of the body
        isPlain();              -- is the "current character" a plain
        isSpecial();            -- is the "current character" a special
    }
    Send Messages
    {
        PacketFromHost();       -- get packet from host; calc CRC & length
    }

    Protocol
    {
        States
        {
            Start(Init),
            Wait,

            SendSTX,
            SendBody,
            SendEscaped,
            SendSpecialChar,
            SendPlainChar,
            SendETX,
        }
        Transitions
        {
            Start:                                  -> Wait;

            Wait:           +PacketFromHost         -> TransmitSTX;

            -- PacketFromHost gives us a "body" with the length and CRC
            -- filled in for us

            SendSTX:        -WriteChar(STX)         -> SendBody

            -- Send body must work through the data character by character
            -- escaping those characters which are special to the protocol

            SendBody:       -isPlain                -> SendPlainChar
            SendBody:       -isSpecial              -> SendSpecialChar
            SendBody:       -finished               -> SendETX

            SendPlainChar   -WriteChar(c)           -> SendBody
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            SendSpecialChar: -WriteChar(Escape)     -> SendEscaped
            SendEscaped:    -WriteChar(c)           -> SendBody

            SendETX:        -WriteChar(ETX)         -> Wait
        }
    }
}
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4. Glossary

This section provides a brief glossary of key terms used in this document.
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Terms are used in this document with the following meanings:

Term Definition

ADP The Angel Debug Protocol. In various documents, this refers either
to the whole protocol or just to the high level debug messages. With
the exception of the title, this document uses the latter definition.

Remote_A The name of the host-end of the protocol suite. Implemented as a
static library on Unix, and a dynamic link library on Windows, this
converts debugger requests into packet requests and then interprets
the responses.

UDP The User Datagram Protocol, part of TCP/IP.

Host The computer on which the debugger software is running, usually
Win32 or Unix operating systems.

Target The computer being debugged, typically an ARM or customer
designed ARM processor development board.

Semihosting The ARM C Library running on the target performs some of its
operations internally, and some with the help of the host computer.
This is known as semihosting.


