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Abstract

A new directional 3D edge detector designed for anisotropic image data is reported. The detector is based on
interpolating the image intensity function in a small neighborhood of every voxel by a tri-cubic polynomial. The
analytical approximation of the image intensity function is used to compute the intensity function gradients.
The developed edge detector uses a maximum average of directional derivatives of the approximated image
intensity function over a small neighborhood to determine the gradient direction. Our method is directly
applicable to anisotropic image data and it models the integrative character of data acquisition. With all these
features, it remains computationally as expensive as any other convolution-based directional edge detector.

Quantitative measures of the 3D edge detection accuracy were employed to compare the performance of
our new edge detector to that of the 3D Canny edge detector. 3D edges with step and ramp pro�les with
varying surface curvatures at the edge point as well as several levels of noise were used for the performance
testing. The reported edge detector signi�cantly outperformed the Canny edge detector in most experiments
in anisotropic data as well as in data with superimposed noise. Another important property of the new edge
detector is the ease of its implementation. Although its design required complex steps, the implementation
employs straightforward 3D convolution in the volumetric image data using three pre-computed directional
masks. Complete description of the gradient implementation is presented.

M. Brejl and M. Sonka are with the Department of Electrical and Computer Engineering, The University of Iowa,
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I. Introduction

Progress in volumetric data acquisition as well as cost-e�ectiveness of large-capacity data storage broadened
the opportunities for an extended use of volumetric image data. Primarily in medical imaging and non-
destructive testing, volumetric data sets are becoming standard. For example, methods of the volumetric
medical data analysis allow probing of large portions of the human body and provide more complete information
than 2D images are capable of. Despite the demonstrated utility, truly volumetric methods of image processing
and analysis are not yet common and multi-dimensional data sets are frequently analyzed sequentially using
two-dimensional analysis tools. The presented work o�ers an inherently three-dimensional (3D) solution to
one of very important volumetric image processing problems { edge detection in 3D [1].
The �rst signi�cant extensions of known 2D edge detectors into the 3D space were developed very recently.

Zhang summarized the idea of 3D edge detection and proposed several general methods for extending 2D edge
detectors into the 3D space [2]. As a simplest method, he proposed to use a 2D mask applied to the data in
the three directions to determine the three derivatives. Zhang also suggested how to extend the 3D detectors
into full 3D masks. Bhattacharya and Wild derived a directional 3� 3� 3 Sobel-like edge detector, claiming a
need for a simple and e�cient 3D edge detector [3]. Mehrotra and Zhan derived an optimal 3D zero-crossing-
based edge detector [4]. Their criteria of optimality were based on the Canny's criteria for edge detection [5].
However, as this was a Laplacian-like edge detector, it did not provide information about direction of edges, it
provided only information about edge localization and approximate estimate of edge magnitude, which may not
be su�cient in many real-life applications. Canny derived an optimal 1D edge detector according to his own
criteria [5]. He proposed a circular symmetric extension to his 1D edge detector to construct edge detector
of any higher dimension. Similarly, Spacek derived an optimal 1D edge detector based on a modi�cation
of Canny's criteria and suggested its extension to higher dimensions [6]. The extension uses the following
substitution to allow solving a multi-dimensional edge detection problem using single-dimensional tools

r =

s X
i=1;:::;N

x2i

where r is the distance variable used in the 1D edge detector, N is the space dimension and xi are the multi-
dimensional space coordinates. However, both Canny and Spacek realized that extensions of the originally
asymmetric 1D edge detectors to higher dimensional circular symmetric edge detectors leads to a loss of
optimality.
One of the frequent problems faced by 3D edge detectors is their computational complexity. Simple, small-

size edge detectors do not achieve good performance, while more complex large edge detectors are impractical
because of the required computational time. Even more complicated is the need to reliably determine edges
in volumetric image data with anisotropic voxels. Many of today's data acquisition methods use a di�erent
sampling rate in the z direction than in the x and y directions, x; y; z corresponding to a standard Cartesian
coordinate system. None of the above-mentioned edge detectors can deal with anisotropic data. The typical
approach is either to apply the 3D detectors to anisotropic data at the cost of obtaining biased results or to
�rst employ some interpolation method to obtain isotropic voxel data { with the unfortunate byproduct of an
additional increase of the already substantial data size.
In the following sections, a new approach to edge detection in anisotropic volumetric image data sets

is reported together with a complete description of its simple and fast convolution-based implementation.
Quantitative assessment of the edge detection performance and its comparison with that achieved by the 3D
extension of the Canny edge detector [7] is provided. While the description is simpli�ed to enhance readability,
full details of the method's development are given in the Appendices.

II. Methods

A new directional 3D edge detector is reported that was inspired by the facet model of Haralick and Zuniga
[8]. Our new 3D edge detection is based on approximation of the original volumetric data in a small 3D voxel
neighborhood by a tri-cubic polynomial. All edge-related computations are performed using an analytical
approximation of the original data. The approximation is obtained by �tting a tri-cubic polynomial into the
image data in the least square error sense. The integrative process of data acquisition is incorporated to
further improve the approximation. The image gradient is determined as the gradient of the image intensity
function in a direction in which the average directional derivative in some neighborhood of the central voxel is
maximal. The resulting method for gradient computation yields accurate results and can be implemented as
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a mask convolution with the mask size corresponding to the size of the voxel neighborhood within which the
polynomial is �tted. Thus, the implementation complexity is the same as the complexity of other mask-based
3D edge detectors. Importantly, the tri-cubic polynomial data model is well suited for anisotropic data since it
can incorporate di�erent sampling rates in di�erent directions with the cubic interpolation of the image data
performed directly in the edge detector.
Let a standard Cartesian coordinate system be used (Fig. 1). Any vector in this space can be described

using its x, y and z elements or by its magnitude and orientation. The orientation is described by the angle
� between the x axis and the vector projection into the x � y plane and by the angle � between the vector
projection into the x� y plane and the vector itself (Fig. 1).

x

y

z

x

y

z

Fig. 1. Vector representation in the employed Cartesian coordinate system. The local coordinate system has
its origin at the center of the investigated voxel.

A. Tri-cubic polynomial data model

For every voxel in the volumetric data, a tri-cubic polynomial is �tted into its 3D neighborhood. The
tri-cubic polynomial p(x; y; z) is de�ned as

p(x; y; z) = K1 +K2x+K3y +K4z +K5x
2 +K6xy +

+K7xz +K8yz +K9y
2 +K10z

2 +K11x
3 +K12x

2y +

+K13x
2z +K14xy

2 +K15xz
2 +K16y

2z +K17yz
2 +

+K18y
3 +K19z

3 +K20xyz (1)
where (x; y; z) denotes coordinates in the continuous space. Furthermore,

x = ximvx

y = yimvy (2)

z = zimvz
where (xim; yim; zim) are coordinates in the discrete (image) space and (vx; vy; vz) are voxel dimensions. The
local coordinate system is centered at the investigated voxel. Therefore, (x; y; z) = (xim; yim; zim) = (0; 0; 0)
corresponds to the center of the investigated voxel. Realizing that 3D data acquisition frequently does not
reect ideal case of �-function data sampling but rather it often includes integration over a small volume, this
fact should be reected in the edge detection process. The original data can be represented by the polynomial
p(x; y; z) from Eq. 1. After integrating and ideal sampling, the polynomial representation of the discrete image
data is obtained

P (x; y; z) =

Z x+dx

x�dx

Z y+dy

y�dy

Z z+dz

z�dz

p(x̂; ŷ; ẑ)dx̂ dŷ dẑ (3)

where (2dx; 2dy; 2dz) are dimensions in continuous data space of the prism over which the integration is
performed. As P models the discrete data, it can be expressed in image coordinates (xim; yim; zim) by solving
the integral (Eq. 3):

P (ximvx; yimvy; zimvz) = K1 +K2ximvx +K3yimvy +K4zimvz +K5(x
2
imv

2
x + d2x=3)

+ K6ximvxyimvy +K7ximvxzimvz +K8yimvyzimvz +K9(y
2
imv

2
y + d2y=3)

+ K10(z
2
imv

2
z + d2z=3) +K11(x

3
imv

3
x + ximvxd

2
x)

+ K12yimvy(x
2
imv

2
x + d2x=3) +K13zimvz(x

2
imv

2
x + d2x=3)

+ K14ximvx(y
2
imv

2
y + d2x=3) +K15ximvx(z

2
imv

2
z + d2z=3)
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+ K16zimvz(y
2
imv

2
y + d2y=3) +K17yimvy(z

2
imv

2
z + d2z=3)

+ K18(y
3
imv

3
y + yimvyd

2
y) +K19(z

3
imv

3
z + zimvzd

2
z)

+ K20ximvxyimvyzimvz (4)
The function P (ximvx; yimvy; zimvz) shall be �tted into the discrete volumetric data. The �t is computed in
the least squares error sense so that

e(xim; yim; zim) =
X

xim2Xim

X
yim2Yim

X
zim2Zim

fP (ximvx; yimvy; zimvz)� f(xim; yim; zim)g
2

(5)

is minimized, where f(xim; yim; zim) denotes the image intensity function and Xim, Yim and Zim represent
the voxel neighborhood to which the polynomial is �tted (e.g., Xim = Yim = Zim = f�2;�1; 0; 1; 2g for the
5� 5� 5 neighborhood). The computation of coe�cients K1; : : : ;K20 is presented in Appendix I.

B. Gradient computation

The ultimate goal is to compute the gradient of the intensity function in the continuous space. Therefore,
the polynomial in Eq. 1 is used to represent the interpolation of the image intensity function in an analytical
form and to compute derivatives. The simplest way to compute the gradient is to compute partial derivatives
of p(x; y; z) in x, y and z directions:

grad(p) =

�
@p

@x
;
@p

@y
;
@p

@z

�
(x;y;z)=(0;0;0)

= (K2;K3;K4) (6)

The gradient is computed at the point (0; 0; 0) since the origin of the local coordinate system corresponds
to the center of the investigated voxel. This would be a perfectly valid approach if the analytical polynomial
perfectly corresponded to the image data. Unfortunately, this is not usually the case. An enhancement to
gradient computation from an interpolating function proposed by Haralick and Zuniga in [8] for 2D images
can be extended into the 3D space.
Let a gradient p0�;�(x; y; z) of p(x; y; z) be computed in a direction described by (�; �) (the direction is

represented by a unit vector (nx; ny; nz), see Appendix II-A).

p0�;�(x; y; z) =

�
@p

@x
;
@p

@y
;
@p

@z

�
(nx; ny; nz) =

@p

@x
cos � cos�+

@p

@y
sin � cos�+

@p

@z
sin� (7)

The orientation in which the directional derivative reaches its maximum is speci�ed by

tan � =
@p=@y

@p=@x

tan� =
@p=@zp

(@p=@x)2 + (@p=@y)2
(8)

which corresponds to the gradient in Eq. 7. Now, instead of computing the direction in which p0�;�(0; 0; 0)
is maximal, a direction is computed for which the average directional derivative in some neighborhood of the
central voxel is maximal. Thus, local inaccuracy resulting from inaccurate interpolation of the image data can
be better compensated for. Particularly, the average is computed over a prism rotated into the direction of
(�; �);

F�;� =
1

8LVW

Z W

�W

Z V

�V

Z L

�L

p0�;�(x; y; z)d�xd�yd�z (9)

where (�x; �y; �z) are coordinates in the coordinate system rotated into (�; �) direction, (2L; 2V; 2W ) are dimen-
sions of the prism (Fig. 2); p0�;�(x; y; z) is computed in the new coordinates as

p0�;�(x; y; z) = p0�;�(�x cos � cos�� �y sin � � �z cos � sin�;

�x sin � cos�+ �y cos � � �z sin � cos�; (10)

�x sin�+ �z cos�)

Transformation matrices for computation of the rotated coordinate systems are shown in Appendix II-A.
Solving the integral (Eq. 9) yields

F�;� =
1

3
A(Ki; �; �)L

2 +
1

3
B(Ki; �; �)V

2 +
1

3
C(Ki; �; �)W

2 +D(Ki; �; �) (11)

where functions A(Ki; �; �); B(Ki; �; �); C(Ki; �; �) and D(Ki; �; �) are given in Appendix II-B.
Complexity of computing maxima of the integral F�;� (Eq. 11) is prohibitive for practical implementation.

Therefore, instead of using an arbitrary prism, a cubical voxel neighborhood is considered for directional
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derivative averaging (L = V =W ). Under this condition, signi�cant simpli�cation occurs and the integral can
be evaluated as

F�;� = (K2 +
1

3
L2K14 +

1

3
L2K15 + L2K11) cos � cos�

+ (K3 +
1

3
L2K12 +

1

3
L2K17 + L2K18) sin � cos� (12)

+ (K4 +
1

3
L2K13 +

1

3
L2K16 + L2K19) sin�

Then, the direction (�; �) that maximizes F�;� must be determined. Denoting

FX = K2 +
1

3
L2K14 +

1

3
L2K15 + L2K11

FY = K3 +
1

3
L2K12 +

1

3
L2K17 + L2K18 (13)

FZ = K4 +
1

3
L2K13 +

1

3
L2K16 + L2K19

and setting the �rst partial derivatives of F�;� equal to zero
@F�;�
@�

= �FX sin � cos�+ FY cos � cos� = 0

@F�;�
@�

= �FX cos � sin�� FY sin � sin�+ FZ cos � = 0 (14)

the �nal solution is obtained

�MAX = arctan
FY
FX

�MAX = arctan
FZp

F 2
X + F 2

Y

(15)

FMAX
�;� =

q
F 2
X + F 2

Y + F 2
Z

where the MAX symbol denotes the values of � and � for which F�;� reaches its maximum value FMAX
�;� .

Thus, the gradient can be represented as (FX ; FY ; FZ). It can be observed that for L = 0 the result reduces
to (K2;K3;K4), which is the maximum gradient at the center of the processed voxel (Eq. 6).

C. Implementation

Although our edge detector is derived following a complicated process, its implementation is fairly easy.
Careful observation can reveal that the 3D edge detector can be implemented by computing three 3D masks
MX ;MY and MZ that are then used for convolution with the image data, to obtain gradients (FX ; FY ; FZ)
at every voxel. The overall edge detection algorithm can be summarized as:
1. Set the following properties of the detector according to the input image data
� voxel size (vx; vy; vz),
� size of the prism over which the data are integrated during the acquisition process { (dx; dy; dz),
� mask size (nx; ny; nz) (odd numbers) to get the sets

Xim = f�nx=int2; : : : ; nx=int2g

Yim = f�ny=int2; : : : ; ny=int2g

Zim = f�nz=int2; : : : ; nz=int2g

x

y

z

z

x

y

2W

2V

2L

Fig. 2. Rotated prism over which integral F�;� is computed.
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(where \=int" denotes integer division), and
� neighborhood size for the directional gradient averaging L (recommended empirically derived value for the
mask size of 5� 5� 5 is L = 2:1).
2. Compute the three convolution masks. It can be seen from Eq. 13 that (FX ; FY ; FZ) may be computed from
the polynomial coe�cients Ki and from the integration dimension L. The coe�cients Ki can be computed
from Eqs. 23, 22, and 20. The masks MX ;MY and MZ are applied to the image data to obtain FX ; FY and
FZ , respectively.

MX(x; y; z) =

�
A2 �

1

U2
X21(x

2 + d2x)�
1

V2
Y31(y

2 + d2y=3)�
1

W2
Z31(z

2 + d2z=3)

�
x+

1

3V2
L2
�
(y2 + d2y=3)Y0 � Y31

�
x+

1

3W2
L2
�
(z2 + d2z=3)Z0 � Z31

�
x+

1

U2
L2
�
(x2 + d2x)X2 �X21

�
x

MY (x; y; z) =

�
A3 �

1

U3
X31(x

2 + d2x=3)�
1

W3
Y21(y

2 + d2y)�
1

V3
Z31(z

2 + d2z=3)

�
y + (16)

1

3U3
L2
�
(x2 + d2x=3)X0 �X31

�
y +

1

3V3
L2
�
(z2 + d2z=3)Z0 � Z31

�
y +

1

W3
L2
�
(y2 + d2y)Y2 � Y21

�
y

MZ(x; y; z) =

�
A4 �

1

U4
X31(x

2 + d2x=3)�
1

V4
Y31(y

2 + d2y=3)�
1

W4
Z21(z

2 + d2z)

�
z +

1

3U4
L2
�
(x2 + d2x=3)X0 �X31

�
z +

1

3V4
L2
�
(y2 + d2y=3)Y0 � Y31

�
z +

1

W4
L2
�
(z2 + d2z)Z2 � Z21

�
z

In the above equations, all necessary variables are directly computed from Eqs. 22 and 20, and the sets X;Y; Z
are symmetric.
3. Compute the gradient (FX ; FY ; FZ) for every voxel (i; j; k) in the image volume as

FX (i; j; k) =
X

xim2Xim

X
yim2Yim

X
zim2Zim

MX(ximvx; yimvy; zimvz)f(i+ xim; j + yim; k + zim)

FY (i; j; k) =
X

xim2Xim

X
yim2Yim

X
zim2Zim

MY (ximvx; yimvy ; zimvz)f(i+ xim; j + yim; k + zim) (17)

FZ(i; j; k) =
X

xim2Xim

X
yim2Yim

X
zim2Zim

MZ(ximvx; yimvy; zimvz)f(i+ xim; j + yim; k + zim)

where f(i; j; k) is the image intensity function.
4. Determine gradient magnitude and orientation using Eq. 15.

III. Experimental methods

To provide comprehensive veri�cation of the performance of the developed edge detector, many of its features
were tested under a variety of conditions. The detector's behavior was assessed in edges of various gradient
pro�les and of various geometrical properties (di�erent surface curvatures). The edge detection performance
was also studied in anisotropic data, for di�erent ratios of voxel dimensions, and in images with superimposed
Gaussian noise.

Image data

To achieve an objective measurement of the gradient detection accuracy, simulated images of objects of
known shapes and locations were used. 3D images were generated with the varying edge pro�les, geometric
properties, and noise levels:
1. Gradient pro�les:
� step edge (the image intensity function f changed discontinuously at the edge location from fLOW = 50 to
fHIGH = 200),
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� ramp edge (the image intensity function was linearly dependent on the distance from the edge, intensity at
the edge position being 128 with the slope of change of 10 units per voxel).
2. Geometric properties:
� planar edges,
� spherical edges (spheres of various radii were used ranging from 3 to 21 to test the detector's behavior in
objects with di�erent surface curvatures).
3. Data anisotropicity:
� The images were generated for various ratios of voxel dimensions x:y:z ranging from 1:1:1 to 1:1:6.
4. Noise levels:
� The images were generated for various values of variance of superimposed Gaussian noise with zero mean.
The variance values ranged from 0% to approximately 100% of the edge magnitude.
In the computer-generated images, the gray level value of a voxel was determined as an integral of image

intensity function over that voxel with the integration factor covering 100% of the voxel volume.
The experiments were performed by generating small 5�5�5 subimages (equal to the neighborhood size of

the employed detector). The gradient was computed at the center of these subimages. The characteristics were
assessed using over 100 edge instances of di�erent directions for each experiment. The overall number of tested
edges was over 50; 000. The results reported below are based on assessing the edge detector's performance in
6; 000 edge instances.

Compared 3D edge detectors

The obtained edge information was compared to that obtained by using previously reported state-of-the-
art 3D extension of the Canny edge detector, and its anisotropic modi�cation. To clearly demonstrate the
advantage of our gradient averaging approach, a simpli�ed version our detector not containing the averaging
step was also included in the comparisons. To summarize, four 3D edge detectors were tested with the
parameter setting as follows:
� the new anisotropic edge detector with gradient averaging, L = 2:1,
� the new anisotropic edge detector without gradient averaging, L = 0. In this case, gradient computation
was based solely on computing derivatives of the �tted interpolation polynomial,
� 3D extension of the Canny edge detector with � = 1:0, and
� anisotropic modi�cation of 3D extension of the Canny edge detector with � = 1:0. The modi�cation was
done in the following way: the obtained gradients in every direction were divided by the relative voxel sizes in
those directions. Rationale for this modi�cation is based on the gradient detector behavior in ramp edges.
In all studied cases, 5� 5� 5 edge detectors were employed.

Performance indices

To quantitatively assess the accuracy of edge detection, error indices were determined by comparison to the
true edge properties.
� mean absolute error of the � angle,
� mean absolute error of the � angle,
� standard deviation of the gradient magnitude divided by its mean value (to assess the consistency of gradient
strength measurement { the gradient magnitudes cannot be compared directly since edge detectors do not
provide normalized magnitude values).
To determine the statistical signi�cance of the achieved results, the edge orientation errors were compared

using paired t-statistic, p value of 0.05 was considered signi�cant.

IV. Results

Figs. 3 { 7 demonstrate the qualities of our new anisotropic edge detector. The results are divided into
several groups according to the character of the underlying image data.

Edge detection performance in anisotropic data

Fig. 3 gives the comparison of edge detection performance in planar step edges in zero-noise data. In planar

ramp edges in zero-noise data, the 3D version of the Canny edge detector yielded high errors in both magnitude
and orientation while both version of our new edge detector as well as the modi�ed Canny detector yielded
zero errors. No graphical results are therefore presented. Fig. 4 gives the performance comparison in spherical
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step edges, sphere radius 15, noise-free data. Similarly, Fig. 5 demonstrates edge detection errors in spherical

ramp edges, radius 15, noise-free data. To keep the charts comprehensible, the � errors are not shown since
they are negligible in comparison to the � angle errors. Rather, a range of � errors is depicted.

Edge detection performance for various surface curvatures

Figs. 6 a,b,e show errors of spherical step edge detection in noise-free isotropic data. Figs. 6 c,d,f provide
similar comparison for noise-free spherical ramp edges. In both cases, the sphere radii ranged from 3 to 21.
Notice that in Figs. 6 c,d,f y axes use a logarithmic scale to better depict the di�erences of detection errors.

Edge detection performance in noisy data

Figs. 7 a,b,e give edge detection errors for spherical step edges, radius 5 in isotropic data for the 8 noise
levels. Fig. 7 c,d,f provide the same information for spherical ramp edges, radius 5.

As was demonstrated in the error charts, our anisotropic edge detector exhibits consistently good perfor-
mance in all the tested cases. Its simpli�ed version that does not perform the gradient averaging step provides
good results in noise-free data but it fails to yield acceptable results in noisy images. The Canny edge detector
provides good results in all cases when isotropic data are used. However, it fails in anisotropic data yielding
high edge-orientation errors. The employed modi�cation to the Canny detector that divides the partial gradi-
ents by directional voxel dimensions was shown to reduce this error but not to fully compensate it. Statistical
comparisons of the achieved results show that the novel anisotropic edge detector signi�cantly outperforms
the other tested detectors in most experiments in anisotropic image data as well as in data with superimposed
noise (p values are given in charts).
The presented results give just a sample of all error assessment experiments that were performed to demon-

strate the new edge detector qualities. While additional error indices can be presented, they would not alter the
assessment of the new edge detection performance. Rather, the overall results are discussed in the Discussion
section.

(a) (b)

Fig. 3. Detector performance in anisotropic planar noise-free step edges (New (L=2.1) ... novel anisotropic edge
detector (parameter L=2.1), New (L=0) ... the simpler version of the novel anisotropic detector (without
gradient averaging), Canny ... 3D extension of Canny edge detector, Canny-Modi�ed ... anisotropic
modi�cation of Canny edge detector). (a) Directional errors, (b) magnitude errors. In experiments, in
which paired t-statistic showed a signi�cant di�erence between performance of the novel anisotropic edge
detector (New (L=2.1)) and the modi�ed 3D Canny edge detector (Canny-Modi�ed), the p value is shown.
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(a) (b)

Fig. 4. Detector performance in anisotropic spherical noise-free step edges (New (L=2.1) ... novel anisotropic
edge detector (parameter L=2.1), New (L=0) ... the simpler version of the novel anisotropic detector (with-
out gradient averaging), Canny ... 3D extension of Canny edge detector, Canny-Modi�ed ... anisotropic
modi�cation of Canny edge detector). (a) Directional errors, (b) magnitude errors. In experiments, in
which paired t-statistic showed a signi�cant di�erence between performance of the novel anisotropic edge
detector (New (L=2.1)) and the modi�ed 3D Canny edge detector (Canny-Modi�ed), the p value is shown.

(a) (b)

Fig. 5. Detector performance in anisotropic spherical noise-free ramp edges (New (L=2.1) ... novel anisotropic
edge detector (parameter L=2.1), New (L=0) ... the simpler version of the novel anisotropic detector (with-
out gradient averaging), Canny ... 3D extension of Canny edge detector, Canny-Modi�ed ... anisotropic
modi�cation of Canny edge detector). (a) Directional errors, (b) magnitude errors. In experiments, in
which paired t-statistic showed a signi�cant di�erence between performance of the novel anisotropic edge
detector (New (L=2.1)) and the modi�ed 3D Canny edge detector (Canny-Modi�ed), the p value is shown.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Detector performance in isotropic spherical noise-free edges of varying curvature (New (L=2.1) ... novel
anisotropic edge detector (parameter L=2.1), New (L=0) ... the simpler version of the novel anisotropic
detector (without gradient averaging), Canny ... 3D extension of Canny edge detector, Canny-Modi�ed
... anisotropic modi�cation of Canny edge detector). (a) Directional errors of � angle for step edges, (b)
directional errors of � angle for step edges, (c) directional errors of � angle for ramp edges, (d) directional
errors of � angle for ramp edges, (e) magnitude errors for step edges, (f) magnitude errors for ramp edges.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Detector performance in isotropic spherical edges with varying noise (New (L=2.1) ... novel anisotropic
edge detector (parameter L=2.1), New (L=0) ... the simpler version of the novel anisotropic detector (with-
out gradient averaging), Canny ... 3D extension of Canny edge detector, Canny-Modi�ed ... anisotropic
modi�cation of Canny edge detector). (a) Directional errors of � angle for step edges, (b) directional errors
of � angle for step edges, (c) directional errors of � angle for ramp edges, (d) directional errors of � angle
for ramp edges, (e) magnitude errors for step edges, (f) magnitude errors for ramp edges. In experiments,
in which paired t-statistic showed a signi�cant di�erence between performance of the novel anisotropic
edge detector (New (L=2.1)) and the modi�ed 3D Canny edge detector (Canny-Modi�ed), the p value is
shown.
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V. Discussion

The reported anisotropic 3D edge detector has proved to be accurate over a broad spectrum of edge instances.
Its comparison to the Canny edge detector revealed that the novel anisotropic edge detector signi�cantly
outperforms the Canny edge detector in both anisotropic data and data with superimposed noise. The new
edge detector utilizes analytically computed gradients from polynomial interpolation of the image intensity
function. Consequently, the results are inuenced by the quality of the �t { the better the �t, the better the
edge detection results. Generally, a better �t is obtained for edges with gradient pro�les that that can be
described by polynomials of lower orders (e.g., ramp edges) than for edges with abrupt changes in the image
intensity function (e.g., step edges). Comparing, for example the absolute errors of � for step and ramp edges
as given in Figs. 4 and 5, it is seen that the � mean error for spherical step edges is about 3� for the relative
anisotropicity of 6, while it is less than 0:5� for the ramp edges under otherwise identical conditions. Similar
behavior can be observed in planar step edges with the � error of about 5� (Fig. 3), while the ramp edges
are determined after an exact �t and thus yield zero errors. Our performance assessment uses these step and
ramp edge pro�les as examples from the two ends of the application spectrum, the step edge as one of the
least-suited edge pro�les for the novel detector and the ramp edge as one of the well-suited pro�les. The
detector is expected to perform comparably well in comparison to the 3D Canny edge detector in other edge
pro�les.
The main feature of the reported edge detector is its designed ability to perform in anisotropic image data.

The experimental validation demonstrated this feature in data sets for which the anisotropicity was created
by changing the z dimension of the voxel. Consequently, the increased error is likely to occur in the edge
properties that are z-directional. In other words, errors of the � angle can be expected. Errors in the �
angle are expected to be negligible. The error of the � angle, while having an increasing tendency with
the increased anisotropicity, remains low. It is consistently below 5� for z-voxel dimensions up to 6 times
the x and y dimensions. In comparison, it is important to realize that the 3D extension of the Canny edge
detector performs poorly when applied to anisotropic data. Its mean unsigned error of � approaches 30�.
When the Canny edge detector is modi�ed to reect anisotropicity as proposed above, its edge orientation
accuracy improves substantially. Still, in the majority of the performed experiments, it is outperformed by
our new anisotropic edge detector. Even the simpli�ed version of our new detector that does not include the
gradient averaging step (L = 0) performed well in the anisotropic data with orientation and magnitude errors
comparable to those achieved by the full version of the new detector.
Our new 3D edge detector is designed to work in anisotropic data with di�erent voxel sizes in any (or all)

direction. Considering the fact, that a local �t to the image intensity function is performed, it can also be
successfully applied to data with changing relative voxel sizes over the image volume, as long as the changes of
the relative voxel dimensions are not abrupt (because of region overlapping). This may become useful, e.g., in
potential variable-resolution medical image data of the future. Even though our detector performed very well
in anisotropic data, it has to be kept in mind that for any edge detector to yield good results, the sampled
data have to preserve the edge information. In other words, the sampling theorem must not be violated.
Testing the detector performance on objects with various surface curvatures (Fig. 6) showed that higher

directional errors are obtained for surfaces with higher curvature (lower sphere radius). With the decreasing
curvature, the errors converge to the values observed on planar surfaces. By design, the image data were
isotropic and so the errors of � and � are approximately the same. As far as the four edge detectors are
concerned, they all performed comparably well. The obvious di�erence is in a higher error of the proposed
detector in step edges and lower error in ramp edges as discussed earlier.
Inuence of a superimposed Gaussian zero mean noise was also studied (Fig. 7). The Canny edge detector

was designed to perform in noisy data and was expected to yield accurate results what was indeed the case.
Importantly, our new detector performed even better in the noisy data, yielding consistently lower errors than
the Canny edge detector. In most experiments the statistical comparison revealed statistically signi�cant
di�erence between the two detectors. The incorporated gradient averaging step is primarily responsible for
this good performance. Due to the gradient averaging, many of the local inaccuracies caused by noise get
eliminated. The mean directional error was never higher than 20� even in data with standard deviation of
noise being 100% of the edge magnitude. In this context, note the comparison between the full and the
simpli�ed versions of our anisotropic detector. Even though the simpli�ed detector performed comparably
well in all other performed experiments, it failed in the noisy data further demonstrating the importance of
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the gradient averaging step. In the simpli�ed version, the gradient at the voxel center is computed directly
from the interpolated polynomial employing no compensation for the error caused by noise. This justi�es the
increased design complexity of our full version of the anisotropic 3D edge detector.

VI. Conclusion

A new directional 3D edge detector designed for anisotropic image data sets was reported. The detector
is based on interpolating the image intensity function in a small neighborhood of every voxel by a tri-cubic
polynomial. The analytical approximation of the image intensity function is used to compute the intensity
function gradients. The developed edge detector uses a maximum average of directional derivatives of the
approximated image intensity function over a small neighborhood to determine the gradient direction thus
achieving robust edge detection in the presence of noise.
Quantitative measures of the 3D edge detection accuracy were employed to compare the performance of our

new edge detector to that of the 3D Canny edge detector. 3D edges with step and ramp pro�les with varying
surface curvatures at the edge point as well as several levels of noise were used for the performance testing. The
reported edge detector statistically signi�cantly outperformed the Canny edge detector in most experiments
in anisotropic data as well as in data with superimposed noise. Another important property of the new edge
detector is the ease of its implementation. Although its design required complex steps, the implementation
employs straightforward 3D convolution in the volumetric image data using three pre-computed directional
masks.

Appendix

I. Tri-cubic polynomial fit

The constants of the tri-cubic polynomial are computed to minimize the error function e(xim; yim; zim) from
Eq. 5. Partial derivatives of e(x; y; z) with respect to the polynomial constants K1; : : : ;K20 are�
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where X;Y; Z are neighborhood sets in the continuous space directly corresponding to Xim; Yim and Zim in
the discrete space. When considering a symmetric neighborhood, a signi�cant number of cancellations will
occur:
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After setting the derivatives equal to zero, coe�cients K6, K7, K8 and K20 can be computed directly. For
the remaining coe�cients, four systems of equations with four unknown variables can be constructed. The
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substitution from Eq. 20 yields a simpli�ed Eq. 21.
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The systems of linear equations can be solved to receive the values of coe�cients minimizing the error �t
function e(x; y; z). To further simplify the equations, the following substitutions are used:

U1 = Y0Z0(X0X32 �X2
31)

V1 = X0Z0(Y0Y32 � Y 2
31)

W1 = X0Y0(Z0Z32 � Z2
31)

A1 =
1

X0Y0Z0

�
1�

X2
31

X2
31 �X0X32

�
Y 2
31

Y 2
31 � Y0Y32

�
Z2
31

Z2
31 � Z0Z32

�
U2 = Y0Z0(X2X22 �X2

21)

V2 = X2Z0(Y0Y32 � Y 2
31)

W2 = X2Y0(Z0Z32 � Z2
31)

A2 =
1

X2Y0Z0

�
1�

X2
21

X2
21 �X2X22

�
Y 2
31

Y 2
31 � Y0Y32

�
Z2
31

Z2
31 � Z0Z32

�
(22)

U3 = Y2Z0(X0X32 �X2
31)

V3 = X0Y2(Z0Z32 � Z2
31)

W3 = X0Z0(Y2Y22 � Y 2
21)

A3 =
1

X0Y2Z0

�
1�

X2
31

X2
31 �X0X32

�
Y 2
21

Y 2
21 � Y2Y22

�
Z2
31

Z2
31 � Z0Z32

�
U4 = Y0Z2(X0X32 �X2

31)

V4 = X0Z2(Y0Y32 � Y 2
31)

W4 = X0Y0(Z2Z22 � Z2
21)

A4 =
1

Y0X0Z2

�
1�

X2
31

X2
31 �X0X32

�
Y 2
31

Y 2
31 � Y0Y32

�
Z2
21

Z2
21 � Z2Z22

�

The �nal solution of the least squares error �t of the tri-cubic polynomial is then

K1 =
X
x2X

X
y2Y

X
z2Z

 
A1 �

1

U1
X31(x

2 +
d2x
3
)�

1

V1
Y31(y

2 +
d2y
3
)�

1

W1
Z31(z

2 +
d2z
3
)

!
f(x; y; z)

K2 =
X
x2X

X
y2Y

X
z2Z

 
A2 �

1

U2
X21(x

2 + d2x)�
1

V2
Y31(y

2 +
d2y
3
)�

1

W2
Z31(z

2 +
d2z
3
)

!
xf(x; y; z)

K3 =
X
x2X

X
y2Y

X
z2Z

�
A3 �

1

U3
X31(x

2 +
d2x
3
)�

1

W3
Y21(y

2 + d2y)�
1

V3
Z31(z

2 +
d2z
3
)

�
yf(x; y; z)

K4 =
X
x2X

X
y2Y

X
z2Z

 
A4 �

1

U4
X31(x

2 +
d2x
3
)�

1

V4
Y31(y

2 +
d2y
3
)�

1

W4
Z21(z

2 + d2z)

!
zf(x; y; z)

K5 =
1

U1

X
x2X

X
y2Y

X
z2Z

�
(x2 +

d2x
3
)X0 �X31

�
f(x; y; z)

K6 =
1

X2Y2Z0

X
x2X

X
y2Y

X
z2Z

xyf(x; y; z)

K7 =
1

X2Y0Z2

X
x2X

X
y2Y

X
z2Z

xzf(x; y; z)

K8 =
1

X0Y2Z2

X
x2X

X
y2Y

X
z2Z

yzf(x; y; z)

K9 =
1

V1

X
x2X

X
y2Y

X
z2Z

 
(y2 +

d2y
3
)Y0 � Y31

!
f(x; y; z)



17

K10 =
1

W1

X
x2X

X
y2Y

X
z2Z

�
(z2 +

d2z
3
)Z0 � Z31

�
f(x; y; z) (23)

K11 =
1

U2

X
x2X

X
y2Y

X
z2Z

�
(x2 + d2x)X2 �X21

�
xf(x; y; z)

K12 =
1

U3

X
x2X

X
y2Y

X
z2Z

�
(x2 +

d2x
3
)X0 �X31

�
yf(x; y; z)

K13 =
1

U4

X
x2X

X
y2Y

X
z2Z

�
(x2 +

d2x
3
)X0 �X31

�
zf(x; y; z)

K14 =
1

V2

X
x2X

X
y2Y

X
z2Z

 
(y2 +

d2y
3
)Y0 � Y31

!
xf(x; y; z)

K15 =
1

W2

X
x2X

X
y2Y

X
z2Z

�
(z2 +

d2z
3
)Z0 � Z31

�
xf(x; y; z)

K16 =
1

V4

X
x2X

X
y2Y

X
z2Z

 
(y2 +

d2y
3
)Y0 � Y31

!
zf(x; y; z)

K17 =
1

V3

X
x2X

X
y2Y

X
z2Z

�
(z2 +

d2z
3
)Z0 � Z31

�
yf(x; y; z)

K18 =
1

W3

X
x2X

X
y2Y

X
z2Z

�
(y2 + d2y)Y2 � Y21

�
yf(x; y; z)

K19 =
1

W4

X
x2X

X
y2Y

X
z2Z

�
(z2 + d2z)Z2 � Z21

�
zf(x; y; z)

K20 =
1

X2Y2Z2

X
x2X

X
y2Y

X
z2Z

xyz f(x; y; z)

II. Directional Gradient Averaging

A. Rotation transformation matrices

The transformation matrix that represents a � rotation about the z axis followed by a � rotation about the
y axis in the local coordinate system is

R =

2
4 cos � � sin � 0

sin � cos � 0
0 0 1

3
5 �
2
4 cos� 0 � sin�

0 1 0
sin� 0 cos�

3
5 =

2
4 cos � cos� � sin � � cos � sin�

sin � cos� cos � � sin � sin�
sin� 0 cos�

3
5 (24)

Therefore, a unit vector (nx; ny; nz) in the direction (�; �) from Eq. 7 can be computed as the rotation of a

unit vector in the direction of the x axis by the angle (�; �):

(nx; ny; nz)
T = R � (1; 0; 0)T = (cos � cos�; sin � cos�; sin�)T (25)

To express the coordinate transformation in Eq. 10, the original x; y; z coordinates must be derived from the

rotated coordinates �x; �y; �z. Therefore, any point in the space after rotation described by the matrix R can be
expressed in the original coordinates as 0

@ x
y
z

1
A = R �

0
@ �x

�y
�z

1
A (26)

As a result of this transformation, the coordinates can be expressed as
(x; y; z) = (�x cos � cos�� �y sin � � �z cos � sin�; �x sin � cos�+ �y cos � � �z sin � cos�; �x sin�+ �z cos�) (27)
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B. Functions A,B,C and D in the Integral of Eq. 11

A(Ki; �; �) = K11 cos
3 � cos3 �+K12 cos

2 � sin � cos3 �+K13 cos
2 � cos2 � sin�+

K14 cos � sin
2 � cos3 �+K15 cos � cos� sin

2 �+K16 sin
2 � cos2 � sin�+

K17 sin � cos� sin
2 �+K18 sin

3 � cos3 �+K19 sin
3 �+K20 cos � sin � cos

2 � sin�

B(Ki; �; �) = K11 cos � sin
2 � cos�+K12

1

12
cos�(sin � � 3 sin(3�)) +K13

1

3
sin2 � sin�+

K14
1

12
cos�(cos � + 3 cos(3�)) +K16

1

3
cos2 � sin�+K18 cos

2 � sin � cos��

K20
1

3
cos � sin � sin� (28)

C(Ki; �; �) = K11 cos
3 � cos� sin2 �+K12 cos

2 � sin � cos� sin2 �+K13
1

12
cos2 �(sin�� 3 sin(3�)) +

K14 cos � sin
2 � cos� sin2 �+K15

1

12
cos �(cos�+ 3 cos(3�)) +

K16
1

12
sin2 �(sin�� 3 sin(3�)) +K17

1

12
sin �(cos�+ 3 cos(3�)) +K18 sin

3 � cos� sin2 �+

K19 cos
2 � sin�+K20

1

12
cos � sin �(sin�� 3 sin(3�))

D(Ki; �; �) = K2 cos� cos � +K4 sin�+K3 cos� sin �
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